基坑中水平位移变形测量几种方法探讨

基坑中水平位移变形测量几种方法探讨
基坑中水平位移变形测量几种方法探讨

基坑中水平位移变形测量几种方法探讨

[摘要]变形观测系统(水平位移数据处理)是变形监测中的重要组成部分,我们要研究变形体的变形问题就必须处理好变形数据的处理。变形数据处理力求准确性、自动化。变形监测资料的处理,首先在预处理中采用一元线形回归方法进行资料的检核和监测网观测资料的数据筛选和剔除。其次在变形监测成果整理包括控制点和工作基点的稳定性检验和改正,并对观测值进行改正计算。尤其,在基坑水平位移数据中针对不同的情况下采用不同方法处理。

[关键词]变形监测水平位移监测基坑

引言

目前建筑物水平位移监测应用较多的方法有:视准线法和交会法。利用经纬仪或准直仪等光学仪器,在两个基准之间建立一个基准面,以该基准面为依据,测定出各个观测点的水平位移量,称为视准线法。视准线法可分为角度变化法(即测小角法)和移位法(活动标牌法)两种。如图1,测小角法就是利用精密经纬仪精确测定基线与置镜点到观测点的连线两视线之间的微小角度变化,通过公式来计算位移变化。活动标牌法就是将活动标牌分别安置在各观测点上观测时使标牌中心在视线内,观测点对于基准面的偏离值可以在活动标牌的读数尺上直接测定。

交会法是利用两个基准点和变形观测点,构成一个三角形,测定这个三角形的一些边角元素,从而求得变形观测点的位置,进而计算出位移变化量的方法。前方交会法可用作拱坝、曲线桥梁、高层建筑等的位移监测。

1.小角法

如图2所示,在基坑一定距离以外建立基准点,水平位移监测点的布设应尽量与基准点在一条直线上。具体操作时,沿监测点与基准点连线方向在一定远处(100~200m)选定一零方向,测定一定时间内,观测点与基准点连线与零方向间角度变化值,根据( 为观测点至基准点的距离)计算基坑水平位移。此方法简单易行,便于实地操作,但需场地较为开阔,基准点应建立在离基坑一定距离以外,不受基坑开挖影响。

小角法测位移时基准点和水平位移监测点分布图:

基坑深层水平位移监测方案

基坑深层水平位移监测方案 1概述 深层水平位移主要用于大地运动,如可能产生在不稳固的边坡(滑坡)或挖土工程周围的测向运动等,也可以用来监测软土地基处理,堤坝,芯墙稳定性,钻孔设置的偏差,打桩引起的土体位移,以及回填筑堤和地下工程的土体沉陷,也可用于沿海、江边重力存放物场的土层变化等。 2 仪器设备 测斜仪(一般测斜仪由探头、电缆、数据采集仪(读数仪)组成。探头的传感器型式有伺服加速度计式、电阻应变片式、钢弦式、差动电阻式等多种型式,目前使用最多的是伺服加速度式。国内有航天部33 所生产的CX 系列,国外有美国SINCO 公司的数字测斜仪,瑞士的PRIVEC 等) 内壁有导槽的测斜管(测斜管道由以下几部分组成:测斜管、连接管、管座、管盖。测斜管是用聚氯乙烯、ABS 塑料、铝合金等材料制成,管内有互成90 度四个导向槽,国产塑料测斜管尺寸多为:内径Φ58mm,径Φ70mm、长度分2m,3m,4m 三种。塑料连接管多采用市场上出售的聚氯乙烯塑料管制成,还可用软的万能接头相连。连接管的尺寸为内径Φ70mm,外径Φ82mm,长度分300,400mm两种。在管壁的两端铣制有滑动槽各4 条或仅一端铣制滑动槽4 条,各槽相隔90 度。管座位于测斜管底端,与管外径匹配,防止泥砂从管底端进入管内的一个安全护盖。管盖用于保护测斜管管口,防止杂物从管口掉入管内影响正常观测工作也由聚氯乙烯制成,其外形尺寸同管座。) 3监测仪器工作原理

测斜仪的工作原理是测量测斜管轴线与铅垂线之间的夹角变化量,从而计算出土层各点的水平位移大小。通常在坝内埋设一垂直并互成90°四个导槽的管子,当管子受力发生变形时,将测斜仪探头放入测斜管导槽内,逐段(一般50cm 一个测点) 量测变形后管子的轴线与垂直线之间的夹角θi ,并按测点的分段 长度,分别求出不同高程处的水平位移增量Δdi ,即Δdi = Lsinθi (1)由测斜管底部测点开始逐段累加,可得任一高程处的实际位移,即bi = ΣΔdi (2)而管口累积水平位移为:B = ΣΔdi (3)式中Δdi 为量测段内的水平位移增量;L 为量测点的分段长度, 一般常取015m ;θi 为量测段内管轴线与铅垂线的夹角;bi 为自固定点的管底端以上i点处水平位移;B 为管口在该次观测时的水平位移;n 为测斜孔分段数目,n = H/ 015 ,H 为孔深。测斜仪的工作原理见图 4设备安装和布置

基坑水平位移监测报告

基坑变形 监测报告 工程名称:

建设项目 一期基坑工程基坑变形监测报告现场监测人员: jjjjjj 二OO九年三月十八日 j

目录 一、工程概况 (4) 二、监测依据 (4) 三、监测项目与点位布置 (4) 5 5 5 6 8 9 17 25 26 5、测斜曲线图 (52) 6、侧向变形累计最大位移点位移~时间关系曲线图 (61) 7、地下水水位测试结果汇总表 (62) 8、总部经济区水位随时间变化图 (73)

9、监测点位平面布置图 (74) 一、工程概况 位于开创大道西南侧、揽月路以西一带,地处科学城中心区东部,西面毗邻初具规模的综合研发孵化中心,总建筑面积约34万平方米。该项目基坑安全等级为二级,按设计及规范要求并结合本项目的具体情况,本项目设置如下监测项目: 5、科学城总部经济区工程基坑支护监测点布置图。 三、监测项目与点位布置 1、基坑支护结构水平位移观测: 按设计要求,共布设31个监测点,编号为W1~W31,详见观基坑监测点布置图。

2、支护结构及土体侧向变形监测: 按设计要求,共布设27个监测点,编号为K1~K27,其中K2、K10、K15和K22为土体侧向变形监测点,详见基坑监测点布置图。 3、地下水位监测: 按设计要求,共布设19个监测点,编号为SW1~SW19,详见基坑监测点布置图。 3、地下水位监测采用钢尺水位计测得地下水位与管顶的距离,根据管顶高程即可计算地下水位的高程。将到开挖过程中地下水位与基坑开挖前地下水位高程进行比较,得到开挖过程中基坑周边地下水位的变化情况。 五、允许值及报警值 根据基坑支护设计要求,并结合工程实践经验,对该工程监测项目提出以下警戒

基坑监测规范要求

基坑监测内容摘要 基坑围护体系随着开挖深度增加必然会产生侧向变位,关键是侧向变位的发展趋势如何。一般围护体系的破坏都是有预兆的,因而进行严密的基坑开挖监测非常重要。通过监测可及时了解围护体系的受力状况,对设计参数进行反分析,以调整施工参数,指导下步施工,遇异情可及时采取措施。应该说,基坑监测是保证基坑安全的一个重要的措施。 基坑监测规范要求如下: 一、监测点布置 1、土体的深层水平位移监测点宜布置在基坑周边的中部、阳角处及有代表性的部位;当测斜管埋设在土体中,测斜管长度不宜小于基坑开挖深度的 1."5倍,并应大于维护墙的深度。以测斜管底为固定起算点,管底应嵌入到稳定的土体中。 2、地下水位监测点的布置应符合下列要求: (1)、基坑内地下水位当采用深井降水时,水位监测点宜布置在基坑中央和两相邻降水井的中间部位;当采用轻型井点、喷射井点降水时,水位监测点宜布置在基坑中央和周边拐角处,监测点数量应视具体情况确定; (2)、基坑外地下水位监测点应沿基坑、被保护对象的周边或在基坑与被保护对象之间布置,监测点间距宜为20~50m。相邻建筑、重要的管线或管线密集处应布置水位监测点;当有止水帷幕时,宜布置在止水帷幕的外侧约2m处; (3)、水位观测管的管底埋置深度应在最低设计水位或最低允许地下水位之下3~5m。承压水水位监测管的滤管应埋置在所测的承压含水层中; (4)、回灌井点观测井应设置在回灌井点与被保护对象之间。 3、基坑周边环境监测点的布置应符合下列要求: (1)、从基坑边缘以外1~3倍基坑开挖深度范围内需要保护的周边环境应作为监测对象。

必要时尚应夸大监测范围。 (2)、位于重要保护对象安全保护区范围内的监测点的布置,尚应满足相关部门的技术要求。 (3)、建筑竖向位移监测点布置应符合下列要求: a、建筑四角、沿外墙每10~15m处或每隔2~3根柱基上,且每侧不小于3个监测点; b、不同地基或基础的分界处; c、不同结构的分界处; d、变形缝、抗震缝或严重开裂处的两侧; e、新、旧建筑或高、低建筑交接处的两侧; f、高耸构建筑基础轴线的对称部位,每一构筑物不应少于4点。 (4)、建筑水平位移监测点应布置在建筑的外墙墙角、外墙中间部位的墙上或柱上、裂缝两侧以及其他有代表性的部位,监测点间距视具体情况而定,一侧墙体的监测点不宜少于3点。 (5)、相邻地基沉降观测点可选在建筑纵横轴线或边线的延长线上,亦可选在通过建筑重心的轴线延长线上。其点位间距应视基础类型。荷载大小及地质条件,与设计人员共同确定或征求设计人员意见后确定。点位可在建筑基础深度 1."5- 2."0倍的距离范围内,由外墙向外由密到疏布设,但距基础最远的观测点应设置在沉降量为零的沉降临界点以外。 (6)、建筑裂缝、地表裂缝监测点应选择有代表性的裂缝进行布置,当原有裂缝增大或出现新裂缝时,应及时增设监测点。对需要观测的裂缝,每条裂缝的监测点至少应设2个,- 1 - 且宜设置在裂缝的最宽处及裂缝末端。

全站仪坐标法在深基坑水平位移监测中的精度分析与应用

第34 卷第6 期2011 年12 月 测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.34,No.6 Dec.,2011 全站仪坐标法在深基坑水平位移监测中的 精度分析与应用 包民先1,2 (1.江苏省南京工程高等职业学校,江苏南京211135;2.江苏联合职业技术学院南京工程分院,江苏南京211135) 摘要:针对施工场地狭窄,无法运用传统方法进行变形观测的情况下,对深基坑的水平位移监测提出了全站仪 坐标法。对全站仪坐标法监测水平位移的精度进行分析,通过分析结果与工程实践,验证了对于不同等级要求 的基坑水平位移监测,只要选择适当的全站仪进行作业,即能保证精度符合要求,提高作业效率。 关键词:全站仪坐标法;极坐标法;自由设站法;水平位移监测;深基坑 中图分类号:TU198 文献标识码:B 文章编号:1672 -5867(2011)06 -0255 -03 Accuracy Analysis and Application of Total Station Coordinate Method in Horizontal Displacement Monitoring of Deep Foundation Pit BAO Min -xian1,2 (1.Nanjing Engineering Vocational College of Jiangsu Province,Nanjing 211135,China; 2.Nanjing Engineering Department of Jiangsu Union Technical Institute,Nanjing 211135,China) Abstract:It is proposed that the coordinate method should be used as the solution to the problems caused by narrower construction sites where the traditional methods are not applicable.An analysis is carried out on the accuracy of horizontal displacement monitoring by Total Station coordinate method.By engineering practice and results analysis,it verified the requirements for different levels of hori- zontal displacement of foundation pit.Only if the appropriate operating Total Station was selected,the method can meet the require- ments to ensure accuracy and improve operational efficiency. Key words:Total Station coordinate method;polar coordinate method;free station method;horizontal displacement monitoring;deep foundation pit 0 引言有建筑物或地下管线距离较近时,为保证这些已有建筑物和地下管线的正常使用,就必须对基坑的水平位移进 在高层建筑物的深基坑施工中,为了确保支护结构和相邻建筑物的安全,在施工过程中,要对深基坑变形情况进行随时监测,保障施工过程中深基坑支护结构及周围建筑物的稳定和安全。其中,深基坑围护结构墙顶的水平位移监测是非常重要的。可靠、及时、准确的观测数据对于施工过程的决策有着决定性影响。然而,实际施工现场往往场地非常狭窄,围挡外常有既有的道路和建筑物,围挡内有施工车辆等移动设备和临时堆积材料,基坑周边环境往往非常复杂。在施工场地范围及周围无法实施传统的监测方法进行水平位移观测,这一问题在目前深基坑的施工中广泛存在,具有普遍性。当基坑离原行定期监测,以便发现异常情况能及时采取处理措施,将水平位移限制在允许值之内。 基坑水平位移监测的常用方法主要有经纬仪视准线法、小角度法等,这些方法的特点是使用经纬仪即可进行观测,基于基坑附近有相对稳定的地面基准点为基础,并保证在监测点通视的条件下才能实施。但在观测基坑不 同边水平位移时需进行仪器搬站,观测所需时间较长。 常规的监测方法已不能适应城市深基坑施工的复杂环 境。目前,随着智能型全站仪的普及和应用,采用极坐标法或以极坐标法为基础的自由设站法(统称为全站仪坐标变化法,简称为全站仪坐标法),可直接测定任意方向 收稿日期:2010 -11 -25 作者简介:包民先(1977 -),男,山东海阳人,讲师,河海大学测绘工程专业硕士研究生,主要从事工程测量方面的教学与科研工作。

深层水平位移观测检测报告

深层水平位移观测 检测报告
xx-20xx-00xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 公司 二〇一三年 x 月

声明
ii

试验室名称:
委托/施工单位 工程名称
工程部位/用途 样品描述
主要仪器设备及编号
序号
深度 (m)
第 次位 移值
(mm)
深层水平位移试验检测报告
水平位移数据汇总表
第 次位 第 次位 第 次位
移值
移值
移值
(mm) (mm) (mm)
第 次位 移值
(mm)
第 次位 移值
(mm)
委托编号 样品编号 试验依据 判定依据
报告编号
位移-深度 —时间曲线
第 页共 页
ii
检测结论:
备 注:
试验:
审核:
签发:
日期:


日 (专用章)

目录
第 1 章 工程概况 ........................................................................................................................1 第 2 章 检测目的 ........................................................................................................................1 第 3 章 检测依据 ........................................................................................................................1 第 4 章 检测设备 ........................................................................................................................2
4.1 主要仪器设备 ...................................................................................................................... 2 4.2 主要仪器设备 ...................................................................................................................... 2 第 5 章 检测等级 ........................................................................................................................2 第 6 章 仪器工作原理及方法 ....................................................................................................3 6.1 仪器工作原理 ...................................................................................................................... 3 6.2 仪器使用方法 ...................................................................................................................... 4 第 7 章 检测数据处理 ................................................................................................................5 第 8 章 检测结论及建议 ..........................................................................................................11
iv

基坑监测报告(模板)

********* 基坑变形监测报告 2018年10月

********** 基坑变形监测报告 工程名称:****** 工程地点:****** 监测日期:2018年X月X日~2018年X月X日

目录 一、工程概况........................... 错误!未定义书签。 二、监测依据........................... 错误!未定义书签。 三、监测内容........................... 错误!未定义书签。 四、监测点布置和监测方法 ............... 错误!未定义书签。 五、监测工序和测点保护 ................. 错误!未定义书签。 六、报警值............................. 错误!未定义书签。 七、监测时长和频率 ..................... 错误!未定义书签。 八、监测成果及分析 ..................... 错误!未定义书签。 九、附表、附图......................... 错误!未定义书签。

一、工程概况 工程场地地处*******,北池一路西首路南侧,文昌馨苑居住区西侧。拟建*****及地下车库概况如下: 表1 工程概况 建筑物名称地上 /地 下 层数 高度 (m) 基础尺寸 (m2) 基底 标高 (m) 场地 整平标高 (m) 开挖 深度 (m) **** 11/2 约35 66.55×13.20 83.2 87.9 3.9 **** 11/2 约35 66.55×13.20 83.2 87.1-88.3 3.9-5.0 **** 0/1 5 3×3 83.2 87.9 3.9 基坑平面尺寸:89.1m(东西最大尺寸)×80.1m(南北最大尺寸) 基坑支护深度:3.9-5.0m 二、监测依据 1.《建筑地基基础设计规范》(GB5007-2002)。 2.《建筑基坑工程监测技术规范》(GB50497-2009)。 3.《工程测量规范》(GB50026-2007)。 4.《建筑变形测量规程》(JGJ/T 8-2016)。 5. 基坑支护方案、施工方案。 三、监测内容 1.基坑顶部竖向位移; 2.基坑顶部水平位移; 3.基坑周边地表竖向位移;

基坑水平位移监测

深基坑水平位移监测 测量深基坑水平位移可采用视准线法、小角度法、投点法、前方交会法、自由设站法、极坐标法等。本节简要叙述常用的小角度法、极坐标法及前方交汇法。 监测控制值: 项目预警值报警控制值水平位移>3mm/d或24mm 30mm 监测频率: 项目变化 量>3mm/d 开挖前开挖后报警后及突发 状况 监测频率(1-2)次/d 1次/3d 1次/d 加大监测频率基准点及测点布置要求: 监测基准点应在基坑开挖影响范围之外设立强制对中观测墩,且尽量通视各测点,观测墩使用混凝土浇筑地下1.4M地面1.2M,顶面长宽20CM*20CM,顶部嵌入焊接中心螺旋的钢板,螺旋与钢板垂直且均做防腐处理。监测基准点观测按三级平面控制要求施测,且每个月与高等级控制网联测一次。为防止观测墩被破坏,顶部应加钢保护盖。埋设示意图如下:

当采用精密的光学对中装置时,对中误差不宜大于0.5mm,且尽量通视测点。 在混凝土支撑、连续墙顶等混凝土结构上安装水平位移桩,可直接在结构上用冲击钻成孔插入水平位移桩,垂直放置,缝隙使用锚固剂填充,容易受施工破坏的地方应加保护装置。在土体等松软结构埋设水平位移测点应采用混凝土桩顶插入水平位移桩的形式,混凝土桩采用直径10CM地下50CM地面10CM,中心用钢筋加固。如有需要应加保护装置,并设置醒目标志。实物图如下: 仪器架设: 到达测量现场后打开仪器箱一段时间,使仪器温度与周围环境温度相适应,消除由环境温度带来的误差。检查设备是否完整,配件是否齐全,电源电力是否充足等。仪器架设时应注意仪器安全,在光滑的地面上架设全站仪时须在脚架上套绳索,防止脚架滑落损坏仪器。全站仪脚架高度与观测者肩高齐平,拧紧脚架螺旋,将脚架均匀架设在基准点上。取出仪器一手提全站仪手提柄,一手拧紧中心螺旋,将全站仪平稳架设在脚架上。 对中整平: 在有强制对中装置的观测墩上架设全站仪时,应一手提全站仪手提柄,另一只手旋转基座使仪器牢固地固定在观测墩上。调节基座脚螺旋使圆水准气泡居中,旋转仪器使管水

基坑监测实习报告

实习报告 学院:矿业学院 专业:工程地质勘察 班级:地质1412 姓名:柴安章 学号:1400001641 实习单位:云南新坐标科技有限公司 指导老师:刘伟

一、实习概况 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。 本人在云南新坐标科技有限公司实习。主要从事基坑监测工作以及一些简单的施工管理。 二、实习主要内容 工程概况:拟建场地位于昆明市五甲塘(西亮塘)湿地公园附近,场地区域属官渡区付家营所辖。工程区域呈正方形,总用地面积约23861.55㎡(按道路中边线计),拟建建筑由20F—30F的6栋商品房组成,其中1栋、6栋无地下室(筏板地标高为1886.2m 桩型为长螺旋灌注桩,桩长28m),其余4栋设整体-2F地下室,其±0.00标高为1891.00m,基坑大面开挖底标高为-6.85=1882.15m,主楼下开挖底标高为-7.9=1881.10m。地下室基础形式为桩筏基础,桩型为预制管桩。 实习简介:本人主要从事基坑监测方面工作。正常情况下每周两次,每四次总结数据后出报告,但是在一些特殊情况(比如:土体塌方、赶工开挖、取土、地下水位或沉降变化过大等)每天1次或者有时必须一天2次。 实习过程及项目:基坑监测 深基坑施工,必须要有一定的围护结构用以挡土、挡水。浅基坑的围护结构以前常用的是钢板桩或混凝土板桩;深基坑则大多采用现场浇灌的地下连续墙结构或排桩式灌注桩结构,并配以混凝土搅拌桩或树根桩止水。开挖时,坑内必须抽去地下水,7~15m 深的基坑,中间必须配二到三道水平支撑,水平支撑采用钢管式结构或钢筋混凝土结构。围护结构必须安全可靠,并能确保施工环境稳定。从经济角度来讲,好的围护设计应把

地铁基坑墙体深层水平位移自动化监测分析

地铁基坑墙体深层水平位移自动化监测分析 摘要:本文以地铁车站基坑项目施工为例,阐述围护结构墙体水平位移自动化 监测环节平台组成、监测要求、数据统计、曲线形态分析、监测结果等监测流程,结合监测结果为控制位移量相关决策提供参考。 关键词:地铁基坑;墙体;围护结构;水平位移;自动化监测 引言:地铁基坑项目开挖施工环节,使用测斜管,利用测斜仪对围护墙体展 开水平位移监测,可高效测量出位移量,为施工安全奠定基础。使用自动化信息 监测平台,对测点位移量和曲线形态展开监测,效益良好。 一、项目介绍 该项目为某市地铁车站土建施工基坑项目,施工区域存在砂土、软土和风化层、水化层等不良地质,地下水量丰富,地下1~3m为水位埋深,基坑墙体使用 钢结构作为支护体系,开挖环节需要使用斜测仪对不同深度墙体的水平位移展开 监测。 二、地铁基坑围护墙体深层水平位移自动化监测分析 (一)平台组成 该项目自动化监测平台分为3个层次:第一,采集层,主要负责对工程资料、数据和人工等进行自动化采集和上传;第二,中心层,具备工点设计、权限管理、参数修改、数据分析和计算、生产报表等功能;第三,用户层,能够实现预警监 测数据,为用户提供查询当前监测数据、图形曲线、历史数据、施工进度、数据 提示各项功能,图1为自动化监测系统框架图。 图1自动化监测系统框架图 该项目利用此平台对地铁基坑围护墙体的位移情况展开实时监测,使用数据查 询这一功能,监测基坑数据,找出墙体水平位移的规律,展开分析,便于管理部、施工方掌握墙体实际的位移情况,一旦超出标准,系统可立即报警。 (二)监测要求 第一,使用该平台监测环节,在围护墙体间隔20~30m位置设置测斜管,将 其设置在位移量较大位置,设计环节注意各个控制点的畅通连接,确保埋深合理、孔底深入地层,设置标识保护。第二,监测周期≤7d,当基坑处于开挖施工阶段, 监测周期≤3d,保证每天监测,按照基坑围护墙体位移情况确定观测次数,直到 主体结构结束,回填完土体即可。第三,在报警值的设置方面,当墙体的累计位 移量处于25~30mm之间,速度>2mm/d时发出报警。 (三)数据统计 统计10各个基坑共计179个测斜孔,重点统计各个测斜孔累计位移、位移速 率和预警孔个数等数据信息。 表 1 为围护墙体水平位移数据统计表 通过上表可以看出,参与调查的基坑最大累计位移为74.4mm,日最高位移 值达到9.1mm,产生预警的测斜孔数量为70个,占据总数39%,每个基坑内都 有达到预警值的测斜孔,因此说明基坑存在累计位移、移动速率值较高。所有的 基坑施工到特定深度之后,围护墙体的水平位移通常处于挖深中下方位置,虽然 基坑项目当前处于安全施工状态,但是出现的累计位移、位移速率值均较大,因

基坑监测阶段性报告

基坑监测阶段性报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

基坑监测工程 阶段性报告 某某测绘有限公司 2012年3月03日 报告编写:某某某 工程负责:某某某 资料汇总:某某某 测绘单位:某某某测绘有限公司 阶段性报告 一、监测标准 1、本工程“技术设计书”; 2、国家一、二等水准测量规范(GB12897-91); 3、建筑变形测量规程(JGJ/T8-97); 4、精密工程测量规范(GB50026-93); 5、城市测量规范(CJJ8-99); 6、工程测量规范(GB50026-2007); 7、岩土工程监测规范(YS5229-96); 8、建筑工程基坑支护技术规程(JGJ120-99)。 二、监测内容 根据基坑的实际情况及设计要求,基坑的监测内容包括:1、基坑坡顶水平位移

2、基坑坡顶竖向位移 3、基坑深层水平位移及监测预警。 三、监测方法 (1)坡顶水平位移观测 坡顶水平位移基点观测采用极坐标法和前方交会法施测,工作基点的稳定性检查采用后方交会法检测。使用南方NTS-370全站仪进行监测,主要性能指标:1",3+2ppm 极坐标法是利用数学中的极坐标原理,以两个已知点为坐标轴,以其中一个点为极点建立极坐标系,测定观测点到极点的距离,测定观测点与极点连线和两个已知点连线的夹角的方法。 (2)深层水平位移观测 本次监测使用任丘市北方仪器厂生产的RQBF-698A智能型测斜仪,性能指标为±0.01mm/500mm。测斜管在测试前5天布设完毕,在3~5天内重复测量3次,判明处于稳定状态后,进行测试工作,测斜观测分正测和反测,测斜观测时每0.5m标记一定要卡在相同位置,每次读数一定要等候电压值稳定才能读数,确保读数准确性。 (3)坡顶竖向位移观测 竖向位移监测基坑竖向位移采用Trimble精密水准仪进行观测,其观测精度要求按国家二等水准规范执行。要求各观测点测站高差中误差符合±0.5mm。 四、监测阶段性报告 自2011年10月03日,开始对基坑进行定期监测。 1、从10月3日至11月1日基坑开挖至-4.7米(历时30天),基坑水平位移最大量为H21:2.90mm,平均为2.06mm;竖向位移最大量为H21:-1.43mm,平均为- 0.89mm;深层水平位移最大量:孔号S03(东西方向)2.19mm(地下0.5m处)平均为

基坑施工监测资料

6.4 基坑壁侧向位移观测 6.4.1基坑壁侧向位移观测应测定基坑围护结构桩墙顶水平位移和桩墙深层挠曲。 6.4.2基坑壁侧向位移观测的精度应根据基坑支护结构类型、基坑形状、大小和深度、周边建筑及设施的重要程度、工程地质与水文地质条件和设计变形报警预估值等因素综合确定。 6.4.3基坑壁侧向位移观测可根据现场条件使用视准线法、测小角法、前方交会法或极坐标法,并宜同时使用测斜仪或钢筋计、轴力计等进行观测。 6.4.4当使用视准线法、测小角法、前方交会法或极坐标法测定基坑壁侧向位移时,应符合下列规定: 1基坑壁侧向位移观测点应沿基坑周边桩墙顶每隔10~15m布设一点; 2侧向位移观测点宜布置在冠梁上,可采用铆钉枪射人铝钉,亦可钻孔埋设膨胀螺栓或用环氧树脂胶粘标志; 3测站点宜布置在基坑围护结构的直角上。 6.4.5当采用测斜仪测定基坑壁侧向位移时,应符合下列规定: 1测斜仪宜采用能连续进行多点测量的滑动式仪器; 2测斜管应布设在基坑每边中部及关键部位,并埋设在围护结构桩墙内或其外侧的土体内,其埋设深度应与围护结构入土深度一致; 3将测斜管吊入孔或槽内时,应使十字形槽口对准观测的水平位移方向。连接测斜管时应对准导槽,使之保持在一直线上。管底端应装底盖,每个接头及底盖处应密封;4埋设于基坑围护结构中的测斜管,应将测斜管绑扎在钢筋笼上,同步放入成孔或槽内,通过浇筑混凝土后固定在桩墙中或外侧; 5埋设于土体中的测斜管,应先用地质钻机成孔,将分段测斜管连接放入孔内,测斜管连接部分应密封处理,测斜管与钻孔壁之间空隙宜回填细砂或水泥与膨润土拌合的灰浆,其配合比应根据土层的物理力学性能和水文地质情况确定。测斜管的埋设深度应与围护结构入土深度一致; 6测斜管埋好后,应停留一段时间,使测斜管与土体或结构固连为一整体; 7观测时,可由管底开始向上提升测头至待测位置,或沿导槽全长每隔500mm(轮距)测读一次,将测头旋转180°再测一次。两次观测位置(深度)应一致,依此作为一测回。每周期观测可测两测回,每个测斜导管的初测值,应测四测回,观测成果取中数。 6.4.6当应用钢筋计、轴力计等物理测量仪表测定基坑主要结构的轴力、钢筋内力及监测基坑四周土体内土体压力、孔隙水压力时,应能反映基坑围护结构的变形特征。对变形大的区域,应适当加密观测点位和增设相应仪表。 6.4.7基坑壁侧向位移观测的周期应符合下列规定: 1基坑开挖期间应2~3d观测一次,位移速率或位移量大时应每天1~2次; 2当基坑壁的位移速率或位移量迅速增大或出现其他异常时,应在做好观测本身安全的同时,增加观测次数,并立即将观测结果报告委托方。 6.4.8基坑壁侧向位移观测应提交下列图表: 1基坑壁位移观测点布置图;

深层水平位移监测方案

深层水平位移监测 广州市盛洲地基基础工程有限公司 技术研究院

1概述 深层水平位移主要用于大地运动,如可能产生在不稳固的边坡(滑坡)或挖土工程周围的测向运动等,也可以用来监测软土地基处理,堤坝,芯墙稳定性,钻孔设置的偏差,打桩引起的土体位移,以及回填筑堤和地下工程的土体沉陷,也可用于沿海、江边重力存放物场的土层变化等。 2 仪器设备 测斜仪(一般测斜仪由探头、电缆、数据采集仪(读数仪)组成。探头的传感器型式有伺服加速度计式、电阻应变片式、钢弦式、差动电阻式等多种型式,目前使用最多的是伺服加速度式。国内有航天部33 所生产的CX 系列,国外有美国SINCO 公司的数字测斜仪,瑞士的PRIVEC 等) 内壁有导槽的测斜管(测斜管道由以下几部分组成:测斜管、连接管、管座、管盖。测斜管是用聚氯乙烯、ABS 塑料、铝合金等材料制成,管内有互成90 度四个导向槽,国产塑料测斜管尺寸多为:内径Φ58mm,径Φ70mm、长度分2m,3m,4m 三种。塑料连接管多采用市场上出售的聚氯乙烯塑料管制成,还可用软的万能接头相连。连接管的尺寸为内径Φ70mm,外径Φ82mm,长度分300,400mm两种。在管壁的两端铣制有滑动槽各4 条或仅一端铣制滑动槽4 条,各槽相隔90 度。管座位于测斜管底端,与管外径匹配,防止泥砂从管底端进入管内的一个安全护盖。管盖用于保护测斜管管口,防止杂物从管口掉入管内影响正常观测工作也由聚氯乙烯制成,其外形尺寸同管座。) 3监测仪器工作原理 测斜仪的工作原理是测量测斜管轴线与铅垂线之间的夹角变化量,从而计算出土层各点的水平位移大小。通常在坝内埋设一垂直并互成90°四个导槽的管子,当管子受力发生变形时,将测斜仪探头放入测斜管导槽内,逐段(一般50cm 一个测点) 量测变形后管子的轴线与垂直线之间的夹角θi ,并按测点的分段长度,分别求出不同高程处的水平位移增量Δdi ,即Δdi = Lsinθi (1)由测斜管底部测点开始逐段累加,可得任一高程处的实际位移,即bi = ΣΔdi

【CN209941761U】一种深基坑地连墙深层水平位移智能监测装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920564101.X (22)申请日 2019.04.24 (73)专利权人 中建八局第三建设有限公司 地址 210046 江苏省南京市尧化门新尧路 18号 (72)发明人 陈刚 刘志坚 国宏雪 金树楼  全有维  (74)专利代理机构 南京先科专利代理事务所 (普通合伙) 32285 代理人 孙甫臣 (51)Int.Cl. E02D 33/00(2006.01) G01C 9/00(2006.01) (54)实用新型名称 一种深基坑地连墙深层水平位移智能监测 装置 (57)摘要 本实用新型公开一种深基坑地连墙深层水 平位移智能监测装置,包括测斜管、测斜仪、传输 电缆、智能控制电箱以及PC端主机;所述测斜管 为PVC高精度测斜管,所述测斜管的内壁上设置 有若干测斜仪,所述测斜仪通过传输电缆与智能 控制电箱连接,所述智能控制电箱将测斜仪测出 的数据信号进行数据收集、数据处理及数据传 输,所述智能控制电箱通过信号塔将数据信号通 过4G无线传输输送至云计算中心服务器系统,所 述PC端主机通过网络接收云计算中心服务器系 统的统计分析数据,所述PC端主机通过网络将处 理过的实时监测的数据呈现在信息化智能集成 平台上。本实用新型利用物联网技术对深基坑地 连墙深层水平位移进行实时监测,确保基坑安 全。权利要求书1页 说明书3页 附图1页CN 209941761 U 2020.01.14 C N 209941761 U

权 利 要 求 书1/1页CN 209941761 U 1.一种深基坑地连墙深层水平位移智能监测装置,其特征在于:包括测斜管、测斜仪、传输电缆、智能控制电箱以及PC端主机;所述测斜管为PVC高精度测斜管,所述测斜管的内壁上设置有若干测斜仪,所述测斜仪通过传输电缆与智能控制电箱连接,所述智能控制电箱将测斜仪测出的数据信号进行数据收集、数据处理及数据传输,所述智能控制电箱通过信号塔将数据信号通过4G无线传输输送至云计算中心服务器系统,所述PC端主机通过网络接收云计算中心服务器系统的统计分析数据,所述PC端主机通过网络将处理过的实时监测的数据以曲线图方式呈现在信息化智能集成平台上。 2.根据权利要求1所述的一种深基坑地连墙深层水平位移智能监测装置,其特征在于:所述测斜仪为带有导轮的伺服加速度式测斜仪,型号为TL-06C,所述测斜仪通过计算机进行测孔信息设置,其总精度为±4mm/15m,导轮间距为500mm;所述测斜管为PVC高精度测斜管,其型号为XH-70,外径70mm,内径59mm,所述测斜管的内壁设置有供测斜仪测头定向的90°间隔凹槽,所述测斜管通过凹槽与测斜仪测头连接,并固定有自动螺丝,所述测斜仪测头导轮沿凹槽导向滑动。 3.根据权利要求1所述的一种深基坑地连墙深层水平位移智能监测装置,其特征在于:所述智能控制电箱包括防水塑料外壳,所述外壳的内部设置有内部集成移动电源、主板和物联模块,所述内部集成移动电源与主板连接,所述主板与物联模块连接,所述物联模块包括数据收集模块、数据处理模块和数据传输模块,所述数据收集模块连接数据处理模块,所述数据处理模块连接数据传输模块。 4.根据权利要求1所述的一种深基坑地连墙深层水平位移智能监测装置,其特征在于:所述信号塔为中国移动基站,通过4G无线传输,将施工现场智能控制电箱发送的实测数据信号输送至云计算中心服务器系统。 5.根据权利要求1所述的一种深基坑地连墙深层水平位移智能监测装置,其特征在于:所述传输电缆为Φ8mm的六芯导线,所述测斜仪通过传输电缆与智能控制电箱内部数据收集模块连接。 2

深层水平位移观测检测报告.(DOC)

深层水平位移观测 检测报告 xx-20xx-00xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx公司二〇一三年x月

声明

第页共页深层水平位移试验检测报告 iii

目录 第1章工程概况 (1) 第2章检测目的 (1) 第3章检测依据 (1) 第4章检测设备 (2) 4.1主要仪器设备 (2) 4.2主要仪器设备 (2) 第5章检测等级 (2) 第6章仪器工作原理及方法 (3) 6.1仪器工作原理 (3) 6.2仪器使用方法 (4) 第7章检测数据处理 (5) 第8章检测结论及建议 (11)

第1章工程概况 受xxxxxxxxxxxxxxx的委托,xxxxxxxxxx承担了深层水平位移参数的检测任务。由于深层水平位移属于长期观测项目,在征得xxxx的情况下,采用现场模拟的方式进行。2013年9月5日选择公司xxxx旁一处空地来模拟滑坡体的深层水平位移,该滑坡体命名为A 滑坡体,在A滑坡进行深层水平位移检测。 第2章检测目的 1、使试验检测人员了解地表沉降的测试过程。 2、通过地表沉降观测参数检测,评定公司检测人员是否具备检测深层水平位移的数的检测能力。 第3章检测依据 1、《工程测量规范》(GB 50026-2007); 2、《建筑变形测量规范》(JGJ 8-2007); 3、《大坝观测仪器测斜仪》(SL 362-2006)。

第4章检测设备 4.1主要仪器设备 本次观测采用的仪器设备见表4.1, 表4.1 检测主要仪器、设备表 4.2主要仪器设备 桥梁检测时气温:xxxxxxxxxx,天气:晴。在整个外业工作期间,检测设备均在检定有效期内,运行正常。 第5章检测等级 由于本次模拟的A滑坡体模拟为普通滑坡体,根据《工程测量规范》(GB50026-2007)第10.1.3之规定,本项目为四等变形监测等级进行观测。四等变形监测的等级划分及精度指标和其适用范围见表5.1。 表5.1 四级变形测量的级别、精度指标及其适用范围

基坑工程监测最终报告

监测报告 工程名称:昆明市严家地城中村改造回迁区A2-A5地块 (基坑第三方监测) [第一期至第六十一期] (合同编号:HT-F-2012-011) 委托单位:云南昆铁房地产开发经营有限责任公司委托单位地址:昆明市官渡区北京路建设大厦7楼 云南瑞博检测技术股份有限公司 (公章)

注意事项 1.报告无“检测报告专用章”、“CMA”计量认证章及“骑缝章”无效。2.报告无编制、审核、批准人签字无效。 3.未经我公司书面批准,不得复制报告,复制报告未重新加盖“检测报告专用章”无效。 4.报告涂改无效。 5.对本报告检验结果若有异议,应在报告收到之日起十五日之内向我公司提出,逾期不予受理。 6.单位联系方式: 地址:昆明市经济技术开发区信息产业基地拓翔路189号聚金盛科标准厂房5栋 电话:400-017-1895 传真:400-017-1895转801 电子邮件:web@https://www.360docs.net/doc/e37195488.html,

目录 一、签字页 (1) 二、工程概况 (1) 三、监测目的和依据 (1) (一)监测目的 (1) (二)监测依据 (1) 四、监测项目 (1) 五、监测设备 (2) 六、监测方法 (2) 七、监测期及频率 (4) 八、监测报警 (5) 九、监测数据分析、结论及建议 (5) 十、附件 (23) (一)监测数量统计表........................................... 错误!未定义书签。 (二)其他..................................................... 错误!未定义书签。

一、签字页

地铁基坑墙体深层水平位移自动化监测应用

地铁基坑墙体深层水平位移自动化监测应用 摘要:近年来,我国的交通行业有了很大进展,地铁工程建设越来越多。本文介绍了基于固定式测斜仪的地铁基坑墙体深层水平位移自动化监测系统组成,详细阐述了系统应用于某轨道交通2号线一期工程某车站主体基坑监测实施情况。在自动化监测点位旁布设人工监测点位,并比较两种方法的结果。结果表明,该系统实现了监测数据的自动采集、传输及处理,实时提供监测成果并绘制变形曲线。并且自动化监测成果精度可满足施工监测的需求,成果可真实反映基坑墙体在水平方向上的变形情况。 关键词:地铁基坑;墙体深层水平位移;固定式测斜仪;自动化监测系统引言 伴随着城市化水平的不断提高,城市居民的数量也迅速增长,与此同时,城市交通压力也逐渐增加,为了缓解城市交通拥堵的问题,许多城市开始建设地铁站。通过修建地铁,可以加快城市各区域的交通速度,实现交通分流。但是仍需要注意的是,地铁所处作业位置非常特殊,为了确保地铁运行效果,需要重点关注地铁车站深基坑施工变形监测,减少安全问题的发生概率。 1工程影响分析 基坑开挖对临近隧道区间影响的分析方法主要有三类:1)经验法;2)整体数值分析法;3)位移控制有限元法。其中,整体数值分析法是把基坑开挖施工过程和临近建(构)筑物作为一个相互作用的整体来分析,可以用来分析基坑开挖各阶段临近建(构)筑物的反映性状,通常借助于大型商业有限元软件,采用整体数值分析方法进行分析计算,其能够比较合理地模拟基坑开挖复杂的施工过程,以及基坑开挖引起周围土体介质的位移特性和隧道与基坑的相互作用。 2基坑外水位沉降监测 (1)测点布设原则。①监测点应与周围桩、角、相邻建筑物(构筑物)、较密实的地下管线等相邻,并应布置在止水幕外约2m处;②潜水水监测点之间的距离应为20~50m,复杂的水文地质条件应适当加密。(2)测点埋设方法。①在垂直围护桩2m处打孔下水位管,基坑(坑外)潜水水位观测孔应在基坑降水之前完成;②水位管过滤器部分和孔壁必须打磨,其余部分用有效的阻水材料密封在孔中,水位管口必须盖好以防止地表水和废弃物的进入;③封闭的含水层中的承压水位深度应不小于2m,孔的底部应填上沙子,水位管的直径可以为 50~70mm,过滤管的截面不应小于1m,孔壁应填满沙子,必须采取有效措施在被测含水层和其他含水层之间分配水;④水位监控管(水管的底部)的深度应低于地下水位3~5m。对于必须降低加压水位的基坑工程,水位监测管的深度必须符合设计要求。 3基坑监测的监理控制要点 1)审核施工单位编制的监测方案中对施工区域地表沉降、支撑轴力、桩体位移、建(构)筑物沉降的监测内容和保护措施。2)要求施工单位必须严格按设计及有关规范的要求进行施工,并同时加强对基坑和周围建(构)筑物的监控量测,及时反馈量测信息指导设计和施工。3)监测监理工程师依据监测数据及现场情况,每日对监测资料进行对比分析,出现监测预警时,及时按预警处理办法的要求,通知总监理工程师,组织相关单位分析预警原因,制定处理措施,以确保现场施工的安全。 4地下连续墙墙体水平位移监测

相关文档
最新文档