液力偶合器拆卸方法

液力偶合器拆卸方法

1、螺杆、螺套和偶合器主轴拆卸孔内抹上甘油,避免加力旋转时将螺纹损坏;

2、将螺套旋入偶合器拆卸孔内,但不要旋入过长;

3、将螺杆旋入螺套内,直至顶到电机轴或减速器轴头上;

4、用扳手卡主螺杆不动;

5、用扳手旋转螺套,将主轴渐渐顶出;

6、如果螺套进到底,主轴仍未拆下,则反方向旋转螺套回到起始位置;

7、重复以上动作,直至将主轴顶下。

注意事项

1、要卡住螺杆,不能旋转螺杆,如果旋转螺杆等于用单螺杆拆卸,则发挥不了增力作用,而且可能将螺杆头顶坏。

2、如果自制拆卸工具,螺套的外景一定要与偶合器拆卸空相配合,而内螺纹的螺距要比外螺纹的螺距大1~2㎜,即内螺纹用标准粗牙螺纹的螺距,而外螺纹用细牙螺纹的螺距。

液力耦合器常见故障及维护

液力耦合器原理、常见故障及处理 一、常见故障及处理 油泵不上油或油压太低或油压不稳定原因1.油泵损坏2.油泵调压阀失灵或调整不好3.油泵吸油管路不严,有空气进入4.吸油器堵塞5.油位太低,吸6.油压表损坏7.油管路堵塞处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤5.加油至规定油位6.更换压力表7.清洗油管路2.油温过高原因1.冷却器堵塞或冷却水量不足2.风机负荷发生变动使偶合器过负荷处理1.清洗冷却器,加大冷却水量2.检查负荷情况,防止过负荷3.勺管虽能移动但不能正常调速原因无工作油进入处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤器5.加油至规定油位6.更换压力表7.清洗油管路4.箱体振动原因1.安装精度过低2.基础刚性不足3.联轴节胶件损坏4.地脚螺栓松动处理1.重新安装校正2.加固或重新做基础3.更换橡胶件4.拧紧地脚螺丝 二、原理及故障排除: 1、原理: 液力偶合器工作原理液力偶合器相当于离心泵和涡轮机的组合,当电机通过液力偶合器输入轴驱动泵轮时,泵轮如一台离心泵,使工作腔中的工作油沿泵轮叶片流道向外缘流动,液流流出后,穿过泵轮和涡轮间的间隙,冲击涡轮叶片以驱动涡轮,使其象涡轮机一样把液

体动能转变为输出的机械能;然后,液体又经涡轮内缘流道回泵轮,开始下一次的循环,从而把电机的能量柔性地传递给工作机。二、液力偶合器的调速原理液力偶合器在转动时,工作油由供油泵从液力偶合器油箱吸油排出,经冷却器冷却后送至勺管壳体中的进油室,并经泵轮入油口进入工作腔。同时,工作腔中的油液从泵轮泄油孔泻入外壳,形成一个旋转油环,这样,就可通过液力偶合器的调速装置操纵勺管径向伸缩,任意改变外壳里油环的厚度,即改变工作腔中的油量,实现对输出转速的无级调节,勺管排出的油则通过排油器回到油箱。 2、故障现象及处理: (1)过热 1)、冷却器冷却水量不足,加大水量; 2)、箱体存油过多或少调节油量规定值; 3)、油泵滤芯堵塞清洗滤芯; 4)、转子泵损坏打不出油,换内外转子; 5)、安全阀溢流过多; 6)、弹簧太松上紧弹簧; 7)、密封损坏泄油换密封件; 8)、油路堵塞,清除。 (2)输出轴不转 1)、安全阀压力值太低,上紧弹簧; 2)、油路堵塞,清除;

YOTGCD-系列调速型液力偶合器-使用说明书

D+H系列电动执行机构 调 试 说 明 天津市鲁克自动化仪表阀门有限公司

D+H系列电动执行机构 一.概述:智能型电动执行机构采用先进的MPU进行智能控制,实时数字显示被控阀门位置,提供现场非侵入式操作。 技术性能: 1.输入信号4~20mA或两组无源干接点信号 2.基本误差:1% 回差:1% 阻尼: 0次 3.上下限位,死区,过力矩,可以连续调节 4.电源电压:220V 50Hz 5.工作环境:温度:-25~70 ,湿度:<95% 6.防护等级:IP67 7.参数显示:LED(数码管显示) 二.主要功能及特点: 1.现场非侵入操作: 手持式设定器采用先进的红外遥感技术,在无需打开执行机构箱盖的情况

下,通过显示窗口就可以进行人机对话,包括改变执行机构的运行状态, 控制阀门位置及执行机构各种组态参数的设定。 2. LED数码管显示: 选用高亮度LED,实时显示执行机构所控制阀门的当前位置及运行状态。 3. 操作灵活方便: 为适应不同用户对输入信号的要求,该执行机构可识别4~20mA DC 电流信号和开关量信号,而且两种信号的切换无需更改硬件。对执行机 构正反运行模式的修改、零位、满位的设定、死区及制动效果,调整只需经 过简单的参数设定便可完成, 4.故障的智能处理及综合报警: 先进MPU的应用真正实现了执行机构对故障(断信号、超限等)的智能处理, 并提供综合故障报警的接点信号。 三.面板说明: 四.外形尺寸:

五.使用方法: 1.自动控制 通电开机后系统自动进入自动控制状态,执行机构根据外部给定的电流信号的大小自动控制执行机构的动作。当给定信号增大时执行机构执行开状态,反馈信号随着增大,当反馈信号与给定信号相等时停止动作;当给定信号减少时执行机构执行关状态,反馈信号随着减小,当反馈信号与给定信号相等时停止动作。在自动控制方式下,按增加键和减少键不起作用。 2.手动控制 在自动控制方式时,按一次设定键,示窗中手动指示灯亮,执行机构进入手动控制状态。在手动控制方式时,按增加键控制执行机构执行开状态,按减少键控制执行机构执行关状态,在按一次设定键,手动指示灯灭,智能定位器返回自动控制状态。在手动控制方式下,执行机构不接受外部的给定信号控制,仅受增加按键和减少按键的控制。 3. 智能定位器的参数设定 在正常工作状态持续按住设定键5秒钟左右便进入参数设定状态,智能执行机构共有八项参数可以按照实际情况进行设定。在设定状态下,左一位数字表示参数编号,右两位数字表示参数内容。每按一次设定键,参数编号加一,表示依次设定下一项参

液力偶合器和液力变矩器的结构与工作原理

液力偶合器和液力变矩器的结构与工作原 理 发布时间:2009-7-10 9:23:12 来源:点击数:5063 一、液力偶合器和液力变矩器的结构与工作原理 现代汽车上所用自动变速器,在结构上虽有差异,但其基本结构组成和工作原理却较为相似,前面已介绍了自动变速器主要由液力变矩器、变速齿轮机构、供油系统、自动换挡控制系统、自动换挡操纵装置等部分组成。本章将分别介绍自动变速器中各组成部分的常见结构和工作原理,为自动变速器的拆装和故障检修提供必要的基本知识。 汽车上所采用的液力传动装置通常有液力偶合器和液力变矩器两种,二者均属于液力传动,即通过液体的循环液动,利用液体动能的变化来传递动力。 (一)液力偶合器的结构与工作原理 1、液力偶合器的结构组成 液力偶合器是一种液力传动装置,又称液力联轴器。在不考虑机械损失的情况下,输出力矩与输入力矩相等。它的主要功能有两个方面,一是防止发动机过载,二是调节工作机构的转速。其结构主要由壳体、泵轮、涡轮三个部分组成,如图1所示。

图1 液力偶合器的基本构造 1-输入轴 2-泵轮叶轮 3-涡轮叶轮 4-轮出轴液力偶合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在一起,随发动机曲轴的转动而转动,是液力偶合器的主动部分:涡轮和输出轴连接在一起,是液力偶合器的从动部分。泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约3mm~4mm);泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。 2、液力偶合器的工作原理 当发动机运转时,曲轴带动液力偶合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮

YOTGCD系列调速型液力偶合器使用说明书

D+H 系列电动执行机构 调 试 说 明 天津市鲁克自动化仪表阀门有限公司

天津市鲁克自动化仪表阀门有限公司D+H电动执行机构 D+H系列电动执行机构 一.概述:智能型电动执行机构采用先进的MPU进行智能控制,实时数字显示被控阀 门位置,提供现场非侵入式操作。 3 技术性能: 1.输入信号4~20mA或两组无源干接点信号 2.基本误差:1% 回差:1% 阻尼:0次 3.上下限位,死区,过力矩,可以连续调节 4.电源电压:220V 50Hz 5.工作环境:温度:-25~70,湿度:<95% 6.防护等级:IP67 7.参数显示:LED (数码管显示)主要功能及特点:

凌科 天津市鲁克自动化仪表阀门有限公司 D+H 电动执行机构 现场非侵入操作: 手持式设定器采用先进的红外遥感技术,在无需打开执行机构箱盖的情况 下,通 过显示窗口就可以进行人机对话,包括改变执行机构的运行状态, 控制阀门位置及执行机构各种组态参数的设定。 LED 数码管显示: 选用高亮度LED,实时显示执行机构所控制阀门的当前位置及运行状态。 操作灵 活方便: 为适应不同用户对输入信号的要求,该执行机构可识 别4?20mA DC 电流 信号和开关量信号,而且两种信号的切换无需更改硬件。对执行机 构正反运 行模式的修改、零位、满位的设定、死区及制动效果,调整只需经 过简单的参数设定便可完成, 故障的智能处理及综合报警: 先进MPU 的应用真正实现了执行机构对故障(断信号、超限等)的智能处理, 并提供综合故障报警的接点信号。 三.面板说明: 1. 2. 3. 4. 四.外形尺寸: MM RI 6 ? 8

海德汉编码器和海德汉光栅尺使用的各种参数

海德汉 海德汉编码器和海德汉光栅尺使用的各种参数 10 编程:Q参数

10.1原理和概述 你可以在一个零部件加工程序中编写同类零部件的程序,你只须输入称作Q参数的变量取代固定的数字值即可。 Q参数可以代表诸如以下的信息: □坐标值 □进给率 □RPM(重复数/分) □循环数据 Q参数也可以帮助你编写通过数学功能定义的外形轮廓。同时,你也可以使用Q参数根据逻辑状况执行机械加工步骤。与FK编程连用,可以将无法NC-兼容的外形轮廓与Q参数结合。 Q参数由字母Q和0到299之间的一个数字命名。其分组情况分为三类: 含义范围 普遍适用参数,适用于所有TNC内存 记忆的程序 Q0到Q99 为特殊TNC功能设定的参数Q100到Q199 主要用于循环的参数,适用于所有存 储在TNC内存中的程序 Q200到Q399 编程说明 在一个程序中可以混用Q参数和固定数字值。 Q参数可以被指定给-99.999,9999和+99 999.9999之间的数字值。TNC可以计算十进制小数点前57位到小数点后7位的范围(32位数据的计算范围相当于十进制数值4 294 967 296)。 一些Q参数总是被TNC指定给同样的数 据。例如,Q108总是被指定给当前刀具半 径,可参见368页的“预先指定Q 参数”。 如果你在OEM循环中使用Q60至Q99之间 的参数,须通过MP7251定义这些参数是 否仅用于OEM循环,还是全部适用。 338

调用Q参数功能 在编写零部件加工程序时,按下“Q”键(位于数字值输入 键盘,-/+键的下方)。然后,TNC会显示以下软键盘: 功能组软键盘 基础算术(指定,加减乘除,平方根) BASIC ARITHM. 三角函数功能TRIGO- NOME TRY 计算循环功能CIRCLE CALCU- LATION 如果/则条件,转移JUMP 其它功能DIVERSE FUNCTION 直接输入公式FORMULA 339

液力耦合器的结构组成及工作原理

液力耦合器的结构组成及工作原理 来源:互联网作者:匿名发表日期:2010-4-5 9:12:15 阅读次数:124 查看权限:普通文章 液力耦合器主要由:壳体(housing)、泵轮(impeller)、涡轮(turbine)三个元件构成。在发动机曲轴1 的凸缘上,固定着耦合器外壳2。与外壳刚性连接并随曲轴一起旋转的叶轮,组成耦合器的主动元件,称为泵轮了。与从动轴5相连的叶轮,为耦合器的从动元件,称为涡轮4。泵轮与涡轮统称为工作轮。在工作轮的环状壳体中,径向排列着许多叶片。涡轮装在密封的外壳中,其端面与泵轮端面相对,两者之间留有3~4mm间隙。泵轮与涡轮装合后,通过轴线的纵断面呈环形,称为循环圆。在环状壳体中储存有工作液。 液力耦合器的壳体和泵轮在发动机曲轴的带动下旋转,叶片间的工作液在泵轮带动一起旋转。随着发动机转速的提高,离心力作用将使工作液从叶片内缘向外缘流动。因此,叶片外缘处压力较高,而内缘处压力较低,其压力差取决于工作轮半径和转速。 由于泵轮和涡轮的半径是相等的,故当泵轮的转速大于涡轮时,泵轮叶片外缘的液力大于涡轮叶片外缘。于是,工作液不仅随着工作轮绕其轴线做圆周运动,并且在上述压力差的作用下,沿循环圆依箭头所示方向作循环流动。液体质点的流线形成一个首尾相连的环形螺旋线。 液力耦合器的传动过程是:泵轮接受发动机传动来的机械能,传给工作液,使其提高动能,然后再由工作液将动能传给涡轮。因此,液力耦合器实现传动的必要条件是工作液在泵轮和涡轮之间有循环流动。而循环流动的产生,是由两个工作轮转速不等,使两轮叶片的外缘产生液力差所致。因此,液力耦合器在正常工作时,泵轮转速总是大于涡轮转速。如果二者转速相等,液力耦合器则不起传动作用。 汽车起步前,可将变速器挂上一挡位,启动发动机驱动泵轮旋转,而与整车驱动轮相连的涡轮暂时仍处于静止状态,工作液便立即产生绕工作轮轴线的圆周运动和循环流动。当液流冲到涡轮叶片上时,其圆周速度降低到零而对涡轮叶片造成一个冲击力,因而对涡轮作用一个绕涡轮轴线的力矩,力图使涡轮与泵轮同向旋转。对于一定的耦合器,发动机转速越大,则作用于涡轮的力矩也越大。 加大发动机供油量,使其转速增大到一定数值时,作用于涡轮上的转矩足以使汽车克服起步阻力而使汽车起步。随着发动机转速的继续增高,涡轮连同汽车也不断加速。

液力偶合器减速箱使用维护说明书

YOZJ 700 / 750 型液力偶合器正车减速箱 使用维护说明书

录 1.前言-------------------------------------------------------- 1 2.简介-------------------------------------------------------- 2 3.工作原理---------------------------------------------------- 2 4.特点-------------------------------------------------------- 4 5.型号和安装方式---------------------------------------------- 6 6.主要技术参数和功率容量-------------------------------------- 9 7.结构特点-------------------------------------------- 10 8.安装------------------------------------------------ 13 9.试运转---------------------------------------------- 17 10.操作------------------------------------------------------- 18 11.维护、保养和维修------------------------------------------- 20 12.故障及排除------------------------------------------- 21 YOZJ700/750型液力偶合器正车减速箱(以下简称“偶合器减速箱”)由两部分组成:输入部分是偶合器,其工作腔直径分别为700和750mm;输出 部分为两级同轴式齿轮减速箱,齿轮减速比为1.5?3.5。输出轴和输入轴位于 同一轴心线上,且转向相同(见图1)。可与国产的190、CAT3500和MTU4000 等系列柴油机或电动机匹配,应用在机械传动或复合(机械和电)传动的石油钻机及挖泥船上。 图1.液力偶合器正车 减速箱传动示意图

液力耦合器工作原理介绍

用途 液力偶合器作为节能设备,可以无级变速运转,工作可靠,操作简便,调节灵活,维修方便。 采用液力偶合器便于实现工作机全程自动调节,以适应载荷的变化,可节约大量电能,广泛适用于电力、冶金、石化、工程机械、矿山、市政供水供气和纺织、轻工等行业,适用于各种需要变负荷运转的给水泵、风机、粉碎机等旋转式工作机。 工作原理 液力偶合器是以液体为介质传递功率的一种动力传递装置,主要由两个带有径向叶片的碗状工作轮组成。由主动轴传动的轮称为泵轮,带动从动轴转动的轮称为涡轮,泵轮和涡轮中间有间隙,形成一个循环圆状腔室结构。 工作时,原动机带动液力偶合器主动轴——泵轮转动,泵轮内的液体介质在离心力作用下由机械能转换为动能,形成高压、高速液流冲向涡轮叶片;在涡轮内,液流沿外缘被压向内侧,经减压减速后动能转换为机械能,带动涡轮——从动轴旋转,实现能量的柔性传递。作功后的液体介质返回泵轮,形成液流循环。 液力偶合器工作原理示意图 液力偶合器内液体的循环是由于泵轮——涡轮流道间不同的离心力产生压差而形成,因此泵

轮、涡轮必须有转速差,这是液力偶合器的工作特性所决定的。泵轮、涡轮的转速差称为滑差,在额定工况下,滑差为输入转速的2%~3%。 调速型液力偶合器可以在主动轴转速恒定的情况下,通过调节液力偶合器内液体的充满程度实现从动轴的无级调速(调速范围为0到输入轴转速的97%~98%),调节机构称为勺管调速机构,它通过调节勺管的工作位置来改变偶合器流道中循环液体的充满程度,实现对被驱动机械的无级调速,使工作机按负载工作范围曲线运行。 特点 ?节省能源。输入转速不变的情况可获得无级变化的输出转速,对离心机械(如泵)在部分负荷的工作情况下,与节流式相比节省了相当大的功率损失。 ?空载启动。电动机启动后工作油系统开始工作,按需要加载控制、无级变速,电动机启动电流小,延长了使用寿命,并可选用较小电动机,节省投资。 ?离合方便。充油即行接合,传递扭矩、平稳升速;排油即行脱离。 ?振动阻尼与冲击吸收。工作轮之间无机械联系,通过液体传递扭矩,柔性连接,具有良好的隔振效果;并能大大减缓两端设备的冲击负荷。 ?过载保护。当从动轴阻力矩突然增加时,滑差增大直至制动,而原动机仍能继续运转而不致损坏,同时保护了从动机不致进一步损坏。 ?无磨损,坚固耐用,安全可靠。 ?润滑油系统可供工作机和电动机所用润滑油。 ?结构紧凑。增速齿轮和工作轮安装在同一箱体中,只需很小空间。 ?可根据用户需要安装不同的执行器。 调速范围: 被驱动的机械具有抛物线负载力矩时,如离心泵和通风机,调速范围为4:1,特殊情况下可以达到5:1。 被驱动的机械具有近乎恒定负载力矩时,调速范围为3:1以下。 工作时排空液力偶合器内的工作液,可以使被驱动的机械停止运转。

YO(Z)J750液力偶合器(正车)减速箱使用维护说明书1

YOZJ 700 / 750型 液力偶合器正车减速箱使用维护说明书

目录 1. 前言---------------------------------------------------------------------- 1 2. 简介---------------------------------------------------------------------- 2 3. 工作原理---------------------------------------------------------------- 2 4. 特点-------------------------------------------------------------------- 4 5. 型号和安装方式------------------------------------------------------- 6 6. 主要技术参数和功率容量------------------------------------------- 9 7. 结构特点-------------------------------------------------------------- 10 8. 安装-------------------------------------------------------------------- 13 9. 试运转----------------------------------------------------------------- 17 10. 操作---------------------------------------------------------------------- 18 11. 维护、保养和维修---------------------------------------------------- 20 12. 故障及排除------------------------------------------------------------ 21 YOZJ700/750型液力偶合器正车减速箱(以下简称“偶合器减速箱”)由两部分组成:输入部分是偶合器,其工作腔直径分别为700和750mm;输出部分为两级同轴式齿轮减速箱,齿轮减速比为1.5~3.5。输出轴和输入轴位于同一轴心线上,且转向相同(见图1)。可与国产的190、CAT3500和MTU4000等系列柴油机或电动机匹配,应用在机械传动或复合(机械和电)传动的石油钻机及挖泥船上。 图1.液力偶合器正车减速箱传动示意图

液力耦合器工作原理

液力偶合器工作原理 一、工作原理 1、概述 液力偶合器又称液力联轴器,是以液体为工作介质,利用液体的动能的变化来传递能量的叶片式传动机械。 它具有空载启动电机,平稳无级变速等特点,用于电站给水泵的转速调节,可简化锅炉给水调节系统,减少高压阀门数量,由于可通过调速改变给水量和压力来适应机组的起停和负荷变化,调节特性好,调节阀前后压降小,管路损失小,不易损坏,使给水系统故障减少,当给水泵发生卡涩、咬死等情况时。对泵和电机都可起到保护作用,故现代电站中,机组锅炉给水泵普遍采用了带液力偶会器的调速给水泵。 2、用途 液力偶合器作为节能设备,可以无级变速运转,工作可靠,操作简便,调节灵活,维修方便。 采用液力偶合器便于实现工作机全程自动调节,以适应载荷的变化,可节约大量电能,广泛适用于电力、冶金、石化、工程机械、矿山、市政供水供气和纺织、轻工等行业,适用于各种需要变负荷运转的给水泵、风机、粉碎机等旋转式工作机 3、耦合器的基本结构 偶合器的基本结构主要部件:泵轮、涡轮、转动外壳、主动(输入)轴、从动(输出)轴及勺管。 泵轮与涡轮称为工作轮,两轮中均有叶片,两轮分别与输入、输出轴相联接,它们之间是有间隙的,泵轮和涡轮均有径向尺寸相同的腔形,所以,合在一起形成工作油腔室,工作油从泵轮内侧进入,并跟随动力机一起作旋转运动,油在离心力的作用下,被甩到泵轮的外侧,形成高速油流冲向对面的涡轮叶片,流向涡轮内侧逐步减速并流回到泵轮的内侧,构成了一个油的循环。 4、偶合器调速范围 调速型液力偶合器可以在主动轴转速恒定的情况下,通过调节液力偶合器内液体的充满程度实现从动轴的无级调速(调速范围为0到输入轴转速的

调速型液力偶合器使用说明书(结构、工作原理、安装拆卸、操作使用、维修保养)

调速型液力偶合器 YOT系列调速型液力偶合器 一、概述 YOT系列调速型液力偶合器是以液体为介质传递功率并实现无级调速的液体联轴装置。调速型液力偶合器主要用于各种风机和水泵等设备上,经国内外用户使用普遍反映节能效果显著。调速型液力偶合器与其它机械联轴装置相比具有以下特点: 1.调速型液力偶合器可以在原动机转速不变的情况下连续无级调节被驱动机械的转速,当与离心式风机、水泵相配时,其调速范围为1 ~1/4,当与活塞式机械相配时,其调速范围为1 ~1/3; 2.调速型液力偶合器能使电机空载启动,不必选择过大功率余量能力的电动机等原动机,并且可以减少电网负荷的波动; 3.调速型液力偶合器具有过载保护的性能; 4.隔离振动,减缓冲击; 5.调速型液力偶合器的传动部件间无直接机械接触、使用寿命长; 6.调速型液力偶合器在额定负载下有较高的传动效率; 7.调速型液力偶合器具有液力控制调速装置和两个半轴,易于实现远距离自动操作; 调速型液力偶合器具有结构合理,性能先进,可靠性高,能满足冶金、建材、发电等行业长期连续运转工况要求。 二、调速型液力偶合器主机及配套件主要技术参数 1、液力偶合器的型号注解: 2、调速型液力偶合器技术参数(参看表1、表2、表3) 表1 YOT系列调速液力偶合器主要技术参数: 型号 转速 (转/分) 功率 (千瓦) 调速范 围 滑差 调速 时间 (秒) 工作油 牌号 装油 量约 (升) 重 量 (公斤)

YOT45/30 2970 350-800 25%-97% ≤3% <30 22°透平油 250 1300 YOT50/30 2970 600-1600 同上 同上 同上 同上 300 1400 YOT56/15 1470 200-400 同上 同上 同上 同上 300 1500 970 50-100 YOT63/15 1470 380-620 同上 同上 同上 同上 300 1800 970 90-220 730 50-80 YOT71/15 1470 500-1100 同上 同上 同上 同上 380 2300 YOT71/10 970 200-380 同上 同上 同上 同上 380 2300 730 70-140 YOT80/15 1470 700-1600 同上 同上 同上 同上 380 2500 YOT80/10 970 260-580 同上 同上 同上 同上 380 2500 730 130-250 YOT90/10 970 500-1100 同上 同上 同上 同上 430 3200 730 200-450 YOT100/10 970 800-1800 同上 同上 同上 同上 430 3500 730 350-760 YOT 系列调速型液力偶合器外形参数标注示意图(即表2的标注参数示意) 表3 YOT 系列调速型液力偶合器配用部件主要技术参数: 调速型液 力偶合器 配用换热器主要技术参数 配用滤油器参数 配用电动执行器技 术参数 型 公 外型尺寸 型号 通 最大 型号均 输入信

ES+海德汉1313编码器参数表

ON At SC.END SC 号菜单(其它参数一般不用设置)号菜单(其它参数一般不用设置)加大数值,曲线则陡。页码 标准编号 参数 名称 参数值 备注 ﹟0。**号菜单 0?03 加速斜率 0.5cm/s2 0?04 减速斜率 0.6cm/s2 ﹟1。**号菜单 1.06 为最高速度限值 一般设置为电机额定转速 ﹟2。** ﹟3。** 3.05 零速阀值 2 很重要,直接影响停车舒适感 3.08 超速限值 此值自动生成,根据1.06 3.25 编码器相位角 整定出的相位角,U V W 的位置 3. 29 变频器编码器位置 此参数很重要,自学习后断电送电检查是否改变 3.33 编码器转位 0 3.34 编码器脉从数 2048 3.36 编码器电压 5v 3.37  300 3.38 编码器的类型 3.39 编码器终端选择 1 3.40 错误检测级别 1 3.41 编码器自动配置 ﹟4。**号菜单(其它参数不用设置) 加大数值,曲线则陡。

页码 标准编号4.07 对称电流限值200% 4.11 转矩方式选择4 4.12 电流给定滤波器12ms降低电机噪音 4. 13 电流环比例增益自学习生成 4.14 电流环积分增益自学习生成 4.15 电极热时间常数89 4.23 电流给定滤波器110ms降低电机噪音, ﹟5。**号菜单(其它参数不用设置) 5.07 电机额定电流 A按铭牌设定 5.08 电机额定速度 Rmp按铭牌设定 5.09 电机额定电压 380V 5.11 电机极数 20 5.18 PWM开关频率选择 6K HZ ﹟6。**号菜单(不用设置) ﹟7。**号菜单(不用设置) 7.10=0 7.14=0 ﹟8。**号菜单(其它参数不用设置) 8.21 24端子功能选择10.02 运行使能(10.02变频器工作)8.22 25端子输入源18.38 相当于我们主板的多端速输出Y15 8.23 26端子输入源18.37 相当于我们主板的多端速输出Y14 8.24 27端子功能选择19.44 顺时针旋转(上升)8.25 28端子功能选择18.44 逆时针旋转(下降)可以通过18.45=1 改变运行方向 8.26 29端子输入源18.36 相当于我们主板的多端速输出Y13 8.31 24端子输入(出)选择ON 0:输入功能1:输出功能8.3225端子输入(出)选择OFF 0:输入功能1:输出功能﹟16**菜单(其他参数不用设置)

限矩型液力偶合器使用说明书

限矩型液力偶合器使用说明书 一、限矩型液力偶合器结构工作原理 1、结构 液力偶合器又称液力连轴器,是一种应有很广的通用液力传动元件。它置于动力机(电机)与工作机之间传递动力。典型的限矩型液力偶合器结构由对称布置的叶轮、外壳、涡轮以及后辅室、主轴等构件组成。外壳与泵轮通过螺栓固定连接,其作用是防止工作液体外溢。主动部分包括主动半联轴节、弹性块、从动半联轴节、泵轮和外壳。从动部分包括主轴、涡轮。主动部分与原动机联结,从动部分与工作机连接。 泵轮与涡轮均为具有径向叶片的叶轮。由泵轮和涡轮的凹腔所形成的圆环状空腔称为工作腔,供工作液体在其中循环流动,传递动力进行工作。工作腔的最大直径称为有效直径,是液力偶合器的特征尺寸——规格大小的标志尺寸。 2、工作原理 在液力偶合器被动力机(电机)带动运转时,存在于液力偶合器腔体内的工作液体,受泵轮的搅动,既随泵轮作圆周(牵连)运动,同时又对泵轮做相对运动。由于旋转运动的离心力作用,液体从半径较小的流道进口处被加速,并被抛向半径较大的流道出口处,从而使液体的动量矩加大,即泵轮从动力机吸收机械能并转化为液体的动能。在泵轮出口处液流较高的速度和压强冲向涡轮叶片时,由于液流对涡轮叶片的冲击减低了自身的速度和压强,使液体动能矩降低,释放的液体动能推动涡轮(工作机)旋转做功,实现了涡轮将液体动能转化为机械能的过程。当液体的动能减少后,在其后的液体推动下,由涡轮流出而进入泵轮,再开始下一个能量转化的循环流动,如此周而复始不断循环。于是,输入与输出在没有直接机械连接情况下,仅靠液体动能便柔性的连接起来了。 二、限矩型液力偶合器的功能和用途 1、功能 1)具有减缓启动冲击和隔离扭振的功能 机器静止时,由于传动系统中各元件之间存在着间隙,挠性构件是松弛的,因而在启动瞬间施加于电动机的力矩是很小的。当电动机迅速加速,由于传动元件间隙被消除,挠性构件张紧,力矩突然施加于电动机,从而产生冲击与振动。由于液力偶合器的泵轮力矩与其转速的平方成正比,因而在启动过程中,施加于电动机的力矩是随转速升高而逐渐增大的,即当电动机起动瞬间泵轮因转速低而力矩甚微,电机近似于带动泵轮空载起动,因而应用它减少启动时的冲击和振动。 发动机、往复泵式机械等,在运转时产生强烈的扭振,使零件承受反复应力,易使支撑和基座产生共振,造成严重后果。应用液力偶合器,可以利用高速旋转的工作液体的惯性阻尼作用,使其扭振得以衰竭,有效地隔离原动机与工作机(负载)之间的扭振。 2)具有过载保护功能 机器运转时,运动部分贮存很大动能,其中很大一部分贮蓄在高速旋转的电动机转子中。负载突然被制动(急刹车或传动机构被障碍物卡塞)时,将产生很大的动力载荷。这时,原动机和工作机(负载)所有运动质量的动能,都在瞬间释放出来,为破坏机器零件而做功。 应用液力偶合器,若负载突然被制动,制动的只是负载的本身,而电动机的转速不低于尖峰力矩时的转速,即使是降速也不超过10%。因此,突然制动所产生的功比采用液力偶合器时大为减少,能够防止电动机和负载动力过载,从而保护电动机不被烧毁(或内燃机不熄火)。 3)具有节电功能 (1)电机空载起动节能。采用液力偶合器,由于电机与载荷启动分开,故启动电流相

液力偶合器安装、使用、维修说明

液力偶合器简介 1.概述 液力偶合器是安装在原动机(以下简称电机)和工作机之间的一种液力传动元件,它可在电机输入转速恒定的条件下,在设备运转中,通过操纵勺管,对其输出转速进行无级调节,并使电机的功率通过液力偶合器泵轮和涡轮之间工作油的循环流动,平稳而无冲击地传递给工作机。 液力偶合器在与恒速电机匹配(输入转速恒定)驱动离心式(M∝n2)工作机时,调速范围约为1~1 / 5 ,驱动恒扭矩(M = C)工作机时,调速范围约为1~1 / 3 。 2.主要技术参数 2.1产品型号 Y O T G C □/□□□ Y——液力 O——偶合器 T——调速型 G——固定箱体 C——出口调节 □/□——工作腔有效直径(mm)/允许使用的电机最高同步转速(r/min) □□——特殊要求结构改型 2.2技术参数 型号:YOT GC750/1500 输入转速:1500r/min 传递功率范围:510~1480kW 额定转差率:1.5~3% 加油量:309L 重量:1250Kg 注:当输人转速小于表列值时,传递功率=(实际输入转速/表列输人转速)3×表列功率2.3外形尺寸(图-1) 防爆产品的安装尺寸与此相同 图-1 外形尺寸图 3.主要结构特点(图-2 )

图-2 部件构成 3.1旋转组件 输入部件——输入轴、背壳、泵轮、外壳 输出部件——涡轮、输出轴 旋转组件是液力偶合器的心脏部件,其中泵轮和涡轮均分布一定数量的径向叶片。 旋转组件的输入部件和输出部件分别采用简支梁结构形式,被支承在箱体上。因此,该 种液力偶合器既不允许承受外来的轴问载荷,也不向外输出轴向力: 图 3

3.2供油组件 主要是由输入轴承支座(泵壳体)、工作油供油泵、吸油管等组成。 工作油供油泵采用单齿差、内啮合摆线转子泵,并安装在液力偶合器输入端的泵壳体内,由输入轴和泵轮轴间的齿副驱动。 3.3排油组件 主要是由勺管、排油器和输出轴承支座(勺管壳体)组成。 3.4调速控制装置 由控制勺管的连杆机构和电动执行器(含电动操作器)组成。 3.5仪表系统 主要由液力偶合器进、出口油温表,出口油压表,转速仪(按合同选用)组成。亦可采用综合参数测试仪(按合同选用)。 3.6箱体(兼做油箱) 3.7滤油器 YOT GC液力偶合器在油泵吸油口皆装有滤油器(网式滤油器)。 3.8冷却器。 3.9液力偶合器箱体上留有两个法兰盘(进油法兰与出油法兰)用来与外部工作油冷器的进、出油管道连接。 3.10油标 在液为偶合器箱体的侧面装有油标.用以观察油位。 3.11加热器 在低温环境里使用的液力偶合器应安装加热器,液力偶合器箱上留有加热器安装法兰孔。加热器根据用户的要求提供。 4.工作原理(图4 ) 图 4 偶合器传动原理图 4.1简介 液力偶合器相当于离心泵和涡轮机的组合,当电机通过液力偶合器输入轴驱动泵轮时,泵轮如一台离心泵,使工作腔中的工作油沿泵轮叶片流道向外缘流动,液流流出后,穿过泵轮和涡轮间的空隙,冲击涡轮叶片以驱动涡轮,使其象涡轮机一样把液体的动能转变为输出的机械能;然后,液体又经涡轮内缘流道回到泵轮,开始下一次的循环,从而把电机的能量柔性地传递给工作机。

西门子伺服电机编码器的正确安装法

关于西门子伺服电机内置编码器的正确安装方法 一、工作内容 1、这项技术适用于对德国西门子伺服电机(型号为1FT603-1FT613, 1FK604-1FK610)内置编码器损坏后的安装、调试,配置的增量型编码器为德国海德汉公司的ERN1387.001/020, 绝对值编码器为海德汉公司EQN1325.001。 2、使用工具公制内六方扳手一套,自制专用工具一个,十字改锥及一 字改锥各一把,梅花改锥6件套。 3、可解决的问题对有故障的西门子伺服电机进行修理或更换损坏的 伺服电机内置编码器,做到修旧利废,节约维修费用。 二、操作方法 1、该操作方法和一般操作方法的区别 在数控机床配置的西门子数控系统中,驱动电机分主轴电机和伺服电机两种。当电机定子、转子、轴承有故障或其电机内置编码器损坏时,我们都需要对编码器拆卸进行修理或更换。对主轴电机来说,更换或安装编码器只要用专用工具将其安装到相应位置就可以试车了,不需要调整电机轴或编码器的角度及位置。但对伺服电机来说,则必须按照编码器的安装要求,严格执行安装步骤。只要安装过程中出一点差错,就会出现编码器方面的报警而不能起动机床或出现飞车事故,导致电机报废或机械部件损坏。因此正确安装非常重要。 2、该项技术的操作步骤 2.1拆卸损坏的编码器 关掉机床电源,解掉伺服电机的电源电缆及反馈电缆,把电机从机床

上拆下来放到工作台案上,用内六方扳手去掉电机端盖上的四条螺栓,打开端盖,先卸下编码器盖,拔下编码器上的插接电缆,用十字改锥卸下支持盘上的两条小螺丝,用内六方扳手卸出编码器中心孔内的螺栓,然后用自制专用工具把编码器从电机轴上顶出来。这样第一步工作即告完成。 图1自制专用工具尺寸图 2.2安装海德汉公司ERN1387.001/020或EQN1325.001编码器 2.2.1先安装支持盘 不同型号的电机,其支持盘的外形也不一样,如图2和图3,这由购买的备件提供。用4条M2.5*6的小螺丝将支持盘安装到编码器的轴端。注意事项:确保支持盘面和编码器的底面间距为 5.2mm或12mm。 1.支持盘 2.编码器 图2 1FT606-1FT613/1FK606-1FK613电机内置编码器的支持盘

电动给水泵液力偶合器结构及工作原理

电动给水泵液力偶合器结构及工作原理 调速型液力偶合器,它是以液体为介质传递功率的一种液力传动装置,它安装在电动机和给水泵之间,并在电动机转速恒定的情况下无级调节给水泵的转速。 液力偶合器的主要部件:泵轮、涡轮、转动外壳、输入轴、输出轴、勺管、大小传动齿轮、主油泵、辅助油泵等。 液力偶合器的泵轮和涡轮对称布置,它们的流道几何形状相同,中间保持一定间隙,轮内有几十片径向辐射的叶片,运转时在偶合器中充油,当输入轴带动泵轮旋转时,进入泵轮的油在叶片带动下,因离心力作用由泵轮内侧流向外缘,形成高压高速流冲向涡轮叶片,使涡轮跟随泵轮作同向旋转,油在涡轮中由外缘流内侧被迫减压减速,然后流入泵轮,构成了一个油的循环,这里传递能量的介质是工作油。在这个循环中,泵轮将原动机的机械能转变成油的动能和势能,而涡轮则将油的动能和势能又转变成输出轴的机械能,从而实现能量的柔性传递。转动外壳与泵轮相连,转动外壳腔内放置一根可上下移动的勺管,运转时,当偶合器工作油腔充满油时,能量最大,传动扭矩的能量最大,当偶合器工作油腔排空油时,能量最小、传动扭矩的能量最小。既通过勺管来调节工作油腔的油层厚度,把勺管以下内侧的循环园中的油导走,以改变工作腔内的油量,则偶合器传递的扭矩将随

着勺管的上下移动带来工作腔内的油量变化,即实现了偶合器的调速功能。 液力偶合器结构原理图

液力偶合器部分构件 它具有以下几个优点: 1.可以空载启动电动机,可控地逐步启动大负载。

2.给水泵无级调速时可以大量节省厂用耗电量。 3.可利用电机的最大扭矩启动负载。 4.隔离在动转过程中的冲击和震动。

Heidenhain海德汉编码器

Heidenhain海德汉编码器 旋转编码器 (带内置轴承,采用定子联轴器安装) ERN 1000 (微型) ExN 400 (小型) ExN 100 (大直径轴) ExN 1100 (内置马达中) ExN 1300 (内置马达中) (带内置轴承、采用分离联轴器的旋转编码器) ROC/ROQ/ROD 400 (标准尺寸) ROD 1000 (微型) (无内置轴承) ECI/EQI 1300 (机械兼容ECN/EQN 1300) ERO 1200 (小型) ERO 1400 (微型) ECI/EQI 1100 (机械兼容ECN/EQN 1100) 角度编码器(带内置轴承) RCN (绝对式测量) RON (增量式测量) ROD (增量式测量) ECN (绝对式测量) (无内置轴承) ERP 880 ERP 4080 ERP 8080 ERO 6080 ERO 6070 ERO 6180 ERA 4280C ERA 4480C ERA 4880C ERA 4282C ERA 7480C ERA 8480C 模块式磁栅编码器 ERM 200 ERM 2200 ERM 2410 ERM 2200 ERM 2400 ERM 2900 编码器,海德汉编码器常用的都有:ERN1331-1024, ERN1331-2048, ERN1381-2048,ERN1387-2048, ROD431-1024, ROD431-2048, EQN1325-2048, ROD320-2000, ROD320-2500 海德汉编码器常用的都有:ERN1331-1024, ERN1331-2048, ERN1381-2048,ERN1387-2048, ROD431-1024, ROD431-2048, EQN1325-2048, ROD320-2000, ROD320-2500 优势供应德国heidenhain编码器 610系列632系列674系列,675系列,684系列,685系列,510系列 312系列,560系列,562系列,540系列,541系列525系列,310系列,320系列 优势供应德国heidenhain编码器 ERN1381.001-2048, ID: 313453-06, 313453-02 EQN1125.030 Heidenhain Endoder海德汉编码器 ERN1381.020-2048, ID: 385489-06 EQN1325.020-2048, ID: 538234-01 ERN1381-2048, ID:385489-56 EQN1325, ID: 312214-53 ERN1381.040-2048, ID:608290-01 EQN1325.001-2048, ID312214-16 ERN1381.062-2048, ID: 385489-08, 385489-07 EQN1325-2048, ID:538234-51 ERN1387.001-2048, ID:312215-14 EQN1325-2048 ID:515385-01 ERN1387.001-2048.ID:312215-02, 312215-66 EQN1325.048-2048, 655251-01 ERN1387-2048, ID:373787-N6 EQN425,ID:312214-16 海德汉研制生产光栅尺、角度编码器、旋转编码器、数显装置和数控系统。海德汉公司的产品被广泛应用于机床、自动化机器,尤其是半导体和电子制造业等领域。 编码器的性能对电机的重要特性具有决定性影响, 例如: 1. 定位精度 2. 速度稳定性 3. 带宽, 它决定驱动指令的响应时间和抗干扰性能 4. 功率损耗 5. 尺寸 6. 噪声 海德汉(HEIDENHAIN) 产品线丰富, 能为各种旋转电机和直线电机提供恰当的解决方

电动给水泵液力偶合器结构及工作原理

电动给水泵液力偶合器结构及工作原理 (2012-06-01 07:52:00) 电动给水泵液力偶合器结构及工作原理1、液力偶合器的结构:轴、轴密封装置、壳体、泵轮、涡轮、勺管; 2、工作原理:以液体为工作介质的一种非刚性联轴器,又称液力联轴器。液力耦合器的泵轮和涡轮

组成一个可使液体循环流动的密 闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。由勺管控制排油量来控制转速。最后液体经工作油泵返回泵轮,形成周而复始的流动。 3、液力耦合器的特点是: 1)能消除冲击和振动; 2)输出转速低於输入转速,两轴的转速差随载荷的增大而增加;

3)过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。 4)液力耦合器的传动效率等於输出轴转速与输入轴转速之比。一般液力耦合器正常工况的转速比 在以上时可获得较高的效率。 5)液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。它一般靠壳体自然散热,不需要外部冷却的供油系统。如将液力

耦合器的油放空,耦合器就处於脱开状态,能起离合器的作用。 液力耦合器的模型与工作原理 发布作者:关键词: 液力耦合器是一种利用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。功率控制调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。 因此,我们不能简单地认为液力偶合器调速是"丢转",而实际是丢功率。设原传动功率为PM1,输出功率为PM2,损耗功率则为液力偶合器是一种耗能型的机械调速装置,调速越深(转速越低)损耗越大,特别是恒转矩负载,由于原传动输入功率不变,损耗功率将转速损失成比例增大。对于风机泵类负载,由于负载转矩按转速平方率变化,原传动输入功率则按转速的平方率降低,损耗功率相对小一些,但输出功率是按转速的立方率减小,调速效率仍然很低。液力耦合器的调速效率曲线如图2所示,平均效率在50%左右。

相关文档
最新文档