苏教版高中化学选修4知识点总结

苏教版高中化学选修4知识点总结
苏教版高中化学选修4知识点总结

化学选修4化学反应与原理

专题1 化学反应与能量变化

第一单元化学反应中的热效应

一、化学反应的焓变

1、反应热与焓变

(1)反应热:化学反应过程中,当反应物和生成物具有相同温度时,所吸收或放出的热量称为化学反应的反应热。

(2)焓变(ΔH):在恒温、恒压条件下,化学反应过程中吸收或放出的热量称为化学反应的焓变。符号:△H,单位:kJ/mol

2、放热反应和吸热反应:

(1)放热反应:在化学反应过程中,放出热量的反应称为放热反应(反应物的总能量大于生成物的总能量)

(2)吸热反应:在化学反应过程中,吸收热量的反应称为吸热反应(反应物的总能量小于生成物的总能量)

化学反应过程中的能量变化如图:

放热反应ΔH为“—”或ΔH<0 吸热反应ΔH为“+”或ΔH >0

?H=E(生成物的总能量)-E(反应物的总能量)

?H=E(反应物的键能)-E(生成物的键能)

(3)常见的放热反应:1)所有的燃烧反应2)酸碱中和反应

3)大多数的化合反应4)金属与酸的反应

5)生石灰和水反应 6)浓硫酸稀释、氢氧化钠固体溶解等

常见的吸热反应:1)晶体Ba(OH)

·8H2O与NH4Cl 2)大多数的分解反

2

3)以H2、CO、C为还原剂的氧化还原反应 4)铵盐溶解等

注意:1)化学反应时放热反应还是吸热反应只取决于反应物和生成物总能量的相对大小,与反应条件(如点燃、加热、高温、光照等)和反应类型无关;

2)物质的溶解过程也伴随着能量变化:NaOH固体溶于水明显放热;硝酸铵晶体溶于水明显吸热,NaCl溶于水热量变化不明显。

3、化学反应过程中能量变化的本质原因:

化学键断裂——吸热化学键形成——放热

4、热化学方程式

(1)定义:能够表示反应热的化学方程式叫做热化学方程式。

(2) 意义:既能表示化学反应过程中的物质变化,又能表示化学反应的热量变

化。

(3) 书写化学方程式注意要点:

1)热化学方程式必须标出能量变化。

2)热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s 分别表示

固态,液态,气态,水溶液中溶质用aq 表示) 3)热化学反应方程式要指明反应时的温度和压强。

4)热化学方程式中的化学计量数可以是整数,也可以是分数,不表示分子

个数,表示对应物质的物质的量。

5)各物质系数加倍,△H 加倍;反应逆向进行,△H 改变符号,数值不变。 △H 的单位为kJ/mol ,它并不是指1mol 反应物或是生成物,可以理解为“每摩尔反应”。如:

2222H (g)+O (g)==2H O(l) H=-285.8KJ ?﹒mol -1

是指每摩尔反应——“2molH 2(g)和1molO 2(g )完全反应生成2molH 2O(l)”的焓变。

5、总结:热化学方程式与普通化学方程式的比较

热化学方程式 普通化学方程式 反应式 2222H (g)+O (g)==2H O(l) H=-285.8KJ ?﹒mol -1

2222H +O 2H O ???→点燃 方程式意义 表示反应及反应的吸热放热

仅表示反应

化学计量数 表示物质的量,可以是整数或分数

可以表示物质的量或微粒个数,只能是整数,不能是分数

ΔH

右端有表示能量变化的ΔH 没有此项

反应条件 不用标明反应条件、“↑”、“↓”等 需标明各种反应条件 如点燃,光照、高温等 物质的状态

必须标明反应物、生成物的聚集状态,如g ,l ,s 不标明反应物、生成物的聚集状态

二、反应热的测量与计算: 1、中和热概述:

(1)定义:在稀溶液中,酸跟碱发生中和反应,生成1mol(l)水时的反应热叫做中和热。

(2)中和热的表示:H +(aq)+OH -(aq)=H 2O (l);△H=-57.3kJ /mol 。 (3)要点

1)条件:”稀溶液”一般是指酸、碱的物质的量浓度均小于或等于1 mol/L 的

溶液,因为若酸、碱浓度较大,混合时会产生溶解热,而影响中和热的测定。 2)反应物:(强)酸与(强)碱。中和热不包括离子在水溶液中的生成热、

电解质电离的吸热所伴随的热效应。

3)中和热是以生成1mol 液态水所放出的热量来定义的,因此在书写中和热

的热化学方程式时,就以生产1mol H 2O 为标准来配平其余物质的化学计量数。如表示稀NaOH 和稀硫酸的中和反应的热化学方程式:

2424211

NaOH(aq)+H SO (aq)==Na SO (aq) +H O(l) H=-57.3KJ 22?﹒mol -1

4)中和反应的实质是H +和OH -化合生成 H 20,若反应过程中有其他物质(如沉淀等)生成,这部分反应热也不在中和热内。

5)放出的热量:57.3kJ/mol 2、 中和热的测量: (1)仪器:量热计。

量热计由内、外两个筒组成,外筒的外壁盖有保温层,盖上有温度计和搅拌器。

或者:大烧杯(500 mL )、小烧杯(100 mL )、温度计、量筒(50 mL )两个、泡沫塑料或纸条、泡沫塑料板或硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 试剂:0.50 mol/L 盐酸、0.55 mol/L NaOH 溶液。

(2) 实验原理:测定含x mol HCl 的稀盐酸与含x mol NaOH 的稀NaOH 溶液混

合后放出的热量为Q kJ ,则Q

H x

?=- kJ ﹒mol -1

(3) 实验步骤:

1)在大烧杯底部垫泡沫塑料(或纸条),使放入的小烧杯杯口与大烧杯杯口相平。然后再在大、小烧杯之间填满碎泡沫塑料(或纸条),大烧杯上用泡沫塑料板(或硬纸板)作盖板,在板中间开两个小孔,正好使温度计和环形玻璃搅拌棒通过,如下图所示。

2)用一个量筒量取50 mL 0.50 mol/L 盐酸,倒入小烧杯中,并用温度计测量盐酸的温度,记入下表。然后把温度计上的酸用水冲洗干净。

3)用另一个量筒量取50 mL 0.55 mol/L NaOH 溶液,并用温度计测量NaOH 溶液的温度,记入下表。

4)把温度计和环形玻璃搅拌棒放入小烧杯的盐酸中,并把量筒中的NaOH 溶液一次倒入小烧杯(注意不要洒到外面)。用环形玻璃搅拌棒轻轻搅动溶液,并准确读取混合溶液的最高温度,记为终止温度,记入下表。 5)重复实验两次,取测量所得数据的平均值作为计算依据。 (4)常见问题:

1)教材有注,“为了保证0.50mol·L的盐酸完全被中和,采用0.55mol·LNaOH 溶液,使碱稍稍过量”,那可不可以用0.50mol·LNaOH与0.55mol·LHCl,让酸稍稍过量呢?

答案:不是“可以与不可以”而是“不宜”。原因是稀盐酸比较稳定,取50mL、0.50mol·LHCl,它的物质的量就是0.025mol,而NaOH溶液极易吸收空气中的CO2,如果恰好取50mL、0.50mol·LNaOH,就很难保证有0.025molNaOH参与反应去中和0.025mol的HCl。

2)为了确保NaOH稍稍过量,可不可以取体积稍稍过的0.50mol·LNaOH溶液呢?

回答:可以的。比如“量取51mL(或52mL)0.50mol·LNaOH溶液”。只是(m1+m2)再不是100g,而是101g或102g。

3)强酸与弱碱,强碱与弱酸的中和反应热值如何估计?

鉴于弱酸、弱碱在水溶液中只能部分电离,因此,当强酸与弱碱、强碱与弱酸发生中和反应时同时还有弱碱和弱酸的不断电离(吸收热量,即电离热)。所以,总的热效应比强酸强碱中和时的热效应值(57.3KJ/mol)要小一些。

4)测定酸碱中和热为什么要用稀溶液?

答:中和热是酸碱在稀溶液中发生中和反应生成lmol水时所放出的热量,为什么要指明在稀溶液中呢?

因为如果在浓溶液中,即使是强酸或强碱,由于得不到足够的水分子,因此也不能完全电离为自由移动的离子。在中和反应过程中会伴随着酸或碱的电离及离子的水化,电离要吸收热量,离子的水化要放出热量,不同浓度时这个热量就不同,所以中和热的值就不同,这样就没有一个统一标准了。

5)为什么强酸强碱的中和热是相同的?

答:在稀溶液中,强酸和强碱完全电离,所以它们的反应就是H+与OH-结合成H2O的反应,每生成lmol水放出的热量(中和热)是相同的,均为57.3 kJ/mol。

6)为什么弱酸、弱碱参加的中和反应的中和热小于57.3 kJ/mol?

答:弱酸、弱碱在水溶液中不能完全电离,存在着电离平衡。弱酸或弱碱参与中和反应的同时,伴随着电离,电离过程要吸收热量,此热量就要由H+与OH-结合成水分子放出的热量来抵偿,所以总的来说中和热小于57.3 kJ/mol。7)是什么原因使中和热测定结果往往偏低?

答:按照课本中所示装置进行中和热测定,往往所测结果偏低,造成如此现象的主要原因有:

(1)仪器保温性能差。课本中用大小烧杯间的碎纸片来隔热保温,其效果当然不好,免不了热量散失,所以结果偏低,这是主要原因;

(2)实验中忽略了小烧杯、温度计所吸收的热量,因此也使结果偏低;

(3)计算中假定溶液比热容为4.18 J/(g·℃),密度为1g/cm3,实际上这是水的比热容和密度,酸碱溶液的比热容、密度均较此数大,所以也使结果偏低。

8)为何说保温效果差是造成中和热测定值偏低的主要原因?

答:实验中温度升高得不多,所以烧杯、玻璃棒吸收的热量甚小,影响不大;而酸、碱溶液是稀溶液,实际密度对比热容与水相差甚微;所以此影响更微弱。

因此说,结果偏低的主要原因是保温性能差,若能改进装置,比如用保温杯代替烧杯,使保温性能良好,就更能接近理论值。

9)离子方程式H++OH-=H2O代表了酸碱中和反应的实质,能否用此代表所有中和反应的离子方程式?

答:离子方程式书写要求“将难电离或难溶的物质以及气体等用化学式表示”,所以弱酸、弱碱参与中和反应时应以分子的形式保留。例如,醋酸和氢氧化钠的离子方程式就应当写为:

HAC+OH-=Ac-+H2O

只有可溶性强酸强碱的离子方程式才可能如此表示。

10)为什么中和热测定中要用稍过量的碱?能不能用过量的酸?

答:这是为了保证碱(或酸)能够完全被中和。H+与OH-相互接触碰撞才能发生反应,如果用等量的酸、碱,随着反应的进行,H+与OH-相互碰撞接触的机会越来越少,越来越困难,可能有一部分H+与OH-就不能反应,而在一种微粒过量的情况下,则大大增加了另一种微粒完全反应的机会。不能用过量的酸,因为碱中含有杂质碳酸钠,酸过量就会有酸与碳酸盐反应导致中和热测定不准.11)为什么要用环形玻璃棒搅拌?若用铁丝取代环行玻璃棒会不会有影响?

答为了使反应充分.若用铁丝取代环行玻璃棒会使铁与酸反应放出热量而且铁丝传热快,使测量值偏低。

3、盖斯定律

①内容:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成的反应热是相同的。

三、能源的充分利用

1、标准燃烧热和热值

(1)标准燃烧热概念:在101 kPa时,1 mol物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。

※注意以下几点:

①研究条件:101 kPa

②反应程度:完全燃烧,产物是稳定的氧化物。

③燃烧物的物质的量:1 mol

④研究内容:放出的热量。(ΔH<0,单位kJ/mol)

(2)热值:在101 kPa时,1 g 物质完全燃烧生成稳定的化合物时所放出的热量。热值的单位用kJ/g表示。

四、反应热大小的计算:

(1)根据标准燃烧热、热值或中和热计算:

|△H|= n(燃料)×燃料的标准燃烧热;

|△H|= m(燃料)×燃料的热值

|△H|= n(H2O)×中和热

(2)根据热化学方程式计算:

△H与反应物各物质的物质的量成正比

(3)根据反应物和生成物的键能计算:

△H=反应物的总能量- 生成物的总能量

(4)根据盖斯定律计算:

若某热化学方程式可以由其他几个热化学方程式通过适当的“加、减”得到,则该反应的焓变可以根据其他几个热化学方程式的焓变通过相应的“加、减”得到。

(5)根据物质的比热和温度变化进行计算:

△H= -Q = -cm△T

第二单元化学能与电能的转化

一、原电池的工作原理:

1、原电池:

(1)概念:将化学能转化为电能的装置叫做原电池。

(2)组成原电池的条件:

1)首要条件:有能自发进行的氧化还原反应;

2)两个活泼性不同的电极(金属或导电的非金属)

3)电解质溶液:两个电极均需插入电解质溶液中

4)两电极用导线相连并插入电解液构成闭合回路

此电池的优点:能产生持续、稳定的电流(3)电子流向:外电路:负极——导线——正极

内电路(电解质溶液内):盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。

内电路中离子的移动可以这样理解:电源内部(内电路)电流方向从负极到正极,因此受电场力作用,阳离子向正极移动,阴离子向负极移动。

(4)电极反应:以锌铜原电池为例:

负极:失去电子,氧化反应:Zn-2e=Zn2+(较活泼金属)

正极:得到电子,还原反应:2H++2e=H2↑(较不活泼金属)

总反应式:Zn+2H+=Zn2++H2↑

(5)正、负极的判断:

1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。

2)从电子的流动方向负极流入正极

3)从电流方向正极流入负极

4)根据电解质溶液内离子的移动方向阳离子流向正极,阴离子流向负极5)根据实验现象①__溶解的一极为负极__②增重或有气泡一极为正极

二、化学电源

1、概念:

(1)电池的分类:化学电池、太阳能电池、原子能电池

(2)化学电源:将化学能直接转变为电能的装置

(3)化学电源的分类:一次电池、二次电池、燃料电池 2、 一次电池:

概念:活性物质(发生氧化还原反应的物质)消耗到一定程度后,就不能再使用。其电解质溶液制成胶状,也叫干电池。

常见一次电池:普通锌锰电池、碱性锌锰电池、锌银纽扣电池等

电池种类 电极及电池反应 普通锌锰电池 负极: Zn -2 e -=Zn 2+

正极: 2NH 4++2 e -

=2NH 3↑+H 2

H 2+2MnO 2=Mn 2O 3+H 2O

总反应式:Zn +2MnO 2+2NH 4+=Zn 2++2NH 3↑+Mn 2O 3+H 2O

碱性锌锰电池 负极:Z n -2e -+2OH - = Zn(OH)2

正极:2MnO 2+2e -+2H 2O = 2MnO(OH)+2OH -

总反应式:Zn +2MnO 2+2H 2O =Zn(OH)2 +2MnO(OH)

银锌纽扣电池 组成材料:锌、氧化银、氢氧化钾溶液

负极: Zn -2e -+2OH - = Zn(OH)2

正极: Ag 2O +2e -+H 2O = 2Ag +2OH - 总反应式:Zn +Ag 2O +H 2O =Zn(OH)2+2Ag

3、 二次电池

1)概念: 放电后可以再充电使活性物质(电极、电解质溶液)获得再生,可以多次重复使用,又叫充电电池或蓄电池。

2)常见二次电池:铅蓄电池、银锌电池、镉镍电池、氢镍电池、锂离子电池、

聚合物锂离子电池

3)电极反应:

放电反应为原电池反应,电极反应式为:

负极(铅):Pb +

-2e - =PbSO 4↓

正极(氧化铅):PbO 2+4H +++2e - =PbSO 4↓+2H 2O

总反应式:Pb +PbO 2+2

+4H +=2PbSO 4↓+2H 2O

充电反应为上述反应的逆反应,电极反应式为:

阳极(失去电子): PbSO 4+2H 2O -2e - =PbO 2+4H ++

阴极(得到电子): PbSO 4+2e - =Pb +

两式可以写成一个可逆反应:224

42Pb+PbO +2H SO 2PbSO +2H O 放电充电

4、燃料电池

(1)概念:燃料电池是使燃料与氧化剂反应直接产生电流的一种原电池,所以燃料电池也是化学电源。

它与其它电池不同,它不是把还原剂、氧化剂物质全部贮存在电池内,而是在工作时,不断地从外界输入,同时把电极反应产物不断排出电池。燃料电池的正极和负极都用多孔炭和多孔镍、铂、铁等制成。从负极连续通入氢气、煤气、发生炉煤气、水煤气、甲烷等气体;从正极连续通入氧气或空气。电解液可以用碱(如氢氧化钠或氢氧化钾等)把两个电极隔开。化学反应的最终产物和燃烧时的产物相同。燃料电池的特点是能量利用率高,设备轻便,减轻污染,能量转换率可达70%以上。

(2)电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。

以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性: ① 当电解质溶液呈酸性时:

负极:2H 2-4e - =4H + 正极:O2+4 e - 4H + =2H 2O ② 当电解质溶液呈碱性时:

负极:2H 2+4OH --4e -=4H 2O 正极:O2+2H 2O +4 e -=4OH - ③ 当电解质溶液呈中性:

正极: O2 + 2H2O + 4e- = 4OH- (这个和金属的吸氧腐蚀是一样的) 负极:2H2 - 4e- = 4H+

(3)燃料电池的优点:能量转换率高、废弃物少、运行噪音低 5、海水电池:

该电池以海水为电解质溶液,靠空气中的氧气使铝不断氧化而产生电流。 负极材料是铝,正极材料可以用石墨。

电极反应式为:负极反应:Al -3 e -=Al 3+,

正极反应:2H 2O +O 2+4 e -=4OH -。 电池总反应式为:4Al +3O 26H 2O =4Al (OH )3 6、原电池正、负极的判断:

1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。 2)从电子的流动方向:负极流入正极

3)从电流方向:正极流入负极

4)根据电解质溶液内离子的移动方向:阳离子流向正极,阴离子流向负极5)根据实验现象:①溶解的一极为负极;②增重或有气泡一极为正极

6)根据电极反应:失电子发生氧化反应的为负极;得电子发生还原反应的为

正极。

7、原电池电极反应的书写方法:

(1)负极反应式的书写:

1)负极材料本身被氧化:

①金属电极失去电子生成的金属阳离子不与电解质溶液溶液反应:

M-ne-==M n+

②金属电极失去电子生成的金属阳离子与电解质溶液溶液反应:将金属失电子的反应、金属阳离子与电解质溶液的反应叠加在一起。如铅蓄电池的负极反应式为:

Pb -2e- + SO42-==PbSO4.

2)若负极材料本身不参与反应:

如燃料电池,要将燃料失电子的反应极其产物与电解质溶液的反应叠加在一起写。如氢氧燃料电池(KOH溶液为电解质溶液)的负极反应式为:H2 -2e- + 2OH- ==2H2O

(2)正极反应式的书写:

①负极金属与电解质溶液能发生反应:在正极上电解质溶液中氧化性强的离子被还原。阳离子氧化性的强弱顺序:

Ag+>Hg2+>Fe3+>Cu2+>(稀HNO3电离的NO3-)>H+(指酸电离的) >Pb2+>Sn2+> Fe2+>Zn2 +>Al3+>Mg2+>Na+>Ca2+>K+

如Zn、Cu、稀H2SO4组成的原电池:2H+ + 2e- ==H2↑

如Zn、Cu、CuSO4组成的原电池:Cu2+ + 2e- ==Cu

如Fe、Cu、稀HNO3组成的原电池:NO3-+4H++3e-===NO↑+2H2O

②负极金属与电解质溶液不发生反应:在正极上被还原的物质一般是溶解在电解质溶液中的O

2

.

如铁、铜、氢氧化钠溶液组成的原电池:O2 + 4e- +2H2O ==4OH-

(3)原电池的总反应式一般把正极和负极反应式相加而得。

(4)特殊情况:下列情况并不是较活泼金属做负极:

① Mg、Al、稀H2SO4组成的原电池:

负极(Al)反应:2Al-6e- + 8OH- == 2AlO2- + 4H2O

正极(Mg)反应:6H+ + 6e- ==3H2↑

② Fe(或Al)、Cu、浓HNO3组成的原电池:

负极(Cu)反应:Cu – 2e- == Cu2+

正极(Fe或Al)反应:2NO3- + 4H+ + 2e- ==2NO2↑+ 2H2O

③ Mg、Al、NaOH溶液组成的原电池:

由于Mg与NaOH溶液不反应,而Al能与NaOH溶液反应,故Al为负极,Mg为正极。

负极(Al)反应:2A l-6e-+8OH-==2AlO2-+4H2O

正极(Mg)反应:6H++6e-==3H

2

总反应式:2Al+2OH-+4H

2O==2AlO

2

-+3H

2

备注:类似的还有Zn也与NaOH会反应,Si、S、P等也会与NaOH反应,所以如果Mg、Zn、NaOH组成的原电池,Zn是负极;Si、Fe、NaOH组成的原电池,Si是负极。

例:有甲、乙两位学生均想利用原电池反应检测金

属的活动性顺序,两人均使用镁片和铝片作电极,但

甲同学将电极放入6 mol/L的H2SO4溶液中,乙同学

将电极放入6 mol/L的NaOH溶液中,如右图所示。

下列关于电极的判断正确的是( )

A.甲中镁作负极,乙中镁作负极

B.甲中镁作负极,乙中铝作负极

C.甲中铝作正极,乙中铝作正极

D.甲中镁作正极,乙中铝作正极

解析:选B。甲中在酸性溶液中金属镁较金属铝容易失去电子,所以甲中金属镁作为原电池的负极;而乙中在碱性溶液中金属铝较金属镁更容易失去电子,所以乙中金属铝作为原电池的负极。

8、如何设计化学电池:

例如:以2FeCl3+Cu===2FeCl2+CuCl2为依据,设计一个原电池。

(1)将氧化还原反应拆成氧化反应和还原反应两个半反应,分别作原电池的负极和正极的电极反应式:负极:Cu-2e-===Cu2+正极:2Fe3++2e-===2Fe2+

(2)确定电极材料

如发生氧化反应的物质为金属单质,可用该金属直接作负极;如为气体(如H2)或溶液中的还原性离子,可用惰性电极(如Pt、碳棒)作负极。

发生还原反应的电极材料必须不如负极材料活泼。

本例中可用铜棒作负极,用铂丝或碳棒作正极。

(3)确定电解质溶液

一般选用反应物中的电解质溶液即可。如本例中可用FeCl3溶液作电解液。

(4)构成闭合电路。

特别提醒:设计原电池时,若氧化还原方程式中无明确的电解质溶液,可用水作电解质,但为了增强其导电性,通常加入强碱或一般的强酸。如燃料电池,水中一般要加入KOH或H2SO4。

9、常见原电池方程式:

(1)Cu─H2SO4─Zn原电池

正极:2H+ + 2e- → H2↑

负极:Zn - 2e- → Zn2+

总反应式:Zn + 2H+ == Zn2+ + H2↑

(2)Cu─FeCl3─C原电池

正极:2Fe3+ + 2e- → 2Fe2+

负极:Cu - 2e- → Cu2+

总反应式:2Fe3+ + Cu == 2Fe2+ + Cu2+

(3)钢铁在潮湿的空气中发生吸氧腐蚀

正极:O2 + 2H2O + 4e- → 4OH-

负极:2Fe - 4e- → 2Fe2+

总反应式:2Fe + O2 + 2H2O == 2Fe(OH)2

(4)氢氧燃料电池(中性介质)

正极:O2 + 2H2O + 4e- → 4OH-

负极:2H2 - 4e- → 4H+

总反应式:2H2 + O2 == 2H2O

(5)氢氧燃料电池(酸性介质)

正极:O2 + 4H+ + 4e- → 2H2O

负极:2H2 - 4e-→ 4H+

总反应式:2H2 + O2 == 2H2O

(6)氢氧燃料电池(碱性介质)

正极:O2 + 2H2O + 4e- → 4OH-

负极:2H2 - 4e- + 4OH- → 4H2O

总反应式:2H2 + O2 == 2H2O

(7)铅蓄电池(放电)

正极(PbO2) :PbO2 + 2e- + SO42- + 4H+ → PbSO4 + 2H2 O

负极(Pb) :Pb- 2e-+ (SO4)2-→ PbSO4

总反应式:Pb+PbO2+4H++ 2(SO4)2- == 2PbSO4 + 2H2O

(8)Al─NaOH─Mg原电池

正极:6H2O + 6e- → 3H2↑ + 6OH-

负极:2Al - 6e- + 8OH- → 2AlO2- + 4H2O

总反应式:2Al+2OH-+2H2O==2AlO2- + 3H2↑

(9)CH4燃料电池(碱性介质)

正极:2O2 + 4H2O + 8e- → 8OH-

负极:CH4 -8e- + 10OH- → (CO3)2- + 7H2O

总反应式:CH4 + 2O2 + 2OH- == (CO3)2- + 3H2O

(10)熔融碳酸盐燃料电池

(Li2CO3和Na2CO3熔融盐作电解液,CO作燃料):

正极:O2 + 2CO2 + 4e- → 2(CO3)2- (持续补充CO2气体)

负极:2CO + 2(CO3)2- - 4e- → 4CO2

总反应式:2CO + O2 == 2CO2

(11)银锌纽扣电池(碱性介质)

正极(Ag2O) :Ag2O + H2O + 2e- → 2Ag + 2OH-

负极(Zn) :Zn + 2OH- -2e- → ZnO + H2O

总反应式:Zn + Ag2O == ZnO + 2Ag

三、电解池

1、电解原理

(1)电解概念:电流(外加直流电)通过电解质溶液而在阴阳两极引起氧化还原反应(被动的不是自发的)的过程叫点解。点解过程吧电脑转化为化学能。

(2)电解池:

1)定义:把电能转化为化学能的装置,也叫电解槽

2)电解池的组成条件:

A.与电源相连的两个电极;

B.两个电极插入电解质溶液(或熔融的电解质)中;

C.形成闭合电路。

3)放电:当离子到达电极时,失去或获得电子,发生氧化还原反应的过程4)电子流向:

(电源)负极→(电解池)阴极→(离子定向运动)电解质溶液→(电解池)阳极→(电源)正极

5)电极名称及反应:

阳极:与直流电源的正极相连的电极,发生氧化反应

阴极:与直流电源的负极相连的电极,发生还原反应

隋性电极——只导电,不参与氧化还原反应(C/Pt/Au)

活性电极——既导电又参与氧化还原反应(Cu/Ag)

6)工作原理:

点解的过程是(前提是阳极为惰性电极)电解质溶液(或熔融电解质)中的阴、阳离子在电流的作用下发生定向移动,在阳极和阴极分别被氧化和被还原生成新物质的过程。

7)电解CuCl2溶液的电极反应:

阳极:2Cl- -2e-=Cl2 (氧化)

阴极:Cu2++2e-=Cu(还原)

总反应式:CuCl2 =Cu+Cl2↑

(3)电解时电极产物的判断:

1)阳极产物的判断:

A.阳极是活性电极:

阳极是金属活动顺序表中Ag或Ag前面的金属,则电极本身失去电子,电极溶解。

B.阳极是惰性电极(Pt、Au、石墨):

阳极是惰性电极,则是电解质溶液中的阴离子失去电子,阳极产物要根据阴离子放电顺序来判断:

S2->I->Br->Cl->OH->NO3->SO42-(等含氧酸根离子)>F-(SO32-/MnO4->OH-)

2)阴极产物的判断:

阴极本身不参与电极反应,阴极是电解质溶液中的阳离子得到电子放电,阳离子放电顺序为:

Ag+>Hg2+>Fe3+>Cu2+>(稀HNO3电离的NO3-)>H+(指酸电离的) >Pb2+>Sn2+>

Fe2+>Zn2+>Al3+

>Mg2+>Na+>Ca2+>K+

(4)电解中电极附近溶液pH值的变化:

1)电极区域 A.阴极H+放电产生H

2

,阴极区域pH变大。

B.阳极OH-放电产生O

2

,阳极区域pH变小。2)电解质溶液中:

A.电解过程中,既产生H

2,又产生O

2

,则原溶液呈酸性的pH变小,原溶液呈碱

性的pH变大,原溶液呈中性的pH不变(浓度变大)。

B.电解过程中, 无H

2和O

2

产生, pH几乎不变。但象CuCl

2

变大

C.电解过程中,只产生H

2

, pH变大。

D.电解过程中,只产生O

2

, pH变小。

(5)惰性电极电解电解质水溶液的规律

电解质分类:

1)电解水型:含氧酸(H2SO4、HNO3等),强碱(NaOH、KOH等),活泼

金属含氧酸盐(Na

2SO

4

、KNO

3

等)

2)电解电解质型:无氧酸(HCl、HBr等,但HF除外),不活泼金属的无

氧酸盐(CuCl

2

等,氟化物除外)

3)放氢生碱型:活泼金属的无氧酸盐(如NaCl、KBr等,但氟化物除外)4)放氧生酸型:不活泼金属的含氧酸盐(如CuSO4、AgNO等)

类型实例电极反应电解

对象电解质

浓度

pH 电解质溶

液复原

分解电解质型HCl 阴极:2H++2e-=H2↑

阳极: 2Cl- - 2e-=Cl2↑

总反应式:2HCl???→

电解

???→

电解H

2↑+ Cl2↑

电解

减小增大通HCl气

CuCl2阴极:Cu2++2e-=Cu

阳极: 2Cl-2e-=Cl2↑

总反应式:CuCl2???→

电解Cu+ Cl

2↑

不变加 CuCl2

粉末

放H2生成碱型NaCl阴极: 2H++2e-=H2↑

阳极: 2Cl- -2e-=Cl2↑总反应式:

22

2NaCl+2H O2NaOH+H

???→

电解+ Cl

2↑

电解

质和

生成新

电解质

增大通HCl气

放氧生酸型CuSO4阴极: 2 Cu2++4e-=2Cu

阳极: 4OH- - 4e-=2H2O+O2↑总反应式:

2CuSO4+2H2O???→

电解2Cu+H

2SO4+ O2↑

电解

质和

生成新

电解质

减小氧化铜

电解水型NaOH 阴极: 4H++4e-=2H2↑

阳极: 4OH- - 4e-=2H2O+O2↑

总反应式:

22

2H O2H

???→

电解↑+ O

2↑

水增大增大水H2SO4减小

Na2SO4不变

2、电解原理的应用

(1) 电解饱和食盐水以制造烧碱、氯气和氢气(氯碱工业) 电极反应见上表。

(2) 电镀:应用电解原理在某些金属表面镀上一薄层其他金属或合金的方法 1)电极、电解质溶液的选择:

阳极:镀层金属,失去电子,成为离子进入溶液 M - ne — == M n+ 阴极:待镀金属(镀件):溶液中的金属离子得到电子,成为金属原子,附

着在金属表面:M n+ + ne — == M

电解质溶液:含有镀层金属离子的溶液做电镀液 2)镀铜反应原理:

阳极(纯铜):Cu-2e -=Cu 2+,阴极(镀件):Cu 2++2e -=Cu , 电解液:可溶性铜盐溶液,如CuSO 4溶液 3)铜的精炼

阳极:粗铜;阴极:纯铜; 电解质溶液:硫酸铜 (3) 电冶金 1)、电冶金:使矿石中的 金属阳离子 获得电子,从它们的化合物中还原出来用于冶炼活泼金属,如钾、钠、镁、钙、铝 2)、电解熔融氯化钠:

通电前,氯化钠高温下熔融:NaCl == Na + + Cl — 通直流电后:阳极:2Na + + 2e — == 2Na

阴极:2Cl — — 2e — == Cl 2↑

总反应式:

22NaCl()2Na+Cl ???→点解熔融22NaCl()2Na+Cl ???→点解

熔融↑

(4)规律总结:原电池、电解池、电镀池的判断规律

1)若无外接电源,又具备组成原电池的三个条件。①有活泼性不同的两个电极;②两极用导线互相连接成直接插入连通的电解质溶液里;③较活泼金属与电解质溶液能发生氧化还原反应(有时是与水电离产生的H+作用),只要同时具备这三个条件即为原电池。

2)若有外接电源,两极插入电解质溶液中,则可能是电解池或电镀池;当阴极为金属,阳极亦为金属且与电解质溶液中的金属离子属同种元素时,则为电镀池。

()若多个单池相互串联,又有外接电源时,则与电源相连接的装置为电解池成电镀池。若无外接电源时,先选较活泼金属电极为原电池的负极(电子输出极),有关装置为原电池,其余为电镀池或电解池。 ☆ 原电池,电解池,电镀池的比较

性质 类别

原电池

电解池

电镀池

装置

定义

将化学能转变成电能

将电能转变成化学能的装置 应用电解原理在某些金属

(装置特点)的装置

无外接电源有外接电源表面镀上一侧层其他金属

有外接电源

反应特征自发反应非自发反应非自发反应

装置特征无电源,两级材料不

同有电源,两级材料可同可不

有电源

形成条件活动性不同的两极

电解质溶液

形成闭合回路两电极连接直流电源

两电极插入电解质溶液

形成闭合回路

1镀层金属接电源正极,待

镀金属接负极;2电镀液必

须含有镀层金属的离子

电极名称负极:较活泼金属

正极:较不活泼金属

(能导电非金属)阳极:与电源正极相连

阴极:与电源负极相连

名称同电解,但有限制条件

阳极:必须是镀层金属

阴极:镀件

电极反应负极:氧化反应,金

属失去电子

正极:还原反应,溶

液中的阳离子得电子

或者氧气得电子(吸

氧腐蚀)阳极:氧化反应,溶液中的

阴离子失去电子,或电极金

属失电子

阴极:还原反应,溶液中的

阳离子得到电子

阳极:金属电极失去电子

阴极:电镀液中阳离子得到

电子

电子流向负极→正极电源负极→阴极

电源正极→阳极

同电解池

溶液中带电粒子的移动阳离子向正极移动

阴离子向负极移动

阳离子向阴极移动

阴离子向阳极移动

同电解池

联系在两极上都发生氧化反应和还原反应☆☆原电池与电解池的极的得失电子联系图:

阳极(失) e- 正极(得)e- 负极(失)e- 阴极(得)

第三单元金属的腐蚀和防护

一、金属的电化学腐蚀

1、概念:金属腐蚀是指金属或合金与周围环境中的物质发生化学反应而腐蚀损

耗的现象。

本质:都是金属原子失去电子而被氧化生成金属阳离子的过程

2、金属腐蚀的类型:

电化学腐蚀化学腐蚀

定义不纯的金属或合金发生原电池反应,使较活泼的金属失去电子被

氧化而引起的腐蚀。金属与其他物质直接接触发生氧化还原而引起的腐蚀

条件不纯金属或合金与电解质溶液接

金属与非电解质直接接触

现象有微弱的电流产生无电流产生

本质较活泼的金属被氧化的过程金属被氧化的过程

实例钢铁在潮湿的空气中被腐蚀金属与Cl2、O2等物质直接反应

关系化学腐蚀与电化腐蚀往往同时发生,但电化腐蚀更加普遍,危害更严重

3、钢铁电化学腐蚀的分类:

(1)析氢腐蚀——腐蚀过程中不断有氢气放出

①条件:潮湿空气中形成的水膜,酸性较强(水膜中溶解有CO2、SO2、H2S等气体)

②电极反应:负极: Fe – 2e- = Fe2+

正极: 2H+ + 2e- = H2 ↑

总式:Fe + 2H+ = Fe2+ + H2 ↑

(2)吸氧腐蚀——反应过程吸收氧气

①条件:中性或碱性或弱酸性溶液

②电极反应:负极: 2Fe – 4e- = 2Fe2+

正极: O2+4e- +2H2O = 4OH-

总式:2Fe + O2 +2H2O =2 Fe(OH)2

离子方程式:Fe2+ + 2OH- = Fe(OH)2

生成的Fe(OH)2被空气中的O2氧化,生成Fe(OH)3:

Fe(OH)2 + O2 + 2H2O == 4Fe(OH)3

Fe(OH)3脱去一部分水就生成Fe2O3·x H2O(铁锈主要成分)

③规律总结:

金属腐蚀快慢的规律:在同一电解质溶液中,金属腐蚀的快慢规律如下:

电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀>有防腐措施的腐蚀防腐措施由好到坏的顺序如下:

外接电源的阴极保护法>牺牲负极的正极保护法>有一般防腐条件的腐蚀>无防腐条件的腐蚀

二、金属的电化学防护

1、利用原电池原理进行金属的电化学防护

(1)、牺牲阳极的阴极保护法

原理:原电池反应中,负极被腐蚀,正极不变化

应用:在被保护的钢铁设备上装上若干锌块,腐蚀锌块保护钢铁设备

负极:锌块被腐蚀;正极:钢铁设备被保护

(2)、外加电流的阴极保护法

原理:通电,使钢铁设备上积累大量电子,使金属原电池反应产生的电流不能输送,从而防止金属被腐蚀

应用:把被保护的钢铁设备作为阴极,惰性电极作为辅助阳极,均存在于电解质溶液中,接上外加直流电源。通电后电子大量在钢铁设备上积累,抑制了钢铁失去电子的反应。

2、改变金属结构:把金属制成防腐的合金

3、把金属与腐蚀性试剂隔开:电镀、油漆、涂油脂、表面钝化等

专题2 化学反应速率和化学平衡

第一单元化学反应速率

一、化学反应速率的表示方法 1、 化学反应速率(v )

(1)定义:用来衡量化学反应的快慢,单位时间内反应物或生成物的物质的

量的变化量。

(2)表示方法:单位时间内反应物浓度的减少或生成物浓度的增加来表示 (3) 计算公式:v=Δc/Δt (v :平均速率,Δc :浓度变化,Δt :时间)单位:mol/(L·s )或 mol/(L ·min ) 或 mol/(L ·h ) 2、有关化学反应速率注意以下几个问题:

① 物质浓度常采用物质的量浓度,以mol/L 为单位。

② 化学反应速率可用反应体系中某一种反应物或生成物浓度的变化来表示,一般是以最容易测定的一种物质表示之,且应标明是什么物质的反应速率。 ③一般说在反应过程中都不是等速进行的,因此某一时间内的反应速率实际上是这一段时间内的平均速率,而不是在某一时刻的瞬时速率。 ④化学反应速率都为正值,没有负值。

⑤用化学反应速率来比较不同反应进行得快慢或同一反应在不同条件下反应的快慢时,应选择同一物质来比较。

⑥对于有纯液体或固体参加的反应一般不用纯液体或固体的浓度变化表示化学反应速率。

3、用不同物质表示的同一反应的反应速率的关系:

用不同的物质表示同一反应的反应速率时其数值可能不同,但表达的意义是相同的,各物质表示的反应速率的数值有相互关系,彼此可以根据化学方程式中的各化学计量数进行换算:

对于反应)()()()(g qD g pc g nB g mA +=+来说,则有

q

V p V n V m V D

C B A ===。

即各物质的反应速率之比等于方程式中的系数比:

(A):(B):(C):(D)=:::v v v v m n p q = ():():():()c A c B c C c D ????

=():():():()n A n B n C n D ????

二、影响化学反应速率的因素

1、分子间的有效碰撞

(1)化学反应的过程:是反应物分子中的原子重新组合成生成物分子的过程,即反应物分子(或离子)间的化学键断裂、生成物分子中化学键形成的过程。 (2)发生化学反应的先决条件:反应物分子(或离子)间的相互碰撞。但并不是所有反应物分子间的每次碰撞都发生化学反应。

(3)有效碰撞理论:能够发生化学反应的碰撞。是发生化学反应的充分条件。 (4)活化分子:能够发生有效碰撞的分子。活化分子能量高。

(5)活化能:活化分子多出的那部分能量(或普通分子转化成活化分子所需的最低能量)。

(6)活化能与化学反应关系:在一定条件下,活化分子所占的百分数是固定不变的。活化分子的百分数越大,单位体积内活化分子数就越多,单位时间内有效碰撞的次数就越多,化学反应速率就越快。

一般来说,活化能低,反应速率快。

2、影响化学反应速率的因素:

(1)决定因素(内因):反应物的性质(决定因素)

(2)条件因素(外因):反应所处的条件:浓度、压强、温度、催化剂、固体颗粒大小等。

①浓度对化学反应速率的影响:

本质原因:反应物浓度增大,单位体积内活化分子数增多,有效碰撞的频率增加,反应速率增大。

1)在其他条件不变时,增大反应物浓度,可以增大反应速率;减小反应物的浓度,可以减小化学反应的速率。

2)此规律只适用于气体或溶液的反应,对于纯固体或液体的反应物,一般情况下其浓度是常数,因此改变它们的量一般不会改变化学反应速率。

3)一般来说,固体反应物表面积越大,反应速率越大,固体反应物表面积越小,反应速率越小。

4)随着化学反应的进行,反应物的浓度会逐渐减小,因此一般反应速率也会逐渐减小。

5)用有效碰撞理论解释浓度对反应速率的影响:

在其他条件不变时,对某一反应来说,活化分子在反应物分子中所占的百分数是一定的,因此,单位体积内活化分子的数目与反应物浓度成正比。

增大浓度,单位体积内的活化分子数目最多,单位时间内的有效碰撞次数最多,化学反应速率增大。

②压强对反应速率的影响:

1)规律:对于气体反应来说,其它条件不变时,有气体参加的反应中,增大压强,反应速率加快;减小压强,反应速率减慢。

2)恒温时:压强增大→体积缩小→浓度增大→单位体积内n活↑→有效

碰撞↑→反应速率加快

3) 恒容时:

A 、充入气体反应物→反应物浓度增大→总压增大→反应速率增大;

B 、冲入“惰性气体”(如He 、N2等)→引起总压增大,但各反应物

的分压不变,各物质的浓度不变→反应速率不变

4) 恒压时:冲入“惰性气体”(如He 等)→引起体积增大, →各反应

物浓度减少→反应速率减慢。

5) 用有效碰撞理论解释:

对于有气体参加的反应,当温度一定时,活化分子在反应物分子中所占的百分数一定。增大压强,即缩小体积,单位体积内的活化分子数增多,活化分子碰撞几率增多,反应速率加快。 ③ 温度对反应速率的影响:

1) 规律:其他条件不变,温度升高,反应速率加快

备注:A 、温度对反应速率影响的规律,对吸热反应,放热反应都适用。 B 、反应若是可逆反应,升高温度,正、逆反应速率都加快,降低温度,正、逆反应速率都减小。 2) 用有效碰撞理论解释:

在浓度一定时,升高温度,反应物分子的能量增加,使一部分原来能量较低的分子变成活化分子,增大了活化分子的百分数,使有效碰撞次数增多,反应速率加大。此外,温度升高会使分子的运动速率加快,单位时间内的碰撞次数增加,也会加快反应速率,但前者是主要原因。 ④ 催化剂对反应速率的影响:

1) 规律:加入催化剂可以加快反应的速率 2) 用有效碰撞理论解释: 使用催化剂,能够降低反应所需的能量,这样会使更多的反应物的分子成为活化分子,大大增加单位体积内反应物分子中活化分子所占的百分数。因而使反应速率加快。

3) 相关说明:

A 、 凡是能改变反应速率而自身在化学变化前后化学性质和质量没

有发生变化的物质叫催化剂。能加快反应速率的称为正催化剂;减慢反应速率的称为负催化剂,如果没有特别说明均指正催化

能量

反应过

E 1

E 2

反应物

生成物

活化分

活化能

活化分子变

成生成物分子放出的能

没加催化剂

加了催化剂

剂。

B、使用催化剂同等程度的增大(减慢)正逆反应速率,从而改变反

应到达平衡所需时间。

C、催化剂不能改变反应物和生成物的量,也不能使本来不会发生的

反应变为可能。

D、催化剂有一定的选择性和活化温度,在一定的温度范围内,催化

活性最好。

E、酶是一种特殊的、具有催化活性的生物催化剂,具有高效性、选

择性及特殊的温度效应。

⑤其他影响因素:

其他如光照、反应物固体的颗粒大小、电磁波、超声波、溶剂的性质、电化学原理等,也会对化学反应的速率产生影响。

第二单元化学反应的方向和限度

一、化学反应的方向:

1、自发过程:在一定条件下,不需要外接帮助就能自动进行的过程。

特点:体系趋向于从高能状态转变为低能状态。在密闭条件下,体系有从有序自发转变为无序的倾向。

自发反应:在一定温度好压强下,无需外界帮助就能自动进行的反应,称为自发反应。

2、化学反应进行方向的判据:

(1)能量判据(晗判据)

绝大多数放热反应(△H<0)都能自发进行,且反应放出的热量越多,反应越完全。但有些吸热过程也能自发进行,如NH

Cl溶于水。因此,焓变不是判

4

断化学反应能否自发进行的唯一因素。

(2)熵判据:

①熵:用于衡量一个体系混乱程度的物理量,符号为S,单位:J﹒mol-1﹒K-1。

熵值越大,混乱程度越大。

②同种物质熵值大小比较:S(g)> S(l) > S(s)

③熵变:反应前后体系熵的变化叫该反应的熵变,符号为△S。若发生反应后体系的混乱程度增大,则该过程的△S>0.

④熵变与化学反应自发性关系:化学反应的△S越大,越有利于反应自发进行。

(3)复合判据:在恒温、恒压时:

①当△H<0,△S>0时,反应可自发进行;

②当△H >0,△S<0时,反应不能自发进行;

③当△H<0,△S<0时,反应在较低温度下可自发进行;

④当△H>0,△S>0时,反应在较高温度下可自发进行;

备注:反应的自发性只能用于判断反应的方向,不能确定反应十分一定会发生或反应发生的速率。

二、化学平衡状态

高中化学选修四总结材料

高中化学选修四总结 第1章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收. 一、化学反应的热效应 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热.用符号Q表示. (2)反应热与吸热反应、放热反应的关系. Q>0时,反应为吸热反应;Q<0时,反应为放热反应. (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度.实验室经常测定中和反应的反应热. 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1. 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示. (2)反应焓变ΔH与反应热Q的关系. 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物). (3)反应焓变与吸热反应,放热反应的关系: ΔH>0,反应吸收能量,为吸热反应. ΔH<0,反应释放能量,为放热反应. (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq). ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度. ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍. 3、反应焓变的计算 (1)盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律. (2)利用盖斯定律进行反应焓变的计算. 常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和. (3)根据标准摩尔生成焓,ΔfHmθ计算反应焓变ΔH.

人教版高中化学选修四知识点总结

化学选修4化学反应与原理 第一章化学反应与能量 一、焓变反应热 1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应 (1).符号:△H(2).单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热)△H为“-”或△H<0 吸收热量的化学反应。(吸热>放热)△H为“+”或△H>0 ☆常见的放热反应:①所有的燃烧反应②酸碱中和反应③大多数的化合反应④金属与酸的反应⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl②大多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式要指明反应时的温度和压强。 ④热化学方程式中的化学计量数可以是整数,也可以是分数 ⑤各物质系数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变 三、燃烧热

1.概念:25℃,101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101kPa②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1mol④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 四、中和热 1.概念:在稀溶液中,酸跟碱发生中和反应而生成1molH2O,这时的反应热叫中和热。 2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为:H+(aq)+OH-(aq)=H2O(l)ΔH=-57.3kJ/mol 3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于57.3kJ/mol。4.中和热的测定实验 五、盖斯定律 1.内容:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成的反应热是相同的。 第二章化学反应速率和化学平衡 一、化学反应速率 1.化学反应速率(v) ⑴定义:用来衡量化学反应的快慢,单位时间内反应物或生成物的物质的量的变化 ⑵表示方法:单位时间内反应浓度的减少或生成物浓度的增加来表示 ⑶计算公式:v=Δc/Δt(υ:平均速率,Δc:浓度变化,Δt:时间)单位:mol/(L·s)

高中化学选修四:专题一化学反应的焓变

【教学目标】二课时 1.知识与技能 ⑴了解化学反应中能量变化的实质,理解反应热、放热反应、吸热反应、焓及焓变等概念。 ⑵明确测定反应热的要点,测定反应热的基本原理和方法。 ⑶能熟练书写热化学方程式,能利用盖斯定律进行有关反应焓变的简单计算 2.过程与方法 ⑴通过化学反应中的能量变化,理解放热反应和吸热反应的实质。且会利用量热计测定反应热。 ⑵能从能量的角度说明“焓”及“焓变”的意义,能熟练书写热化学方程式。 3.情感态度与价值观 通过常见的化学反应的热效应,结合物质的结构,体会化学反应的实质,感受化学反应中的能量变化及能源危机,培养学习化学的兴趣,乐于探究物质变化的奥秘,感受化学世界的奇妙,培养创新精神和实践能力。 【学习重难点】 重点:1. 理解放热反应和吸热反应的实质。 2.熟练书写热化学方程式。 难点:能量变化实质,键能的含义

【教学过程】 引言;在化学必修2中我们已经学习了化学反应中的能量变化,我们说化学反应中不仅是物质的转变,同时还伴随着能量变化。这个能量就是反应热。那什么是反应热呢? 回顾:一、反应热 1、反应热:在化学反应过程中,当反应物和生成物具有相同的温度时,所吸收或放出的热量叫反应热。 讲述:在化工生产和科学实验中,化学反应通常是在敞口容器中进行的,反应体系的压强与外界压强相等,即反应是在恒压下进行的。 2、焓变:在恒温、恒压的条件下,化学反应过程中吸收或放出的热量称为焓变。 符号;△H 单位:kJ/mol 两者的关系:焓变与“等压”反应且“能量全部转化为热能”时的反应热相等。一般没特别指明时,两者的数值相等。 问:一个化学反应,根据反应过程是吸收热量还是放出热量,可把反应分为什么? 3、放热反应和吸热反应 放出热量的反应称为放热反应。△H(焓变)<0表示放热 吸收热量的反应称为吸热反应,△H(焓变)>0表示吸热反应 4、常见的放热反应和吸热反应 放热反应:燃料的燃烧、酸碱中和反应、金属与酸的反应、大多数的化合反应。

【最新】高中化学选修4知识点分类总结(1)

化学选修4化学反应与原理 章节知识点梳理 第一章化学反应与能量 一、焓变反应热 1.反应热:化学反应过程中所放出或吸收的热量,任何化学反应都有反应热, 因为任何化学反应都会存在热量变化,即要么吸热要么放热。反应热可以分为(燃烧热、中和热、溶解热) 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应.符号:△H.单位:kJ/mol ,即:恒压下:焓变=反应热,都可用ΔH表示,单位都是kJ/mol。 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 也可以利用计算△H来判断是吸热还是放热。△H=生成物所具有的总能量-反应物所具有的总能量=反应物的总键能-生成物的总键能 ☆常见的放热反应:①所有的燃烧反应②所有的酸碱中和反应③大多数的化合反应④金属与水或酸的反应⑤生石灰(氧化钙)和水反应⑥铝热反应等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl②大多数的分解反应③条件一般是加热或高温的反应 ☆区分是现象(物理变化)还是反应(生成新物质是化学变化),一般铵盐溶解是吸热现象,别的物质溶于水是放热。 4.能量与键能的关系:物质具有的能量越低,物质越稳定,能量和键能成反比。 5.同种物质不同状态时所具有的能量:气态>液态>固态 6.常温是指25,101.标况是指0,101.

二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化,即反应热△H,△H对应的正负号都不能省。 ②热化学方程式中必须标明反应物和生成物的聚集状态(s,l, g分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式不标条件,除非题中特别指出反应时的温度和压强。 ④热化学方程式中的化学计量数表示物质的量,不表示个数和体积,可以是整 数,也可以是分数 ⑤各物质系数加倍,△H加倍,即:△H和计量数成比例;反应逆向进行,△H 改变符号,数值不变。 6.表示意义:物质的量—物质—状态—吸收或放出*热量。 三、燃烧热 1.概念: 101 kPa时,1 mol纯物质完全燃烧生成稳定的氧化物(二氧化碳、二 氧化硫、液态水H2O)时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量: 1 mol ④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 2.燃烧热和中和热的表示方法都是有ΔH时才有负号。 3.石墨和金刚石的燃烧热不同。不同的物质燃烧热不同。

高中化学选修4知识点归纳总结

高中化学选修4知识点归纳总结 高中化学选修4知识点归纳总结 高中化学选修4知识 化学守恒 守恒是化学反应过程中所遵循的基本原则,在水溶液中的化学反应,会存在多种守恒关系,如电荷守恒、物料守恒、质子守恒等。 1.电荷守恒关系: 电荷守恒是指电解质溶液中,无论存在多少种离子,电解质溶液必须保持电中性,即溶液中阳离子所带的正电荷总数与阴离子所带的负电荷总数相等,用离子浓度代替电荷浓度可列等式。常用于溶液中离子浓度大小的比较或计算某离子的浓度等,例如: ①在NaHCO3溶液中:c(Na+)+c(H+)=c(OH-)+2c(CO32-)+c(HCO3-); ②在(NH4)2SO4溶液中:c(NH4+)+c(H+)=c(OH-)+c(SO42—)。 2.物料守恒关系: 物料守恒也就是元素守恒,电解质溶液中由于电离或水解因素,离子会发生变化变成其它离子或分子等,但离子或分子中某种特定元素的原子的总数是不会改变的'。 可从加入电解质的化学式角度分析,各元素的原子存在守恒关系,要同时考虑盐本身的电离、盐的水解及离子配比关系。例如: ①在NaHCO3溶液中:c(Na+)=c(CO32-)+c(HCO3-)+c(H2CO3);

②在NH4Cl溶液中:c(Cl-)=c(NH4+)+c(NH3·H2O)。 3.质子守恒关系: 酸碱反应达到平衡时,酸(含广义酸)失去质子(H+)的总数等于碱(或广义碱)得到的质子(H+)总数,这种得失质子(H+)数相等的关系就称为质子守恒。 在盐溶液中,溶剂水也发生电离:H2OH++OH-,从水分子角度分析:H2O电离出来的H+总数与H2O电离出来的OH—总数相等(这里包括已被其它离子结合的部分),可由电荷守恒和物料守恒推导,例如: ①在NaHCO3溶液中:c(OH-)=c(H+)+c(CO32-)+c(H2CO3); ②在NH4Cl溶液中:c(H+)=c(OH-)+c(NH3·H2O)。 综上所述,化学守恒的观念是分析溶液中存在的微粒关系的重要观念,也是解决溶液中微粒浓度关系问题的重要依据。 高中化学选修4必背知识 电解的原理 (1)电解的概念: 在直流电作用下,电解质在两上电极上分别发生氧化反应和还原反应的过程叫做电解.电能转化为化学能的装置叫做电解池. (2)电极反应:以电解熔融的NaCl为例: 阳极:与电源正极相连的电极称为阳极,阳极发生氧化反应:2Cl-→Cl2↑+2e-. 阴极:与电源负极相连的电极称为阴极,阴极发生还原反应:Na++e-→Na.

高中化学选修四知识点汇总

高中化学选修四知识点汇总 【一】化学反应的焓变1、(1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。 (2)反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应的关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态 (g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol或kJ·mol,且ΔH后注明反应温度。

③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。 反应焓变的计算 (1)盖斯定律对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2)利用盖斯定律进行反应焓变的计算。常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。 (3)根据标准摩尔生成焓,ΔfHm计算反应焓变ΔH。对任意反应:aA+bB=cC+dD θθθθΔH=[cΔfHm(C)+dΔfHm(D)]-[aΔfHm(A)+bΔfHm(B)] 2、化学电源 (1)锌锰干电池 负极反应:Zn→Zn2++2e-; 正极反应:2NH4++2e-→2NH3+H2; (2)铅蓄电池 负极反应:Pb+SO42-PbSO4+2e- 正极反应:PbO2+4H++SO42-+2e-PbSO4+2H2O 放电时总反应:Pb+PbO2+2H2SO4=2PbSO4+2H2O. 充电时总反应:2PbSO4+2H2O=Pb+PbO2+2H2SO4. (3)氢氧燃料电池 负极反应:2H2+4OH-→4H2O+4e- 正极反应:O2+2H2O+4e-→4OH-

高二化学选修4知识点总结

高二化学知识点总结 化学反应原理复习(一) 第1章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。 一、化学反应的热效应 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应的关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。 (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。 (2)反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应的关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。 3、反应焓变的计算 (1)盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2)利用盖斯定律进行反应焓变的计算。 常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为

人教版高中化学选修四专题二选做题

专题二选做题 1、(2013·唐山一中高三第一次调研)一定温度下有可逆反应:A(g)+2B(g)2C(g)+D(g)。现将4 mol A 和8 mol B 加入体积为2 L 的某密闭容器中,反应至4 min 时,改变某一条件,测得C 的物质的量浓度随时间变化的曲线如图所示。下列有关说法中正确的是( ) A 、0~2 min 内,正反应速率逐渐增大 B 、4 min 时,A 的转化率为50% C 、6 min 时,B 的体积分数为25% D 、4 min 时,改变条件后,平衡向逆反应方向移动 2、(2013·哈尔滨六中第四次模拟)在密闭容器中,将1.0 mol CO 与1.0 mol H 2O 混合加热到800℃,发生下列反应:CO (g )+H 2O (g )CO 2(g )+H 2(g )。一段时间后该反应达到平衡,测得CO 的物质的量为0.5 mol 。则下列说法正确的是 A .800℃下,该反应的化学平衡常数为0.25 B .427℃时该反应的平衡常数为9.4,则该反应的△H >0 C .800℃下,若继续向该平衡体系中通入1.0 mol 的CO (g ),则平衡时CO 物质的量 分数为33.3% D .800℃下,若继续向该平衡体系中通入1.0 mol 的H 2O (g ),则平衡时CO 转化率为66.7% 3、(2013·湖北公安县高三开学考试)某温度下,在一个2 L 的密闭容器中,加入4 mol A 和2 mol B 进行如下反应: 3A(g)+2B(g) 4C(s)+2D(g),反应一段时间后达到平衡,测得生成1.6 mol C ,则下列说法正确的是( ) A .该反应的化学平衡常数表达式是4232()()()() c C c D k c A c B B .此时,B 的平衡转化率是40% C .增大该体系的压强,平衡向右移动,化学平衡常数增大 D .增加B ,平衡向右移动,B 的平衡转化率增大 4、(2013·江苏淮阴中学高三调研)一定温度下,在甲、乙、丙、丁四个恒容密闭容器中投入SO 2(g )和O 2(g ),其起始物质的量及SO 2的平衡转化率如下表所示。 甲 乙 丙 丁 密闭容器体积/L 2 2 2 1 起始物质的量 n (SO 2)/mol 0.4 0.8 0.8 0.4 n (O 2)/mol 0.24 0.24 0.48 0.24 SO 2的平衡转化率/% 80 α1 α2 α3 下列判断中,不正确的是 A .甲中反应的平衡常数小于乙 B .该温度下,该反应的平衡常数K 为400 C .SO 2的平衡转化率:α1<α2=α3 D .容器中SO 3的物质的量浓度:丙=丁>甲 5、(2013·江苏扬州中学高三开学检测)T ℃时在2 L 密闭容器中使X(g)与Y(g)发生反应生成Z(g)。反应过程中X 、Y 、Z 的浓度变化如图1所示;若保持其他条件不变,温度分别为T 1和T 2时,Y 的体积分数与时间的关系如图2所示。则下列结论正确的是 0246 c (mol/L) 2.55 t (min)

(新)高中化学选修4第一章知识点总结及精练精析

化学选修4化学反应与原理知识点详解 一、本模块内容的特点 1.理论性、规律性强 2.定量 3.知识的综合性强 4.知识的内容较深 二、本模块内容详细分析 第一章化学反应与能量 一、焓变反应热 1.反应热:化学反应过程中所放出或吸收的热量,任何化学反应都有反应热,因为任何化学反应都会存在热量变化,即要么吸热要么放热。反应热可以分为(燃烧热、中和热、溶解热)2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应.符号:△H.单位:kJ/mol ,即:恒压下:焓变=反应热,都可用ΔH表示,单位都是kJ/mol。 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 也可以利用计算△H来判断是吸热还是放热。△H=生成物所具有的总能量—反应物所具有的总能量=反应物的总键能—生成物的总键能=反应物的活化能—生成物的活化能 ☆常见的放热反应:①所有的燃烧反应②所有的酸碱中和反应③大多数的化合反应④金属与水或酸的反应⑤生石灰(氧化钙)和水反应⑥铝热反应等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl②大多数的分解反应③条件一般是加热或高温的反应 ☆区分是现象(物理变化)还是反应(生成新物质是化学变化),一般铵盐溶解是吸热现象,别的物质溶于水是放热。 4.能量与键能的关系:物质具有的能量越低,物质越稳定,能量和键能成反比。 5.同种物质不同状态时所具有的能量:气态>液态>固态 6.常温是指25,101.标况是指0,101. 7.比较△H时必须连同符号一起比较。 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化,即反应热△H,△H对应的正负号都不能省。 ②热化学方程式中必须标明反应物和生成物的聚集状态(s,l, g分别表示固态,液态,气态,水溶液中溶质用aq表示)

新人教版高中化学选修4知识点总结:第四章电化学基础

电化学基础 一、原电池 课标要求 1、掌握原电池的工作原理 2、熟练书写电极反应式和电池反应方程式 要点精讲 1、原电池的工作原理 (1)原电池概念:化学能转化为电能的装置,叫做原电池。 若化学反应的过程中有电子转移,我们就可以把这个过程中的电子转移设计成定向的移动,即形成电流。只有氧化还原反应中的能量变化才能被转化成电能;非氧化还原反应的能量变化不能设计成电池的形式被人类利用,但可以以光能、热能等其他形式的能量被人类应用。 (2)原电池装置的构成 ①有两种活动性不同的金属(或一种是非金属导体)作电极。 ②电极材料均插入电解质溶液中。 ③两极相连形成闭合电路。 (3)原电池的工作原理 原电池是将一个能自发进行的氧化还原反应的氧化反应和还原反应分别在原电池的负极和正极上发生,从而在外电路中产生电流。负极发生氧化反应,正极发生还原反应,简易记法:负失氧,正得还。 2、原电池原理的应用 (1)依据原电池原理比较金属活动性强弱 ①电子由负极流向正极,由活泼金属流向不活泼金属,而电流方向是由正极流向负极,二者是相反的。

②在原电池中,活泼金属作负极,发生氧化反应;不活泼金属作正极,发生还原反应。 ③原电池的正极通常有气体生成,或质量增加;负极通常不断溶解,质量减少。 (2)原电池中离子移动的方向 ①构成原电池后,原电池溶液中的阳离子向原电池的正极移动,溶液中的阴离子向原电池的负极移动; ②原电池的外电路电子从负极流向正极,电流从正极流向负极。 注:外电路:电子由负极流向正极,电流由正极流向负极; 内电路:阳离子移向正极,阴离子移向负极。 3、原电池正、负极的判断方法: (1)由组成原电池的两极材料判断 一般是活泼的金属为负极,活泼性较弱的金属或能导电的非金属为正极。 (2)根据电流方向或电子流动方向判断。 电流由正极流向负极;电子由负极流向正极。 (3)根据原电池里电解质溶液内离子的流动方向判断 在原电池的电解质溶液内,阳离子移向正极,阴离子移向负极。 (4)根据原电池两极发生的变化来判断 原电池的负极失电子发生氧化反应,其正极得电子发生还原反应。 (5)根据电极质量增重或减少来判断。 工作后,电极质量增加,说明溶液中的阳离子在电极(正极)放电,电极活动性弱;反之,电极质量减小,说明电极金属溶解,电极为负极,活动性强。 (6)根据有无气泡冒出判断 电极上有气泡冒出,是因为发生了析出H2的电极反应,说明电极为正极,活动性弱。 本节知识树

高中化学选修4知识点总结(详细版)知识讲解

化学选修4 化学反应与原理 第一章化学反应与能量 一、焓变反应热 1 .反应热:化学反应过程中所放出或吸收的热量,任何化学反应都有反应热,因为任何化学反应都会存在热量变化,即要么吸热要么放热。反应热可以分为(燃烧热、中和热、溶解热) 2 .焓变(△ H)的意义:在恒压条件下进行的化学反应的热效应.符号:△ H.单位: kJ/mol ,即:恒压下:焓变二反应热,都可用△ H表示,单位都是kJ/mol。 3. 产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热〉吸热)△ H为“-”或△ H <0 吸收热量的化学反应。(吸热>放热)△ H为“+”或厶H >0 也可以利用计算厶H来判断是吸热还是放热。△日=生成物所具有的总能量-反应物所具有的总能量=反应物的总键能-生成物的总键能☆常见的放热反应:① 所有的燃烧反应② 所有的酸碱中和反应③ 大多数的化合反应④ 金属与水或酸的反应⑤ 生石灰(氧化钙)和水反应⑥铝热反应等 ☆常见的吸热反应:① 晶体Ba(OH)? 8H2O与NH4C②大多数的分解反应③ 条件一般是加热或高温的反应 ☆区分是现象(物理变化)还是反应(生成新物质是化学变化),一般铵盐溶解是吸热现象,别的物质溶于水是放热。 4. 能量与键能的关系:物质具有的能量越低,物质越稳定,能量和键能成反比。 5. 同种物质不同状态时所具有的能量:气态>液态>固态 6. 常温是指25,101. 标况是指0,101. 7. 比较△ H时必须连同符号一起比较。 二、热化学方程式书写化学方程式注意要点:

①热化学方程式必须标出能量变化,即反应热△ H,A H对应的正负号都不能省。 ②热化学方程式中必须标明反应物和生成物的聚集状态(s,l, g 分别表示固态,液态,气态,水溶液中溶质用aq 表示) ③热化学反应方程式不标条件,除非题中特别指出反应时的温度和压强。 ④热化学方程式中的化学计量数表示物质的量,不表示个数和体积,可以是整数,也可以是分数 ⑤各物质系数加倍,△ H加倍,即:△ H和计量数成比例;反应逆向进行,△ H改变符号数值不变。 6. 表示意义:物质的量—物质—状态—吸收或放出*热量。 三、燃烧热 1.概念:101 kPa 时,1 mol 纯物质完全燃烧生成稳定的氧化物(二氧化碳、二氧化硫、液态水H2Q)时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1 mol ④研究内容:放出的热量。(△ HvO,单位kJ/mol ) 2. 燃烧热和中和热的表示方法都是有△ H时才有负号。 3. 石墨和金刚石的燃烧热不同。不同的物质燃烧热不同。 四、中和热 1. 概念:在稀溶液中,酸跟碱发生中和反应

2.选修4化学反应与能量图像专题

(二)能量图像专题训练 1.化学反应A 2+B 2 ===2AB的能量变化如下图所示,则下列说法中正确的是( ) A.该反应是吸热反应 B.断裂1 mol A—A键和1 mol B—B键时能放出x kJ的能量C.断裂2 mol A—B键时需要吸收y kJ的能量 D.2 mol AB的总能量高于1 mol A 2和1 mol B 2 的总能量 2.已知:①N 2(g)+O 2 (g)===2NO(g) ΔH1=+180 kJ·mol -1②N 2(g)+3H 2 (g)?22NH3(g) ΔH2=-kJ·mol-1 ③2H 2(g)+O 2 (g)===2H 2 O(g) ΔH3=-kJ·mol-1 下列说法正确的是( ) A.反应②中的能量变化如图所示,则ΔH2=E1-E3 B.H 2 的燃烧热为kJ·mol-1 C.由反应②知在温度一定的条件下,在恒容密闭容器中通入1 mol N 2和3 mol H 2 ,反应后放 出的热量为Q1 kJ,若通入2 mol N2和6 mol H2反应后放出的热量为Q2 kJ,则>Q2>2Q1 D.氨的催化氧化反应为4NH 3(g)+5O 2 (g)===4NO(g)+6H 2 O(g) ΔH=+906 kJ·mol-1 3.单斜硫和正交硫转化为二氧化硫的能量变化图如下图所示。下列说法正确的是( ) A.S(s,单斜)===S(s,正交) ΔH=+kJ·mol-1 B.正交硫比单斜硫稳定 C.相同物质的量的正交硫比单斜硫所含有的能量高 D.①表示断裂1 mol O 2中的共价键所吸收的能量比形成1 mol SO 2 中的共价键所放出的能量 少 kJ 4.如图所示,下列说法不正确的是( ) A.反应过程(1) 的热化学方程式 为 A 2 (g)+

化学选修四所有知识点总结

化学选修四所有知识点总结 2016-09-25 第1章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。 一、化学反应的热效应 1、化学反应的反应热 (1) 反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。(2) 反应热与吸热反应、放热反应的关系。 Q> 0时,反应为吸热反应;C K 0时,反应为放热反应。 (3) 反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=- CE—T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1) 反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H单位为kJ ?mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。 (2) 反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH= H(反应产物)—H(反应物)。 (3) 反应焓变与吸热反应,放热反应的关系: ΔH> 0,反应吸收能量,为吸热反应。 ΔH< 0,反应释放能量,为放热反应。 (4) 反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H(g) + Q(g)= fθ(l) ; ΔH(298K)=- 285.8kJ ? mol -1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(S)、液态(I)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J ?mol-1或kJ ?mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH 的数值也相应加倍。 3、反应焓变的计算 (1) 盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2) 利用盖斯定律进行反应焓变的计算。 常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。 (3) 根据标准摩尔生成焓,△ f H mθ计算反应焓变ΔHo 对任意反应:aA+ bB= cC+ dD

高中化学选修4知识网络架构

化学选修化学反应原理 第一章 一、焓变反应热 1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应(1).符号:△H(2).单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0☆常见的放热反应:①所有的燃烧反应②酸碱中和反应 ③大多数的化合反应④金属与酸的反应 ⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大

多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应 ④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式要指明反应时的温度和压强。 ④热化学方程式中的化学计量数可以是整数,也可以是分数 ⑤各物质系数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变 三、燃烧热 1.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa

②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1 mol ④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 四、中和热 1.概念:在稀溶液中,酸跟碱发生中和反应而生成1mol H2O,这时的反应热叫中和热。 2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为: H+(aq) +OH-(aq) =H2O(l) ΔH=-mol 3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于mol。 4.中和热的测定实验 五、盖斯定律 1.内容:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成的反应热是相同的。

高中化学选修4第三章知识点分类总结

第三章水溶液中的离子平衡 一、弱电解质的电离 1、定义:电解质:在水溶液中或熔化状态下能导电的化合物,叫电解质。非电解质:在水溶液中或熔化状态下都不能导电的化合物。强电解质:在水溶液里全部电离成离子的电解质。 弱电解质:在水溶液里只有一部分分子电离成离子的电解质。 2、电解质与非电解质本质区别: 电解质——离子化合物或共价化合物 非电解质——共价化合物 注意:①电解质、非电解质都是化合物②SO2、NH3、CO2等属于非电解质 ③强电解质不等于易溶于水的化合物(如BaSO4不溶于水,但溶于水的BaSO4全 部电离,故BaSO4为强电解质)——电解质的强弱与导电性、溶解性无关。 3、弱电解质的电离平衡:在一定的条件下,当弱电解质分子电离成离子的速率和离 子结合成分子的速率相等时,电离过程就达到了平衡状态,这叫弱电解质的电离平衡。 4、影响电离平衡的因素: A、温度:电离一般吸热,升温有利于电离。 B、浓度:浓度越大,电离程度越小;溶液稀释时,电离平衡向着电离的方向移动。 C、同离子效应:在弱电解质溶液里加入与弱电解质具有相同离子的电解质,会减弱电离。 D、其他外加试剂:加入能与弱电解质的电离产生的某种离子反应的物质时,有利于电离。 5、电离方程式的书写: 用可逆符号弱酸的电离要分布写(第一步为主) 6、电离常数:在一定条件下,弱电解质在达到电离平衡时,溶液中电离所生成的各种离子 浓度的乘积,跟溶液中未电离的分子浓度的比是一个常数。叫做电离平衡常数,(一般用Ka 表示酸,Kb表示碱。) 表示方法:AB A++B- Ki=[ A+][ B-]/[AB] K越大,弱电解质较易电离,其对应弱酸、弱碱较强。 H2SO3>H3PO4>HF>CH3COOH>H2CO3>H2S>HClO 7、影响因素: a、电离常数的大小主要由物质的本性决定。 b、电离常数受温度变化影响,不受浓度变化影响,在室温下一般变化不大。 二、水的电离和溶液的酸碱性 1、水电离平衡:: 水的离子积:K W = c[H+]·c[OH-] 25℃时, [H+]=[OH-] =10-7 mol/L ; K W = [H+]·[OH-] = 1*10-14 注意:区分由水电离出的H+、OH-的浓度与水溶液中H+、OH-的浓度。 注意:K W只与温度有关,温度一定,则K W值一定 K W不仅适用于纯水,适用于任何溶液(酸、碱、盐) 2、水电离特点:(1)可逆(2)吸热(3)极弱 物质单质 化合物 电解质 非电解质:非金属氧化物,大部分有机物。如SO3、CO2、C6H12O6、CCl4、CH2=CH2 强电解质:强酸,强碱,大多数盐。如HCl、NaOH、NaCl、BaSO4 弱电解质:弱酸,弱碱,极少数盐,水。如HClO、NH3·H2O、Cu(OH)2、 H2O…… 混和物 纯净物

高二化学选修4知识点总结

高二化学知识点总结 化学反应原理复习(一) 第1章、化学反应与能量转化 化学反应得实质就是反应物化学键得断裂与生成物化学键得形成,化学反应过程中伴随着能量得释放或吸收。 一、化学反应得热效应 1、化学反应得反应热 (1)反应热得概念: 当化学反应在一定得温度下进行时,反应所释放或吸收得热量称为该反应在此温度下得热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应得关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。 (3)反应热得测定 测定反应热得仪器为量热计,可测出反应前后溶液温度得变化,根据体系得热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系得热容,T1、T2分别表示反应前与反应后体系得温度。实验室经常测定中与反应得反应热。 2、化学反应得焓变 (1)反应焓变 物质所具有得能量就是物质固有得性质,可以用称为“焓”得物理量来描述,符号为H,单位为kJ·mol-1。 反应产物得总焓与反应物得总焓之差称为反应焓变,用ΔH表示。 (2)反应焓变ΔH与反应热Q得关系。 对于等压条件下进行得化学反应,若反应中物质得能量变化全部转化为热能,则该反应得反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应得关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质得变化与反应焓变同时表示出来得化学方程式称为热化学方程式,如:H2(g)+O2(g)= H2O(l);ΔH(298K)=-285、8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质得聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH得单位就是J·mol-1或 kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质得系数加倍,ΔH得数值也相应加倍。 3、反应焓变得计算 (1)盖斯定律 对于一个化学反应,无论就是一步完成,还就是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2)利用盖斯定律进行反应焓变得计算。 常见题型就是给出几个热化学方程式,合并出题目所求得热化学方程式,根据盖斯定律可知,该方程式得ΔH为 上述各热化学方程式得ΔH得代数与。 (3)根据标准摩尔生成焓,Δf H mθ计算反应焓变ΔH。对任意反应:aA+bB=cC+dD ΔH=[cΔf H mθ(C)+dΔf H mθ(D)]-[aΔf H mθ(A)+bΔf H mθ(B)] 二、电能转化为化学能——电解

人教版高中化学选修四酸碱中和滴定——专题训练

高中化学学习材料 (精心收集**整理制作) 酸碱中和滴定——专题训练例1.某学生做中和滴定实验的过程如下:(a)取一支碱式滴定管,(b)用蒸馏水洗净,(c)加入待测的NaOH溶液,(d)记录液面刻度读数,(e)用酸式滴定管精确放出一定量标准酸液,(f)置于未经标准酸液润洗的洁净锥形瓶中,(g)加入适量蒸馏水,(h)加入酚酞试液2滴,(i)滴定时,边滴边摇荡,(j)边注视滴定管内液面的变化,(k)当小心地滴到溶液由无色变成粉红色时,即停止滴定。(l)记录液面刻度读数。(m)根据滴定管的两次读数得出NaOH溶液体积为22 mL。指出上述实验过程中的错误之处(用编号表示)。 例2. 用标准的NaOH溶液滴定未知浓度的盐酸,选用酚酞作为指示剂,造成测定结果偏高的原因可能是() A. 配制标准溶液的NaOH中混有Na2CO3杂质 B. 滴定终点读数时,俯视滴定管的刻度,其他操作正确 C. 盛装未知液的锥形瓶用蒸馏水洗过,未用未知液润洗 D. 滴定到终点读数时,发现滴定管尖嘴处悬挂一滴溶液 例3. 用NaOH滴定pH相同、体积相同的H2SO4、HCl、CH3COOH三种溶液,恰好中和时,所用相同浓度NaOH溶液的体积依次为V1、V2、V3,则这三者的关系是() (A)V1>V2>V3(B)V1<V2<V3(C)V1=V2>V3(D)V1=V2<V3 例4. 用0.01 mol/L H2SO4滴定0.01mol/L NaOH溶液,中和后加水至100ml, (设1滴为0.05ml)若滴定时终点判断有误差:①多加1滴H2SO4;②少加1滴H2SO4; 则①和②[H+]的比值是() A. 10 B. 50 C. 5×103 D. 104 例5. 草酸晶体的组成可用H2C2O4·xH2O表示,为了测定x值,进行如下实验:称取Wg草酸晶体,配成100.00mL水溶液。称25.00mL所配制的草酸溶液置于锥形瓶内,加入适量稀H2SO4后,用浓度为amol·L-1的KMnO4溶液滴定到KMnO4不再褪色为止,所发生的反应: 2KMnO4+5H2C2O4+3H2SO4 = K2SO4+10CO2↑+2MnSO4+8H2O

高中化学选修4知识点分类总结

第一章化学反应与能量 一、焓变反应热 1.反应热:化学反应过程中所放出或吸收的热量,任何化学反应都有反应热,因为任何化学反应都会存在热量变化,即要么吸热要么放热。反应热可以分为(燃烧热、中和热、溶解热) 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应.符号:△H.单位:kJ/mol ,即:恒压下:焓变=反应热,都可用ΔH表示,单位都是kJ/mol。 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热)△H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 也可以利用计算△H来判断是吸热还是放热。△H=生成物所具有的总能量-反应物所具有的总能量=反应物的总键能-生成物的总键能 ☆常见的放热反应:①所有的燃烧反应②所有的酸碱中和反应③大多数的化合反应④金属与水或酸的反应⑤生石灰(氧化钙)和水反应⑥铝热反应等 ☆常见的吸热反应:①晶体Ba(OH) 2·8H 2 O与NH 4 Cl②大多数的分解反应③

条件一般是加热或高温的反应 ☆区分是现象(物理变化)还是反应(生成新物质是化学变化),一般铵盐溶解是吸热现象,别的物质溶于水是放热。 4.能量与键能的关系:物质具有的能量越低,物质越稳定,能量和键能成反比。 5.同种物质不同状态时所具有的能量:气态>液态>固态 6.常温是指25,101.标况是指0,101. 7.比较△H时必须连同符号一起比较。 二、热化学方程式 定义:表示参加反应物质的量和反应热的关系的化学方程式。 书写化学方程式注意要点:①热化学方程式必须标出能量变化,即反应热△H,△H对应的正负号都不能省。 ②热化学方程式中必须标明反应物和生成物的聚集状态(s,l, g分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式不标条件,除非题中特别指出反应时的温度和压强。 ④热化学方程式中的化学计量数表示物质的量,不表示个数和体积,可以是整数,也可以是分数 ⑤各物质系数加倍,△H加倍,即:△H和计量数成比例;反应逆向进行,△H 改变符号,数值不变。 6.表示意义:物质的量—物质—状态—吸收或放出*热量。 三、燃烧热 1.概念:101 kPa时,1 mol纯物质完全燃烧生成稳定的氧化物(二氧化碳、二氧化硫、液态水H O)时所放出的热量。燃烧热的单位用kJ/mol表示。 2

相关文档
最新文档