常减压蒸馏装置预先危险性分析

常减压蒸馏装置预先危险性分析
常减压蒸馏装置预先危险性分析

常减压蒸馏装置开停工预先危险性分析及防范措施

摘要:常减压蒸馏装置在开停工过程中,由于设备泄漏、介质互串、超温超压、可燃气或空气置换不净、仪表或安全设施失灵等原因,易发生油气着火爆炸事故,设备、仪表损坏事故以及环境污染等事故。为预防事故的发生,关键在于操作和作业都要受控,即在作业前须充分计划,进行风险辨识并有预案,作业过程中按规程步步确认。

关键词:常减压蒸馏装置风险识别预先性危险分析

前言

实践证明,石油化工装置停工、检修及开工过程中是最容易发生事故的,据统计,在中国石油化工集团公司系统发生的重大事故中,在此过程中发生的事故占事故总起数的42.63%。常减压蒸馏装置油品火灾危险性大,在开停工过程中状态比正常生产更不稳定,操作程序更繁杂,因为风险辨识不充分、防范措施不到位、组织管理不到位、操作人员综合素质低下等原因,致使操作不受控,时有安全事故发生,因此有必要对该过程作个系统预先危险分析,并提出相应防范措施。

1 工艺介质的危险因素识别

常减压装置工艺生产过程中所涉及的易燃易爆物质主要是原油、瓦斯、汽油、煤油、柴油、溶剂油、润滑油、渣油,其火灾爆炸危险特性详见表-1

表-1 处理物料的火灾爆炸危险特性

从上表可以看出,常减压装置属于甲类生产装置,主要火灾危险介质为甲B类可燃液体和甲类可燃气体及重油。原油、汽油、溶剂油、瓦斯列为装置重大危险源,其蒸气与空气形成爆炸性混合物,遇明火、高热能将引起燃烧或爆炸,重油在操作条件下易发生泄漏自燃造

成重大火灾或发生低温冻凝事故。

2 工艺介质的毒害性

原料及产品物质均为低毒物质,如果油气线泄漏可能引起烃类化合物在空气中浓度超标,对现场人员眼、鼻及呼吸系统有强烈刺激,并造成一定环境污染。助剂系统中烧碱、氨等属于危险化学品,操作不当会造成人体伤害。

3 停工过程事故案例分析

停工过程一般包括降温降量、退油吹扫置换、水冲洗、开人孔、堵盲板等过程。停工方案一经确定,应严格的按照停工方案确定的时间、停车步骤、工艺变化幅度,以及确定的停工操作操作顺序图标,有秩序地进行。停工过程关键在于退油吹扫置换过程,油气是否置换干净关系到后续检修动火等作业的本质安全。

3.1退料罐突沸事故

某常减压装置停工退油过程中,循环降温时间不足,急着退油,油品出冷却器超过100℃,由于退料罐加温盘管泄漏罐底含水,导致油品突沸冒罐事故。

3.2加热炉热管爆裂事故

某常减压装置停工过程中,常压加热炉熄火就停风机,而炉膛温度较高,造成热管没有换热温度剧增,导致热管爆裂事故。

3.3蒸汽吹扫水击损坏设备事故

某常减压装置停工退油吹扫过程中,发生加热炉转油线水击震动过程中摆动幅度过大,转油线拉裂事故。发生原因是加热炉蒸汽量通入不足,夜晚气温降低,加热炉炉管呈U型,流程又长,相当于一个冷却器,蒸汽在炉管中冷凝成水,造成炉管堵塞,第二天加大蒸汽通入,发生强烈水击现象,导致转油线拉裂。

某常减压装置停工退油吹扫过程中,发生加热炉转油线剧烈水击,幸未造成事故。从初馏塔到加热炉转油线有两处给汽点,前点给汽不足导致蒸汽在换热器冷凝不通,后加大汽量,导致一股冷凝水突然进入加热炉炉管,发生水击。

某常减压装置停工吹扫时,汽油冷却器副线有U型,未设低点放空,并且刚吹扫时未开启副线,导致副线U型口袋积水,后来开副线时,在未停汽的情况下就开启副线,发生剧烈水击,造成汽油容器进口管线拉裂。

3.4循环水管线闪爆事故

某常减压装置检修,在埋地循环水管线上动火作业,由于未考虑其在低洼处,管线大,原轻油冷却器有泄漏油气积存在其管线上部,动火发生闪爆。

3.5减压塔顶来油着火伤人事故

某常减压装置检修,减压塔内正在进行动火作业,突然塔顶来一股汽油,导致着火伤人事故。事故原因是由于初馏塔塔顶注缓蚀剂单向阀不严,停工时汽油反串至缓蚀剂泵,该缓蚀剂泵还同时向减压塔顶注缓蚀剂,由于通向减压塔顶线不畅通,在检修期间对减压塔顶注缓蚀剂线进行打压贯通,由于存在联系失误,还未断开该管线进减压塔法兰时就已启泵打压,导致管线内存油进入减压塔内,导致塔内动火作业人员烧伤。

3.6柴油出装置管线倒串着火事故

某常减压装置停工检修,柴油出装置管线处只将法兰断开,未加盲板,而在检修过程中,储运车间柴油罐倒油,反串至装置法兰断开处跑油,当时附近正在动火,引起火灾事故。3.7减压塔填料硫化亚铁自燃事故

某常减压装置减压塔停工检修,将塔用蒸汽吹扫后,塔顶打水冷却,由于打水时间不够,塔内温度较高,当人孔打开后,空气对流进入塔内,减压塔填料段发生硫化亚铁自燃事故,造成设备事故。

3.8灭火蒸汽串油伤人事故

某常减压装置炉管腐蚀穿孔着火,操作员打开灭火蒸汽进行掩护,但炉膛火势突然猛涨,造成操作员轻度烧伤。调查原因发现灭火蒸汽带油,加大了火势,蒸汽串油的原因是原油泵和塔底泵出口压力比蒸汽压力高,蒸汽吹扫双阀没关严,油品串入蒸汽管线内造成灭火蒸汽带油。

3.9 蒸汽烫伤事故

装置停工吹扫时,正常开工时的常温管线、容器由于进行蒸汽吹扫,温度较高,操作工在装置进行作业时,尤其是夏天,劳保穿戴不规范,身体裸露部位容易造成烫伤。

4 开工事故案例分析

4.1 加热炉着火爆炸事故

国内炼化装置曾发生发生多起加热炉点火爆炸亡人事故,究其原因是炉膛内可燃气体混合物达到爆炸极限,点火发生爆炸,爆炸时现场有闲杂人员,造成伤亡事故扩大。具体原因主要有两种情况:第一种情况置换不彻底,用蒸汽吹扫置换时间不够,或置换时烟道挡板处于关闭位置,使可燃气未及时得到置换,或未作可燃气爆炸气体分析,使炉膛内存有可燃气体混合物达到爆炸极限,点火就发生爆炸,这种情况以加热炉熄灭后点火的可能性较大,第二种情况点火前阀门可燃气泄漏大,由于可燃气控制阀关不严,或未全关,可燃气爆炸气体分析时间过长,使可燃气泄漏入加热炉达到爆炸极限,气体分析结果合格,但已失效,点火

就发生爆炸。防止加热炉点火爆炸的措施可燃气不能过早引入装置内,可燃气进入加热炉前应加盲板防泄漏,蒸汽吹扫置换时间应足够,必须作可燃气爆炸气体分析,合格后立即点火,炉火熄灭后应关闭可燃气,重新吹扫置换分析,符合要求再点火,另外还应设置未设长明灯、火焰监测仪、防爆门等防爆设施。

4.2 初馏塔带水冲塔事故

开工过程中,易发生初馏塔带水冲塔事故,造成油品污染,甚至损坏塔盘。原因主要是原油含水多,原油乳化严重,初顶回流罐界位失灵带水。

4.3 液位失灵淹塔事故

开工过程中,由于仪表带水、温度低,仪表线路不畅通,或线路接触不良等原因,造成仪表指示突然失灵,或操作人员疏忽大意未及时发现液位参数不变化,容易造成淹塔,污染油品。

4.4 机泵空转时间过长烧轴事故

开工过程中,塔内气液相不平稳造成抽出干板,或泵入口带水气化,泵时有抽空现象,尤其是开减压部分时,机泵长时间不上量,机泵空转,造成机泵烧轴,或泵密封泄漏。

4.5 减压塔负压爆炸事故

70年代,国内曾发生一起减压塔爆炸亡人事故。减压塔内减压渣油温度高达370℃,油气自燃温度低于250℃,由于减压塔为高负压操作,静密封泄漏点多,一旦操作不当,导致空气进入塔内,达到可燃气爆炸极限,极易发生爆炸。造成空气吸入主要原因有大气腿腐蚀泄漏、水封罐脱水口虹吸现象使水封失效,塔顶注剂线腐蚀泄漏、停抽真空蒸汽过快从顶放空倒吸,人孔、法兰等静密封点泄漏。

4.6 柴油集油箱堵塞导致停工事故

某常减压装置停工前生产正常,检修后开工,发现常压塔柴油抽出怎么也不正常,经停工检查发现,柴油集油箱内存有很多块状固体堵塞抽出口,分析判断是开停工吹扫,将塔壁的结垢污泥疏松掉落在集油箱内,停工检查没发现导致。

4.7 减压塔带水拉翻塔盘事故

某常减压装置减压开工过程中,由于渣油泵冷却水堵,倒至备用泵,备用泵上量差,塔底液位高,停过热蒸汽,后泵上量,塔底液位降低,向塔吹入过热蒸汽时忘记脱水,水进入塔后遇高温油气汽化,体积急剧膨胀,造成减压塔内塔盘全部冲垮。

4.8 加热炉下火雨

某常减压装置开工过程中,加热炉突然下火雨,火从炉底流淌出来,由于及时发现紧急

切断初顶不凝气进加热炉,未造成事故。主要原因是初顶汽油回流罐液位失真未及时发现,初顶汽油满罐后从不凝气线进入加热炉,造成了加热炉下火雨事故。

4.9常压塔壁着火

某常减压装置扩能改造后10个月,正常生产中常压塔突然从下往上燃起大火,紧急停工处理未造成事故。调查原因发现由于常压塔常一中塔壁处穿孔,轻油漏入保温棉内,沿塔向下流入塔下部高温段,达自燃点着火。塔壁穿孔的原因是扩能改造,未整改常一中返回线喷嘴,常一中油喷溅至塔壁,导致塔壁冲蚀穿孔。

4.10 重油冻凝管线

某常减压装置开减压加工重质新疆原油,生产100号沥青,开工过程中发现减压塔液位慢慢升高,减压渣油无法出装置,误判断以为是减压渣油泵有问题,延误了时间,致使减压渣油冻凝在管线内,造成减压装置瘫痪,减压渣油管线报废。调查原因发现是该减压渣油为重质沥青,换热流程长,出最后一台换热器温度为60~70℃,温度低,粘度大,出装置困难,造成冻凝事故。应及时改副线,提高沥青出装置温度。

4.11常渣油泵放空口着火

某常减压装置进行标定,取常渣油样,由于操作工违规操作,直接在常渣泵放空口取样,开始时放空口管线不通,用蒸汽吹通后渣油喷出自燃着火,操作工当场烧伤,造成部分仪表电缆烧坏,装置被迫停工。

4.12常压塔顶部放空喷油

某装置开工生产正常,发生停电,机泵全部停止运转,常压塔顶、中段无回流,致使塔顶温度猛涨,大量轻油进入常压塔顶回流罐,回流罐液位猛涨,由于操作不及时来不及转移,致使大量汽油从塔顶不凝气放空喷溅,幸未造成着火事故。

4.13 电脱盐罐火灾爆炸事故

电脱盐罐开工前应用蒸汽对脱盐罐进行短暂吹扫,开工时应排净罐内空气,充满油后再通高压电,以免电火花引起爆炸。应设有满液位通电联锁装置,只有当液位全满后,才能送电。

4.14 阀芯掉落憋跳初顶塔安全阀事故

某常减压装置开工,随着炉出口温度的升高,初馏塔压力不断升高,反复检查流程无误,通过各个不凝气放空点排查,最终确定不凝气分液罐进口阀阀芯掉落堵塞流程,但由于时间延误,未及时开安全阀副线,造成安全阀起跳,幸未造成事故。

4.15 汽提污水罐抽瘪

某常减压装置重油催化装置汽提污水作电脱盐用水,当汽提污水时供水不足时,而顶部放空由于汽提污水很臭关闭,导致罐内成负压,将罐抽瘪。应将顶放空用一段U型管线进行液封。

4.16 常压塔抽瘪事故

某常减压装置在常压塔进行蒸汽吹扫试压后,塔顶放空阀关闭,冷却后,塔内成负压造成塔抽瘪。

5 常减压装置开停工定性评价

从常减压的工艺和装置特点考虑,根据系统安全工程的原理,采用预先危险性分析对常减压装置进行分析,从事故结果找出引起的原因,并提出相应的对策措施。分析结果见表-2

表-2 常减压开停工预先危险性分析表

注:I 级:安全的——暂时不会发生事故,可以忽略;

Ⅱ级:临界的——有导致事故的可能性,系统处于发生事故的临界状态,可能造成人员伤亡或财产损失,应采取措施予以排除或控制;

Ⅲ级:危险的——可能导致事故发生,造成人员伤亡或财产损失,应立即采取措施予以排除或控制;

Ⅳ级:灾难的——会导致事故发生,造成人员严重伤亡或财产巨大损失,必须立即设法消除。

6 常减压装置开停工安全管理措施

从前面的开停工案例分析不难看出,停工过程风险主要是人的不安全因素,暴露出停工风险辨识不足,操作不规范,停工管理松散等问题;而开工过程风险除上述人的不安全因素外,还包括检修质量的好坏,设备质量的好坏一些客观的因素。根据前面的风险识别与评价的结果,提出以下安全管理的技术措施建议。

(1)装置开停车方案和安全预案要经过相关部门和领导审批,要组织操作员进行开停工培训和考核,车间生产负责人要在现场进行监督和指挥。

(2)装置升降温的速度应严格按工艺规定执行,高温部位要防止因设备因温度梯度变化过大使设备产生泄漏。

(3)停车时,所有塔、容器、管线、机泵内的物料要处理干净,油品油气严禁就地排放,特别要注意处理塔容器、窨井内污泥处理干净,防止可燃气体逸出形成爆炸性气体,处理高硫原油装置要防止硫化氢中毒。

(3)蒸汽吹扫要保证足够的蒸汽压力,保证足够的吹扫时间,流程长要分段吹扫,高点要放空,低点放空排凝要畅通,防止水击,防止损坏机泵、冷换设备、仪表,防止轻油管线产生静电,防止蒸汽串油。

(4)蒸汽吹扫完毕后一定要打水洗塔,防止硫化亚铁自燃。

(5)检修前,装置进出物料、公用管线在进出装置处必须按规定加装盲板,并上锁管理,防止油气窜入装置,蒸汽、氮气误操作引起事故。

(6)装置交付检修前,必须组织相关部门进行专业安全检查并合格。设备管线内可燃气浓度低于安全值,氧含量合格,容器人孔打开,各点放空打开,装置内机泵机组全部断电。

(7)装置开车前,必须组织相关部门进行一次全面的安全检查。主要有焊接检验验收合格,装置内容器已全部封闭、管线已全部连接,盲板按要求抽加完毕,容器管线试压试密合格,安全阀、仪表调校安全完毕,新建设备管线已吹扫冲洗、新建加热炉已烘炉,传动设备已试车,消防设施合格到位,公用系统、辅助系统准备到位。

(8)装置开车前要进行流程贯通检查。用蒸汽对装置进行贯通吹扫,一方面吹扫容器管线内残留物,验证流程是否全部贯通,一方面置换系统空气;吹扫完毕后,全部放空关闭,检查确认流程是否全部改好,仪表联锁是否全部投用。

(9)装置进行冷油循环,建立三塔液位平衡,期间要防止发生液位失灵,发生淹塔事故,特别是加热炉点火,要有生产负责人在现场监督检查,防止发生爆炸事故。

(10)装置150℃恒温脱水阶段,尽早投用电脱盐,利于循环脱水,电脱盐保证满液位

才能送电;塔底泵切换利于机泵脱水,防止正常后大量水进塔发生冲塔事故。

(11)装置250℃恒温热紧至开工正常阶段,期间高温部位法兰要全部热紧,防止开工正常后出现泄漏着火事故;顶回流、中段回流进入塔前要排净存水,防止冲塔;进一步考察仪表,主要是调校液位、流量,达到正常使用工况;加强装置巡回检查,及早发现泄漏、振动、堵塞、异响等异常情况。

7 结论

通过对常减压装置开停工风险识别和分析评价可以知道,常减压装置开停工有较高风险,一旦发生事故将产生较严重后果,带来较大的经济损失和较大的社会影响,但常减压装置开停工的风险也是可以控制的,只要严格按操作规程操作,做到步步确认,实现操作和作业受控,常减压装置开停工完全可以做到安全平稳有序。

常减压装置设计中的方案对比

技术产品版Technology & Products 常减压蒸馏装置是一个工艺较成熟的装置,其技术进展大多是在工艺加工流程、设备结构的改进以及优化操作等方面,从而在满足生产方案和产品质量的前提下获得高拔出率、低能耗的效果。 为了达到上述目的,在进行常减压装置的工艺设计阶段,选择合理的流程方案是比较重要的。应该在同等条件下,将各方案经过优化后,再进行技术经济评价,最后综合技术及经济比较,从而确定最优的工艺流程方案。 以某大型原油处理工程项目为例,来说明方案比较在工程设计中的应用。该项目原油处理规模为1000万吨/年,原油品种为沙特阿拉伯轻油。为回收轻烃,在常减压后续部分设置稳定塔,并设液化气脱硫脱硫醇系统。 1 方案比较 在方案确定之初,我们采用了四种方案进行比较。一是初馏塔加压方案,此方案为电脱盐—初馏塔—常压塔—减压塔—稳定塔流程,并将初馏塔操作压力控制在表压196kPa,同时取消稳定塔前的压缩机;二是闪蒸塔方案,此方案为电脱盐—闪蒸塔—常压塔—减压塔—稳定塔流程,闪蒸塔为常压操作,在稳定塔前设有压缩机;三是常压塔加压方案,此方案不设初馏塔或闪蒸 塔,提高常压塔操作压力到表压为 196kPa,不设压缩机,流程为电脱 盐—常压塔—减压塔—稳定塔流 程;四是电脱盐—常压塔—减压 塔—稳定塔流程,常压塔在常压下 操作,稳定塔前设压缩机。 为增强装置的适应性和灵活性, 尤其使装置对含硫轻油的适应性提 高,常减压蒸馏工艺流程基本上有 两种选择。一是采用初馏塔提压方 案,使原油中的轻烃在稍加压力的 条件下尽可能多地溶在初顶油中, 初顶油经泵升压后送去稳定塔,回 收其中的轻烃。此方案的优点是整 个流程中不设压缩机,减少了机械 维修量,但也有其缺点,如小部分轻 烃会被带至常压塔,从常顶气损失 掉,并且初顶需增加一整套回流冷 却系统,流程较为复杂。二是采用闪 蒸塔方案,此方案原油中轻组分在 闪蒸塔中闪蒸出来进入常压塔的适 当部位,使得闪底油换热更合理,进 入常压炉的流量减少从而节约能量, 在常顶增设压缩机,可将常顶不凝 气进行压缩升压,常顶油经泵升压 后与升压后的常顶气一起被送去稳 定塔,回收轻烃。稳定塔顶不凝气由 于压力高可去脱硫系统进行脱硫处 理。此方法的优点是采用闪蒸塔可 使流程简单,进行脱硫处理保护环 境,其缺点是需设置压缩机,维护稍 困难。据了解,目前国外加工高硫轻 质原油大多采用闪蒸罐及常顶气设 压缩机方案。 比较方案需要注意的是各方案 的“基础面”应尽可能一致。如各方 案所使用的原油数据应一致,此次 比较我们用的是中国石化工程建设 公司所引进的HIS原油数据库中的 Chevron公司所做的1994年沙特阿 拉伯轻油出口样品的原油评价数据。 另外,各方案的常压拔出率、减压拔 出率以及总拔出率也应保持一致, 这样才能在能耗、产品收率等方面 有很好的可比性。 此外,各方案中相同的流程部 分条件尽可能保持一致也很重要。 如四个方案中的减压部分和稳定部 分的流程区别不大,因此,这两部分 的操作条件应基本保持一致。 此次方案比较是用流程模拟软 件PROⅡ模拟四个方案,并用以窄 点技术为理论基础的换热流程模拟 软件对四个方案的换热状况进行优 化和预估。 2 数据分析 为了方便比较,我们将四个方 案排列如下:方案一为初馏塔加压 方案;方案二为闪蒸塔常压方案;方 案三为常压塔加压方案;方案四为 常压方案。 四种方案的操作条件及取热情 况见表1。 3 方案比较结果 从四个方案的操作条件比较可 常减压装置设计中的方案对比 李 宁 (中国石化工程建设公司,北京 100011) 作者简介:李宁,1968年出生,现从事 石油加工装置工艺设计工作。 142004.4

催化裂化装置开停工时的危险因素及其方法措施

催化裂化装置开停工时的危险因素及其方法措施

催化裂化装置开停工时的危险因素及其方 法措施

导语:催化裂化装置由于它的技术特点,既有微球催化剂流化,还有化学反应,又是在高温、压力下操作,物料大部分为甲类危险品,生产过程中产生有毒气体H2S等,所以在炼油厂中是易出现事故的装置。设备的故障率也较高。下面,小七主要介绍催化裂化装置开停工时的危险因素及其防范措施。 一、开工时的危险因素分析及其防范措施 开工时,装置从常温、常压逐渐升温升压达到各项正常操作指标。物料、催化剂、水电汽逐步引入装置。所以在开工时,装置的操作参数变化较大,物料的引入、引出比较频繁,较易产生事故。据中石化1983~1993年事故汇总和燕化公司炼油厂事故汇总(中石化成立前事故)在开工过程中发生的各项事故分别为5项和51项。死亡和受伤人数前者统计为1人和11人,后者统计受伤5人。 通常反应—再生的开工步骤为: 气密试验(用主风)一拆除油气管线去分馏塔的盲板,建立分馏塔与反应器的汽封(防空气窜人分馏塔)一点辅助燃烧炉两器升温一沉降器与再生器切断,赶空气(烟气)一切换汽封,即沉降器蒸汽窜人分馏塔一再生器装催化剂和继续升温一再生器向反应器转催化剂两器流化一提升管喷油(进料)。 在开工时刻各个环节扣的很紧,在开工过程中应做好压力平衡和热平衡(热量的供给),各阶段易发生的事故分析如下: 1拆除盲板建立汽封 拆除油气管线去分馏塔的盲板。为了防止空气窜入分馏塔,需要建立分馏塔与反应器的气封。同时,分馏塔的蒸汽有一部分将由反应油气管线返回至反应器,此时要在油气管线的顶部进行放空时,需要控制分馏塔压力大于反应器的压力,以防止回炼油循环时,油窜人分馏塔内,由蒸汽携带进入反应器和再生器而烧坏设备。

常减压蒸馏装置开工方案

常减压蒸馏装置开工方案 装置开工程序包括:物质、技术准备、蒸汽贯通试压,开工水联运、烘炉和引油开工等几部份,蒸汽贯通试压已完成,装置本次检修为小修,水联运、烘炉可以省略,本次开工以开工前的准备,设备检查,改流程,蒸汽暖线,装置引油等几项内容为主。 一、开工前的准备 1、所有操作工熟悉工作流程,经过工艺、设备、仪表以及安全操作等方面知识的培训. 2、所有操作工已经过DCS控制系统的培训,能够熟练操作DCS。 3、编制开工方案和工艺卡片,认真向操作工贯彻,确保开车按规定程序进行。 4、准备好开工过程所需物资。 二、设备检查 设备检查内容包括塔尖、加热炉、冷换设备、机泵、容器、仪表、控制系统、工艺管线的检查,内容如下: (一)塔尖 1、检查人孔螺栓是否把好,法兰、阀门是否把好,垫片是否符合安装要求。 2、检查安全阀、压力表、热电偶、液面计、浮球等仪表是否齐全好用。 3、检查各层框架和平台的检修杂物是否清除干净。 (二)机泵:

1、检查机泵附件、压力表、对轮防护罩是否齐全好用。 2、检查地脚螺栓,进出口阀门、法兰、螺栓是否把紧。 3、盘车是否灵活、电机旋转方向是否正确,电机接地是否良好。 4、机泵冷却水是否畅通无阻。 5、检查润滑油是否按规定加好(油标1/2处)。 6、机泵卫生是否清洁良好。 (三)冷换设备 1、出入口管线上的连接阀门、法兰是否把紧。 2、温度计、压力表、丝堵、低点放空,地脚螺栓是否齐全把紧。 3、冷却水箱是否加满水。 (四)容器(汽油回流罐、水封罐、真空缓冲罐、真空罐、真空放空罐) 1、检查人孔螺栓是否把紧,连接阀门、法兰是否把紧。 2、压力表、液面计、安全阀是否齐全好用。 (五)加热炉 1、检查火嘴、压力表、消防蒸汽、烟道挡板,一、二次风门、看火门、防爆门、热电偶是否齐全好用。 2、检查炉管、吊架、炉墙、火盆是否牢固、完好,炉膛、烟道是否有杂物。 3、用蒸汽贯通火嘴,是否畅通无阻,有无渗漏。 (六)工艺管线 1、工艺管线支架、保温、伴热等是否齐全。

萃取过程及危险性分析

编号:SM-ZD-43628 萃取过程及危险性分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

萃取过程及危险性分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 工业上对液体混合物的分离,除了采用蒸馏的方法外,还广泛采用液—液萃取。例如,为防止工业废水中的苯酚污染环境,往往将苯加到废水中,使它们混合和接触,此时,由于苯酚在苯中的溶解度比在水中大,大部分苯酚从水相转移到苯相,再将苯相与水相分离,并进一步回收溶剂苯,从而达到回收苯酚的目的。再如,在石油炼制工业的重整装置和石油化学工业的乙烯装置都离不开抽提芳烃的过程,因为芳香族与链烷烃类化合物共存于石油馏分中,它们的沸点非常接近或成为共沸混合物,故用一般的蒸馏方法不能达到分离的目的,而要采用液—液萃取的方法提取出其中的芳烃,然后再将芳烃中各组分加以分离。 液—液萃取也称溶剂萃取,简称萃取。这种操作是指在欲分离的液体混合物中加入一种适宜的溶剂,使其形成两液相系统,利用液体混合物中各组分在两相中分配差异的性质,

常减压装置控制系统

25-100万吨常减压装置控制系统简介 一、工艺综述 炼油常减压装置是原油加工的第一道工序。原油经过蒸馏分离成多种油品和下游加工装置的原料。常减压装置控制系统及操作的水平,对炼油厂的产品质量、收率以及对原油的有效利用都有很大影响。常减压装置的工艺流程,见图1(以燃料型为例)。 按过程可分: 1、电脱盐: 原油中所含盐类,在加工过程中会沉积在工艺管道、加热炉炉管和换热器的管壁上而形成盐垢,致使传热困难,燃料消耗增加。盐类的存在还会造成腐蚀,可导致腐蚀穿孔,漏油而造成火灾,也还会污染二次加工中的催化剂,使催化剂寿命缩短。流程见图2 电脱盐就是在原油中注入一定量含氯低的新鲜水或常压塔塔顶冷凝水,经充分混合溶解残留在原油中的盐类。同时稀释原有油水,形成新的乳化液,然后在破乳剂的作用下沉淀分离出,达到脱盐的目的。 2、原油蒸馏

A 、 我国原油蒸馏装置一般在常压分馏塔前设置初馏塔或闪蒸塔。在于将原油换热升温过程 中已经气化的轻质油及时蒸出,使其不再进入常压加热炉。以降低加热炉的换热负荷和原油换热系统的操作压力降。从而节省装置能耗和操作费用。初馏塔顶产品轻汽油馏分作催化重整原料。 B 、 常压塔设置3~4个侧线,生产汽油、溶剂油、煤油、航空煤油、轻柴油、重柴油等产品 或调和组分。 C 、 减压塔侧线出催化裂化或加氢裂化原料,产品较简单,分馏精度要求不高。 D 、 减压塔一般按“湿式”或“干式”操作(即减压塔段和减压炉管不注或少注蒸汽)操作 3、 分馏塔 分馏塔是原油蒸馏过程中的核心设备。工艺条件主要有分馏塔的温度、压力即回流比等。塔的闪蒸压力由塔顶压力和闪蒸段以上塔板总压降决定。常压塔压力由塔顶冷凝系统的压确定。减压塔顶压力主要由抽空器的能力决定。不论常压塔还是减压塔,其闪蒸压力的降低,均意味着在相同气化率下炉出口温度可降低,从而降低燃料消耗。闪蒸段以上部分压力降低,各侧线馏分之间的相对挥发度增大,有利于侧线馏分的分离。一般优化控制都是围绕常压塔作文章的。 4、 加热炉 破乳剂 新鲜原图2 原油脱盐水的典型工艺流程

乙烯装置危险因素分析及其防范措施.docx

乙烯装置危险因素分析及其防范措施 乙烯装置流程长,且复杂,既有高温裂解反应,又有催化反应,高温高压、低温负压,物料大多为甲类危险品,过程中使用碱、氨等腐蚀性物质,物料中存在H2S等有毒气体,所以易发生事故。除出现物料泄漏发生着火爆炸事故外,干燥剂粉尘、水合物等易造成冷箱冻堵,热区和裂解炉还会出现结焦、聚合等堵塞事故发生。 (一)开停工危险因素分析和防范措施 1。开工危险因素分析和防范措施 乙烯装置开工过程,装置从常温、常压逐渐升温升压或降温减压,最终达到各项正常指标。物料、公用工程等将逐步引人装置。需要经历干燥、气密、压缩机试车一点火炬、燃料气接入、裂解炉点火升温一调质油、水接人、循环、升温一丙烯、乙烯接人制冷压缩机开车、机泵预冷一裂解炉投油、裂解气压缩机开车、碱洗、冷箱降温一甲烷化开车、加氢开车等大量步骤和较长时间。物料引入、送出频繁,操作参数波动较大,人员连续作业时间长,所以事故易发生。开工过程步骤紧密相连,一环扣一环,应提前作好开工方案,按部就班进行。各阶段易发生事故分析如下: (1)干燥、气密 干燥、气密是装置的开工准备。此段过程时间间隔长,部分在系统引入物料后进行,低点大气排放此时不应进行,防止大量物料由于阀门关闭不严窜人处于干燥过程的系统,物料泄漏容易发生火灾爆炸事故。此类事故以前未出现,但有未遂时间,应引起重视。 (2)点火炬接燃料气 火炬点燃是乙烯装置正式进入开工阶段,必须保证该系统氮气置换合格,防止通入可燃气后点火爆鸣。开工初期物料排放量小,氮气排放量大,应控制氮气排放,防止吹灭火炬。(3)裂解炉点火升温 裂解炉在每次点火升温前,均应炉膛置换,测爆合格方可点火。对于KTI设计的裂解炉在点火前必须进行气密实验,可以有效地防止燃料气泄漏进炉膛,点火爆鸣。而其他炉型没有此功能设计,所以多点测爆是必须的,尤其是联锁停炉后的恢复点火,如果炉膛温度低于燃料气的燃点时必须测爆。此类事故曾多次发生于国内外同类装置。另外联锁动作后切断阀门未动作或动作不严,致使裂解炉飞温烧毁炉管的事情也曾有发生。 (4)接乙烯、丙烯 首先必须保证该系统露点分析合格,否则低温物料接人容易出现管线、阀门冻堵。轻物料接

蒸馏装置火灾爆炸危险性分析

蒸馏装置火灾爆炸危险性分析 摘要运用美国道化学公司(DOW)“火灾、爆炸危险指数法”(第七版),对中国石化北京燕山分公司炼油某厂蒸馏装置的火灾爆炸危险性进行分析评价,暴露出安全生产中存在的问题,得出评价结果,给出采取的对策和措施,厂内安排积极整改,降低了生产装置的危险性。 关键词蒸馏装置;火灾爆炸;分析评价 1前言 中国石化北京燕山分公司炼油某厂蒸馏装置(以下简称“蒸馏装置”)采用成熟的三级蒸馏(即初馏、常压蒸馏和减压蒸馏)方法,对原油进行加工处理,生产过程中所用物料多为易燃易爆物质,生产操作连续性强,近几年曾先后几次发生着火事故,具有较大的火灾爆炸危险性。本文采用美国道化学公司(DOW)“火灾、爆炸危险指数法”(第七版),对该装置进行详细分析,评价出生产装置的火灾爆炸危险度等级、导致事故发生的潜在隐患,并提出有效的对策措施。 2蒸馏装置简介 蒸馏装置由中国石化建设工程公司设计,燕山建筑安装公司承建,2005年7月开始建设,2006年12月建成竣工,2007年6月投产,加工能力800万吨/年。蒸馏装置利用成熟的蒸馏工艺技术原理,将原油分离成各种不同沸点的馏份,送至不同的下游装置,进一步加工生产出合格的产品。装置中存在的主要危险化学品有原油、石脑油、航煤、液化气、硫化氢、燃料气、氨等,另外还存在柴油、蜡油、渣油、缓蚀剂、破乳剂等一般化学品。生产过程危险有害因素主要包括火灾、爆炸、硫化氢中毒等。蒸馏装置流程方框图见下页图—1。 3DOW“火灾、爆炸危险指数法”简介 道化学公司“火灾、爆炸危险指数法”是由美国道化学公司首创的安全评价方法,自1964年提出第一版至1994年的近三十年中,共进行了六次修改,目前已经发展到第七版。它是以单元重要危险物质在标准状态下的火灾、爆炸或释放出危险性潜在能量大小为基础,同时考虑工艺过程的危险性,计算初期单元火灾爆炸指数(F&EI),确定危险等级;再针对采取的安全对策措施,进行火灾爆炸指数的补偿计算,得出单元补偿火灾爆炸指数(F&EI)’,确定危险等级,使危险降低到人们可以接受的程度。

丙烷脱沥青装置停工时危险因素分析和措施详细版

文件编号:GD/FS-2716 (解决方案范本系列) 丙烷脱沥青装置停工时危险因素分析和措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

丙烷脱沥青装置停工时危险因素分 析和措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 本装置停工步骤为:停进料建立丙烷大循环和沥青系统柴油置换;停止丙烷大循环,柴油置换;装置退丙烷:蒸汽吹扫。 (1)停进料,建立丙烷大循环和沥青系统柴油置换,期间将装置的设备用丙烷置换,沥青系统柴油置换。在此过程中装置压力和温度在下降,应注意丙烷泵和丙烷增压泵运转正常,不发生抽空和泄漏。加热炉温度不要超温。 (2)停止丙烷大循环,柴油置换,装置退丙烷 装置各部分都是丙烷介质,为此加热炉要熄火,装置进一步降温降压。同时丙烷罐中丙烷用丙烷泵送

出装置,直至抽空为止。应密切注意丙烷泵的运转,尽量将液态丙烷外送,不允许随意排凝。 (3)蒸汽吹扫 装置残余丙烷排放至火炬线。不允许往大气排空。当系统压力卸完后即进行蒸汽吹扫。应注意按吹扫流程吹扫,不留死角,先从高处排空,见汽后低处要切水,防止水击或吹扫不畅、系统残留丙烷气体。 可在这里输入个人/品牌名/地点 Personal / Brand Name / Location Can Be Entered Here

有机溶剂使用、蒸馏过程中的安全建议及要求

编号:SM-ZD-63007 有机溶剂使用、蒸馏过程中的安全建议及要求Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

有机溶剂使用、蒸馏过程中的安全 建议及要求 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、有机溶剂使用过程中的安全对策: 在化学反应过程中,绝大部分的化学反应都是在溶剂中进行的。溶剂是一个重要的媒介,它可以使参加反应的各种物质分子得以均匀分布,增加分子间碰撞接触机会,加速反应的进程。溶剂可以传导热量,通过它可以向反应物质提供热量,促进反应的进行;通过它也可以将反应放出的热量传出,保证反应的安全。溶剂的选择还可以直接影响反应的速度、反应的方向、反应的完全程度以及反应产物的构型等等。因此,正确地选择和使用溶剂,满足生产工艺的要求,对实现有机合成的经济目标和安全目标具有十分重要的意义。 (一)有机溶剂主要危险: 1、大多为易燃物质,遇引火源容易发生火灾; 2、大多具有较低的闪点和极低的引燃能量,在常温或较

实例分析常减压装置开停工危险因素及其安全措施

实例分析常减压装置开停工危险因素及其安全措施 常减压蒸馏装置在开停工过程中,由于设备泄漏、介质互串、超温超压、可燃气或空气置换不净、仪表或安全设施失灵等原因,易发生油气着火爆炸事故,设备、仪表损坏事故以及环境污染等事故。为预防事故的发生,关键在于操作和作业都要受控,即在作业前须充分计划,进行风险辨识并有预案,作业过程中按规程步步确认。 实践证明,石油化工装置停工、检修及开工过程中是最容易发生事故的,据统计,在中国石油化工集团公司系统发生的重大事故中,在此过程中发生的事故占事故总起数的42.63%。常减压蒸馏装置油品火灾危险性大,在开停工过程中状态比正常生产更不稳定,操作程序更繁杂,因为风险辨识不充分、防范措施不到位、组织管理不到位、操作人员综合素质低下等原因,致使操作不受控,时有安全事故发生。 1、工艺介质的危险因素识别 常减压装置工艺生产过程中所涉及的易燃易爆物质主要是原油、瓦斯、汽油、煤油、柴油、溶剂油、润滑油、渣油。 常减压装置属于甲类生产装置,主要火灾危险介质为甲B类可燃液体和甲类可燃气体及重油。原油、汽油、溶剂油、瓦斯列为装置重

大危险源,其蒸气与空气形成爆炸性混合物,遇明火、高热能将引起燃烧或爆炸,重油在操作条件下易发生泄漏自燃造成重大火灾或发生低温冻凝事故。 2、工艺介质的毒害性 原料及产品物质均为低毒物质,如果油气线泄漏可能引起烃类化合物在空气中浓度超标,对现场人员眼、鼻及呼吸系统有强烈刺激,并造成一定环境污染。助剂系统中烧碱、氨等属于危险化学品,操作不当会造成人体伤害。 3、常减压装置的开工危险因素分析: 常减压装置的开工按照以下顺序步骤进行: 开工前的设备检查→设备、流程贯通试压→减压塔抽真空气密性试验→柴油冲洗→装置开车。 装置开车的顺序是:原油冷循环→升温脱水→250℃恒温热紧→常压开侧线→减压抽真空开侧线→调整操作。

常减压蒸馏装置的操作

常减压蒸馏装置的操作 主讲人:王立芬 一、操作原则 ●根据原料性质,选择适宜操作条件,实现最优化操作。 ●严格遵守操作规程,认真执行工艺卡片,搞好平稳操作。 ●严格控制各塔、罐液面、界面30~70%。 ●严格控制塔顶及各部温度、压力,平稳操作 ●根据原油种类、进料量、进料温度调整各段回流比,在提高产品质量的同时提高轻质油 收率和热量回收率。 二、岗位分工 ●负责原油进料、电脱盐罐、初馏塔液面、常顶回流罐、初顶回流罐液面界面、常一线、 常二线、常三线汽提塔液面以及常一中、常二中蒸发器液面调节,和本岗位计量仪表的数据计量工作。 ●调节各回流量及各部温度、流量,保证产品合格。 ●负责空冷风机的开停操作。 ●负责低压瓦斯罐及低压瓦斯去减压炉操作。 ●负责本岗位塔、容器、换热器、冷却器及所属工艺管线、阀门、仪表等设备的正确操作、 维护保养、事故处理。 ●负责与中心化验室的联系工作,及时记录各种分析数据。 ●负责本岗位消防设施管理。 ●负责本岗安全生产工作,生产设备出现问题要及时向班长汇报,并迅速处理。 ●.负责本岗位所属工艺管线、阀门等防凝防冻工作。 ●如果班长不在,常压一操执行班长的生产指挥职能或由车间指派。 ●负责仪表封油、循环水、风、9公斤蒸汽等系统的调节。 1 正常操作法 初馏塔底液面调节 控制目标:50% 控制范围:±20% 控制方式:正常操作时,初馏塔底液面LIC-105与原油控制阀FIC-102进行 串级控制,当LIC-105低于设定时,FIC-102开大,当LIC-105 高于设定时,FIC-102关小,从而实现初馏塔底液面的控制。

2 初馏塔塔顶压力调节 控制目标:≤0.08MPa 控制方式:正常操作时,初馏塔塔压通过塔顶风机运转数量调节,压力升高, 增加风机的运转数量,压力下降,减少风机运转的数量,从而实现 初馏塔塔压的控制。 异常处理 3 初馏塔塔顶温度调节 控制目标:≤125℃ 控制范围:视加工原油情况和产品质量控制调节,上下波动不超过10% 控制方式:正常操作时,初馏塔塔顶温度TIC-107与塔顶回流控制阀FIC- 103进行串级控制,当TIC-107低于设定时,FIC-103开大,当 TIC-107高于设定时,FIC-103关小,从而实现初馏塔塔顶温度 的控制。

化工装置停工安全规范

化工装置停车的安全与处理 装置在停车过程中,要进行降温、降压、降低进料一直到切断原料进料,然后进行设备倒空、吹扫、置换等大量工作,操作变化频繁。各工序和各岗位之间联系密切,如果组织不好,指挥不当或联系不周,操作失误,都很容易发生事故。 一、停车前的准备工作 (1)编写好停车方案。装置在停车过程中,在较短的时间里,操作上要不断进行重大改变,各部温度、压力、流量、液位等不断变化,操作人员上塔下塔连续检查,要开关许多阀门,因此劳动强度大,精神很紧张。虽然有操作规程,但为了避免差错,还应当结合停工的特点和要求,制定出一个正确指导停车操作的“停车方案”。 停车方案应根据工艺流程、工艺条件和原料、产品、中间体的性质及设备状况制订。主要内容应包括停车时间、步骤、设备管线倒空及吹扫置换流程登记表、抽堵盲板位置图,并根据具体情况制定防堵、防冻、防凝措施。对每一个步骤都要明确规定具体时间、工艺条件变化幅度指标和安全检查内容,并有专人负责。 (2)作好检修期间的劳动组织及分工。根据装置的特点,检修工作量大小,停车时的季节及员工的技术水平,合理调配人员。要分工明确,任务到人,措施到位,防止忙乱出现漏洞。在检修期间,除派专人与施工单位配合检修外,各岗位、控制室均应有人监守岗位。由于炼油、乙烯、化肥、化纤和合成橡胶等各装置具体情况不同,其劳动组织也应依照各自的具体情况而定。 (3)装置停车初期,要组织技术水平高的有关人员,对设备内部进行检查鉴定,以尽早提出新发现的检修项目,便于备料施工,消除设备内部缺陷,保证下个开工周期的安全生产。 (4)做好停车检修前的组织动员。在停车前要进行一次大检修的动员,使全体人员都明确检修的任务、进度,熟悉停开车方案,重温有关安全制度和规定,对照过去的经验教训,提出停车可能出现的问题,制定防范措施,进行事故预想,克服麻痹思想,为安全停车和检修打下扎实的基础。 二、停车操作及设备置换 按照停车方案确定的时间、停车步骤、工艺条件变化幅度进行有秩序的停车,不得违反。在停工操作中应注意下列问题。 (1)降温、降量的速度不宜过快、尤其在高温条件下,以防金属设备温度变化剧烈,热胀冷缩造成设备泄漏。易燃易爆介质漏出遇到空气,易造成火灾爆炸事故;有毒物料漏出还容易引起急性中毒事故。 (2)开关阀门操作在一般情况下要缓慢,尤其开阀门时,打开头两扣后要停片刻,使物料少量通过,观察物料畅通情况(对热物料来说,可使设备管道有个热过程),然后再逐渐开大直至达到要求为止。开水蒸气的阀门时,开阀前应先打开排凝阀,将设备或管道内冷凝水排净,关闭排凝阀,然后由小到大逐渐把蒸汽阀打开。如没有指凝阀,应先小开,将水排出后再把阀开大,以防止蒸汽

化工典型工艺过程危险性分析

化工典型工艺过程及危险性分析 Lhjlyby: 吸附过程及危险性分析 吸附是利用某些固体能够从流体混合物中选择性地凝聚一定组分在其表面上的能力,使混合物中的组分彼此分离的单元操作过程。 吸附现象早已被人们发现和利用,在人们生活中用木炭和骨灰使气体和液体脱湿和除臭已有悠久的历史。18世纪末在生产上已应用骨灰脱除糖水溶液中的色素,20世纪20年代首次出现从气体中分离酒精和苯蒸气以及从天然气中回收乙烷等碳氢化物的大型生产装置。 目前吸附分离广泛应用于化工、石油化工、医药、冶金和电子等工业部门,用于气体分离、干燥及空气净化、废水处理等环保领域。如常温空气分离氧氮,酸性气体脱除,从各种混合气体中分离回收H2、C02、CO、CH4、C2H4等气相分离;也可从废水中回收有用成分或除去有害成分,石化产品和化工产品的分离等液相分离。在吸附过程中选用的吸附剂活性炭等材料由于吸附热的积累或者由于空气进入吸附系统可能会引起活性炭的自燃,进而引起系统介质的燃烧。 吸附是一种界面现象,其作用发生在两个相的界面上。例如活性炭与废水相接触,废水中的污染物会从水中转移到活性炭的表面上。固体物质表面对气体或液体分子的吸着现象称为吸附,其中具有一定吸附能力的固体材料称为吸附剂,被吸附的物质称为吸附质。与吸附相反,组分脱离固体吸附剂表面的现象称为脱附(或解吸)。与吸收—解吸过程相类似,吸附—脱附的循环操作构成一个完整的工业吸附过程。吸附过程所放出的热量称为吸附热。 根据吸附剂对吸附质之间吸附力的不同,可以分为物理吸附与化学吸附。 物理吸附是指当气体或液体分子与固体表面分子间的作用力为分子间力时产生的吸附,它是一种可逆过程。吸附质分子和吸附剂表面分子之间的吸附机理,与气体液化和蒸汽冷凝时的机理类似。因此,吸附质在吸附剂表面形成单层或多层分子吸附时,其吸附热比较低,接近其液体的汽化热或其气体的冷凝热。 化学吸附是由吸附质与吸附剂表面原子间的化学键合作用造成,即在吸附质和吸附剂之间发生了电子转移、原子重排或化学键的破坏与生成等现象。因而,化学吸附的吸附热接近于化学反应的反应热,比物理吸附大得多,化学吸附往往是不可逆的。人们发现,同一种物质,在低温时,它在吸附剂上进行的是物理吸附;随着温度升高到一定程度,就开始产生化学变化,转为化学吸附。 在气体分离过程中绝大部分是物理吸附,只有少数情况如活性炭(或活性氧化铝)上载铜的吸附剂具有较强选择性吸附CO或C2H4的特性,具有物理吸附及化学吸附性质。 萃取过程及危险性分析 工业上对液体混合物的分离,除了采用蒸馏的方法外,还广泛采用液—液萃取。例如,为防止工业废水中的苯酚污染环境,往往将苯加到废水中,使它们混合和接触,此时,由于苯酚在苯中的溶解度比在水中大,大部分苯酚从水相转移到苯相,再将苯相与水相分离,并进一步回收溶剂苯,从而达到回收苯酚的目的。再如,在石油炼制工业的重整装置和石油化学工业的乙烯装置都离不开抽提芳烃的过程,因为芳香族与链烷烃类化合物共存于石油馏分中,它们的沸点非常接近或成为共沸混合物,故用一般的蒸馏方法不能达到分离的目的,而要采用液—液萃取的方法提取出其中的芳烃,然后再将芳烃中各组分加以分离。 液—液萃取也称溶剂萃取,简称萃取。这种操作是指在欲分离的液体混合物中加入一种适宜的溶剂,使其形成两液相系统,利用液体混合物中各组分在两相中分配差异的性质,易溶组分较多地进入溶剂相从而实现混合液的分离。在萃取过程中,所用的溶剂称为萃取

装置停工危险性分析

常减压蒸馏装置在开停工过程中,由于设备泄漏、介质互串、超温超压、可燃气或空气置换不净、仪表或安全设施失灵等原因,易发生油气着火爆炸事故,设备、仪表损坏事故以及环境污染等事故。为预防事故的发生,关键在于操作和作业都要受控,即在作业前须充分计划,进行风险辨识并有预案,作业过程中按规程步步确认。 实践证明,石油化工装置停工、检修及开工过程中是最容易发生事故的,据统计,在中国石油化工集团公司系统发生的重大事故中,在此过程中发生的事故占事故总起数的42.63%。常减压蒸馏装置油品火灾危险性大,在开停工过程中状态比正常生产更不稳定,操作程序更繁杂,因为风险辨识不充分、防范措施不到位、组织管理不到位、操作人员综合素质低下等原因,致使操作不受控,时有安全事故发生。 1、工艺介质的危险因素识别 常减压装置工艺生产过程中所涉及的易燃易爆物质主要是原油、瓦斯、汽油、煤油、柴油、溶剂油、润滑油、渣油。 常减压装置属于甲类生产装置,主要火灾危险介质为甲B类可燃液体和甲类可燃气体及重油。原油、汽油、溶剂油、瓦斯列为装置重大危险源,其蒸气与空气形成爆炸性混合物,遇明火、高热能将引起燃烧或爆炸,重油在操作条件下易发生泄漏自燃造成重大火灾或发生低温冻凝事故。 2、工艺介质的毒害性 原料及产品物质均为低毒物质,如果油气线泄漏可能引起烃类化合物在空气中浓度超标,对现场人员眼、鼻及呼吸系统有强烈刺激,并造成一定环境污染。助剂系统中烧碱、氨等属于危险化学品,操作不当会造成人体伤害。 3、常减压装置的开工危险因素分析: 常减压装置的开工按照以下顺序步骤进行: 开工前的设备检查→设备、流程贯通试压→减压塔抽真空气密性试验→柴油冲洗→装置开车。 装置开车的顺序是:原油冷循环→升温脱水→250℃恒温热紧→常压开侧线→减压抽真空开侧线→调整操作。 在开工过程中,容易产生的危险因素主要是:机泵、换热器泄漏着火、加热炉升温过快产生裂纹等,其危险因素和安全预防管理措施见下表。 常减压蒸馏装置的停工程序为:原油降量→常压降温停侧线→减压降温消除真空度→停侧线。 开工时的主要危险因素及安全预防管理措施 4、开工事故案例分析 1加热炉着火爆炸事故 国内炼化装置曾发生发生多起加热炉点火爆炸亡人事故,究其原因是炉膛内可燃气体混合物达到爆炸极限,点火发生爆炸,爆炸时现场有闲杂人员,造成伤亡事故扩大。具体原因主要有两种情况:第一种情况置换不彻底,用蒸汽吹扫置换时间不够,或置换时烟道挡板处于关闭位置,使可燃气未及时得到置换,或未作可燃气爆炸气体分析,使炉膛内存有可燃气体混合物达到爆炸极限,点火就发生爆炸,这种情况以加热炉熄灭后点火的可能性较大,第二种情况点火前阀门可燃气泄漏大,由于可燃气控制阀关不严,或未全关,可燃气爆炸气体分析时间过长,使可燃气泄漏入加热炉达到爆炸极限,气体分析结果合格,但已失效,点火就发生爆炸。防止加热炉点火爆炸的措施可燃气不能过早引入装置内,可燃气进入加热炉前应加盲板防泄漏,蒸汽吹扫置换时间应足够,必须作可燃气爆炸气体分析,合格后立即点火,炉火熄灭后应关闭可燃气,重新吹扫置换分析,符合要求再点火,另外还应设置未设长明灯、火焰监测仪、防爆门等防爆设施。 2初馏塔带水冲塔事故 开工过程中,易发生初馏塔带水冲塔事故,造成油品污染,甚至损坏塔盘。原因主要是原油含水多,原油乳化严重,初顶回流罐界位失灵带水。 3液位失灵淹塔事故

蒸馏过程及危险性分析详细版

文件编号:GD/FS-2405 (解决方案范本系列) 蒸馏过程及危险性分析详 细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

蒸馏过程及危险性分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 化工生产中常常要将混合物进行分离,以实现产品的提纯和回收或原料的精制。对于均相液体混合物,最常用的分离方法是蒸馏。如从发酵的醪液提炼饮料酒,石油的炼制分离汽油、煤油、柴油等,以及空气的液化分离制取氧气、氮气等,都是蒸馏完成的。混合物的分离依据总是混合物中各组分在某种性质上的差异。蒸馏便是以液体混合物中各组分挥发能力的不同作为依据的。对大多数溶液来说,各组分挥发能力的差别表现在组分沸点的差别。因为蒸馏过程有加热载体和加热方式的安全选择问题,又有液相汽化分离及冷凝等的相变安全问题,即能量的转换和相态的变化,同时在系统中存在,蒸馏过程又是物质被

常减压蒸馏装置的三环节用能分析

2003年6月 石油学报(石油加工) ACTAPETROLEISINICA(PETROLEUMPROCESSINGSECTION)第19卷第3期 文章编号:1001—8719(2003)03—0053—05 常减压蒸馏装置的“三环节"用能分析ENERGYANALYSIS0FATMoSPHERICANDVACUUMDISTILLATION UNITBASEDONTHREE-LINKMETHoD 李志强,侯凯锋,严淳 LIZhi—qiang,HOUKai—feng,YANChun (中国石化工程建设公司,北京100011) (SINOPECEngzneeringIncorporation,BeOing100011,China) 摘要:科学地分析评价炼油过程用能状况是节能工作的基础。笔者以某炼油厂常减压蒸馏装置为例,运用过程系统三环节能量结构理论,依据热力学第一定律和热力学第二定律进行了装置的能量平衡和炯平衡计算及分析,并根据分析结果指出了装置的节能方向,提出了节能措施。 关键词:常减压蒸馏;节能;三环节能量结构;能量平衡和炯平衡分析 中图分类号:TE01文献标识码:A Abstract:Energy—savinginrefineriesneedstobecarriedoutbasedonthescientificallyenergyanalysisandevaluationoftheprocessingunits.Theatmosphericandvacuumdistillationunitinarefinerywastakenasanexample,its energy andexergybalanceswerethenworkedoutthroughcalculationaccordingtothethree—linkmethodforprocessintegrationfollowingtheFirstLawandtheSecondLawofthermodynamics.Theresultswereanalyzed,andthecorrespondingmeasuresforenergy—savingwereproposed. Keywords:atmosphericandvacuumdistillationunit;energy~saving;three—linkenergymethod;energyandexergybalanceanalysis 炼油生产过程中为分离出合格的石油产品,需要消耗大量的能量。因此,能源消耗在原油加工成本中占有很大的比例。炼油过程的节能不仅可以降低加工成本,而且关系到石油资源的合理利用和企业的经济效益¨J。与国外先进的炼油厂相比,我国炼油企业的吨油能耗相对较高。2001年,中国石化股份有限公司所属炼厂平均能耗为77.85kg标油/t原油,与目前世界上大型化复杂炼厂的能耗不大于75kg标油/t原油的先进指标相比,差距较大,节能空间也更大。因此,加强节能技术的应用,降低炼油过程的能耗,是我国炼油企业降本增效、提高市场竞争力、实现可持续发展的必由之路。 炼油企业的用能水平因生产规模、加工流程、工艺装置的设计、操作和管理水平以及加工原油的品种和自然条件等不同而差别较大。因此,炼油企业的节能工作必须因厂而异,因装置而异,节能措施要有针对性。科学地分析评价炼油过程用能状况则是节能工作的基础【2J。笔者以某炼油厂的常减压蒸馏装置为例,运用过程系统三环节能量结构理论,依据热力学第一定律和热力学第二定律进行了装置的能量平衡和炯平衡计算,并根据计算结果对装置的用能状况进行了分析与评价,指出了能量利用的薄弱环节和装置的节能方向,提出了相应的节能措施。 1三环节能量结构理论 炼油生产过程的用能有3个特点:(1)产品分离和合成需要外部供应能量,以热和功两种形式传给 收稿日期:2002—07—23 通讯联系人:侯凯锋

硫酸装置开停工及正常生产情况下的危险因素通用版

安全管理编号:YTO-FS-PD484 硫酸装置开停工及正常生产情况下的 危险因素通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

硫酸装置开停工及正常生产情况下 的危险因素通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1.停工阶段 硫酸装置停工过程通常分为H?S吹扫、S0?吹扫、(通过改变配风比调节)及催化剂烧焦。H?S吹扫是避免催化剂失活,S0?吹扫是尽量携带系统内部硫,催化剂烧焦是使催化剂表面的积炭燃烧,保证催化剂活性和为开工做好准备。在停工过程中,即使吹扫过程进行完全也不可能彻底将系统内部的硫全部带出,这样在进行烧焦时就会造成硫燃烧的后果,硫燃烧放热量大,会造成反应器飞温,而且一旦发生飞温现象,其温度很难在短时下降,势必将造成催化剂的损坏,严重时甚至会损坏设备,从而影响正常生产。 2.开工阶段 如果硫磺装置在停工阶段中吹扫和烧焦过程进行不彻底,装置会在停工过程中发生硫凝聚或催化剂积炭阻塞气路。这种在开工阶段中就会造成流程阻塞,当酸性气进入系统时会发生燃烧炉防爆膜爆裂,造成有毒气体大量泄

蒸发过程及危险性分析

编号:AQ-JS-06504 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 蒸发过程及危险性分析 Evaporation process and risk analysis

蒸发过程及危险性分析 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 在化工、医药和食品加工等工业生产中,常常需要将溶有固体溶质的稀溶液加以浓缩,以得到高浓度溶液或析出固体产品,此时应采用蒸发操作。 蒸发就是通过加热的方法将稀溶液中的一部分溶剂汽化并除去,从而使溶液浓度提高的一种单元操作,其目的是为了得到高浓度的溶液。 例如:在化工生产中,用电解法制得的烧碱(NaOH溶液)的质量浓度—般只在10%左右,要得到42%左右的符合工艺要求的浓碱液则需通过蒸发操作,由于稀碱液中的溶质NaOH不具有挥发性,而溶剂水具有挥发性,因此生产上可将稀碱液加热至沸腾状态,使其中大量的水分发生汽化并除去,这样原碱液中的溶质NaOH的浓度就得到了提高。又如:食品工业中利用蒸发操作将—些果汁加热,使一部分水分汽化并除去,以得到浓缩的果汁产品。

除此之外,蒸发操作还常常用来先将原料液中的溶剂汽化,然后加以冷却以得到固体产品,如食糖的生产、医药工业中固体药物的生产等都属此类。 在工业生产中应用蒸发操作时,需认识蒸发如下几方面的特点。 ①蒸发的目的是为了使溶剂汽化,因此被蒸发的溶液应由具有挥发性的溶剂和不挥发性的溶质组成,这一点与蒸馏操作中的溶液是不同的。整个蒸发过程中溶质数量不变,这是本章物料衡算的基本依据。 ②溶剂的汽化可分别在低于沸点和沸点时进行。在低于沸点时进行,称为自然蒸发。如海水制盐用太阳晒,此时溶剂的汽化只能在溶液的表面进行,蒸发速率缓慢,生产效率较低,故该法在其他工业生产中较少采用。若溶剂的汽化在沸点温度下进行,则称为沸腾蒸发,溶剂不仅在溶液的表面汽化,而且在溶液内部的各个部分同时汽化,蒸发速率大大提高。本章只讨论工业生产中普遍采用的沸点汽化。 较慢的那一步过程的速率,即热量传递速率,因此工程上通常

相关文档
最新文档