冰醋酸

冰醋酸
冰醋酸

介绍冰醋酸罐区的工艺设计、设备布置、材料的选用及设计中采取的措施

醋酸,学名乙酸,分子式为C2H402,是无色透明液体,有刺激性酸臭气味,与水、乙醇、甘油和乙醚互溶,不溶于二硫化碳。比重为1.049,熔点为16.7℃,沸点为118.112,粘度为1.22cP(20℃),闪点为43℃(闭口杯),燃点为465℃。无水醋酸在温度低于16.7℃时就会凝固成冰状,俗称冰醋酸,凝固时体积膨胀,能使容器破裂。醋酸易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸;与铬酸、过氧化钠、硝酸或其它氧化剂接触,有引起爆炸的危险;其爆炸下限为4.7%,爆炸上限为17.0%。醋酸是一种强有机酸,具有腐蚀性。醋酸是最重要的有机化工原料之一,主要用于生产醋酸乙烯、醋酐、醋酸盐、醋酸纤维素、二甲基乙酰胺、医药、颜料、酯类、塑料、香料等产品,同时它还是优良的有机溶剂,所以在化工、轻工、纺织、医药、印染、橡胶、塑料等行业应用广泛。

1.1 工艺设计1.1.1 储罐

储罐适用于气体和液体的原料、中间产品和成品的储存。按储存介质可分为气体储罐、液化气储罐和液体储罐。可以根据所储介质的性质,确定采用储罐型式。根据主装置冰醋酸的消耗情况并结合企业在采购、运输和储存方面的要求,该项目冰醋酸储罐区的设计储存量为2000 m3。在对设计条件进行分析比较后,确定采用两台储罐比较合理,每台储罐公称容积为1000 m0。储罐直径为11m,罐壁高度为

12m。考虑到冰醋酸是易燃易爆液体,设计选用钢制立式圆筒形固定顶储罐。

1.1.2 管道

液体储罐特别是对于立式圆筒形储罐的物料管在设计上有一定的要求。

(1)进料管通常设在罐壁下部;若由上部进人,则应伸人到距罐底约200mm处,并有防止虹吸的措施。

(2)出料管应设在罐的下部。

(3)进出料管道上均应设双阀,还应采用相当长度的金属软管或其它柔性连接措施。

(4)进出料管的设置方位应避免物料短路。

5)同种物料分罐储存时,应在进出口管道上设置倒罐副线。1.1.3 仪表控制

考虑到生产的需要,对冰醋酸储罐采取了较高的仪表控制设计要求。

1)液位控制方面设置就地、远传液位指示,高低液位报警,高低液位联锁。

(2)温度控制方面设置就地、远传温度指示,与加热系统配套设置温度调节控制和温度高低限报警。

(3)进出物料管道上设置流量指示、记录和累积。

(4)压力控制方面与蒸汽间接加热系统和氮.

封系统进行联锁调节。

.1.4 特殊要求

由于冰醋酸闪点为43℃,熔点为l6.7℃,而且冰醋酸具有一定的挥发性,能够散发出有刺激性酸臭气味,因而冰醋酸液体储罐在工艺设计上有其特殊的要求:

(1)储罐的罐顶应设呼吸阀,主要用于降低常压液体固定顶罐内的挥发性液体蒸气损耗,并用来保护储罐免受超压或真空破坏,还有助于减少有气味的气体向外散发。呼吸阀的上游和通气管上应设阻火器。

(2)储罐应设消防用喷淋冷却水系统,罐体和物料管道应设防静电接地。

(3)较高凝固点的液体应设加热器间接加热,并设置隔热层。

(4)储罐顶部设置氮封系统,使储罐内维持一定的压力(正压),防止储罐内物料与外界气体接触。

1.2 设备布置

冰醋酸闪点为43℃,爆炸下限为4.7%,爆炸上限为17.O%,属甲类火灾危险性介质。

(1)冰醋酸储罐在设计上采用露天布置。

冰醋酸有腐蚀性,储罐周围设置了防止物料流散的围堰及集液坑便于集中回收

(3)罐组内相邻甲、乙类可燃液体储罐的防火间距为0.613D。设计上两台冰醋酸储罐的防火间距为7m,同时还根据要求设置了防火堤。

(4)对于立式储罐,其至防火堤内堤脚线的距离,不应小于罐壁高度的一半,该冰醋酸储罐至防火堤内堤脚线的距离在设计上采用了7m 的间距。

(5)由于冰醋酸储罐罐组外还有相邻的一个其他罐组,因此在两个罐组间设置了隔堤。

(6)设计上防火堤的高度为1.2m,隔堤的高度为1.0m,堤内的储罐周围采用了防渗防腐的材料进行铺砌。

(7)为了方便操作、安装和检修,在防火堤的不同方位上设置了两个人行台阶。

1.3 材质

应根据所输送物料的理化性质和使用工况选用设备、管道材料。(1)采用的材料应保证工艺要求,使用可靠,不吸附和污染介质,在选材时应因地制宜。要综合考虑质量、投资和实施的可行性等因素。

(2)醋酸是用途最广、最重要的有机酸,也是腐蚀性最强的有机物质之一。醋酸对钢铁的腐蚀严重,生产和使用醋酸的设备和管道材料一般需要采用价格较高的有色金属和合金。

(3)不锈钢在醋酸工业中用途广泛:①含钼的超低碳铬镍不锈钢(316型)对醋酸的耐腐蚀最好,也能抗孑L蚀,适合于稀醋酸蒸气,以及高温和高于大气压力环境中,也适于一切浓度的醋酸溶液;②普

通不锈钢比含钼钢耐腐蚀性要差一些。

4)高合金不锈钢在沸点以下一切浓度的醋酸、和热醋酸蒸气中的腐蚀都很轻微,在高温和高浓下比普通不锈钢耐腐蚀性强。因为价格高,通常只使用于高温、高浓醋酸,或产品要求高纯度,或者还含有硫酸或其它腐蚀介质等苛刻的环境中.

(5)铝也有非常优良的耐醋酸腐蚀性。生产和使用醋酸的设备很早就广泛采用铝制造。国内采用铝材较多,但由于受到制造工艺和强度的影响,设备的体积较小。目前国内采用铝材的储罐最大容积为200m3。

根据以上分析,对于大容积的醋酸储罐应采用含钼不锈钢00Crl7NiMo2(316L)。同时根据耐腐蚀性的情况分析,在常温和纯工业醋酸介质操作工况条件下,如醋酸储存、输送管线、设备和储罐等,采用316L就能完全满足设备和管道的耐腐蚀要求。8 h, ~4 p( e5 ] 1.4 消防

1.4.1 基本要求

可燃液体储罐区的特点是易燃、易爆、有毒,火灾危险性比较大。如果出现火灾事故,将对周围居民的生活、生产和环境造成极大的危害。因此对于可燃液体储罐区的设计,除了平面布置方面确保安全防火间距外,还要配备完善的消防冷却设施。

(1)可燃液体储罐区的消防主要靠泡沫消防灭火系统来完成,泡沫消

防的作用是利用空气泡沫漂浮在可燃液体的表面,切断可燃液体与空气的接触,从而达到灭火的目的。

(2)消防冷却水系统则起辅助作用,主要是在可燃液体储罐区消防中对着火罐、邻近罐进行冷却。

1.4.2 设计

冰醋酸属乙A类火灾危险性可燃液体,根据《石油化工企业设计防火规范》(GB 50160—92,1999年版)的要求进行固定式低倍数泡沫灭火系统和消防冷却水系统的设计。

1)泡沫系统采用液上喷射式,泡沫液选用抗溶性泡沫液,泡沫混合液供给强度为12L/s,连续供给时间为25min,最大着火罐泡沫混合液用量为35L/s。泡沫消防站的设计根据冰醋酸储罐区和其他装置的需要,内设三台泡沫泵和一台抗溶性泡沫液储罐并配有消防水池,泡沫混合比为6%,泡沫储罐容积为5.5 m3,泡沫混合液最大供给流量为64L/s.

(2)消防冷却水系统采用着火罐供水强度为2.5L/s,供给范围为着火罐罐壁表面积;相邻罐供水强度为2.0L/s,供给范围为着火罐罐壁表面积的一半。消防水系统根据冰醋酸储罐区和其他装置的需要,设计了一个稳高压消防水站。内设消防主泵2台,稳压泵2台,气压罐l台,消防供水能力为486m3/h,扬程为l13m,气压罐平时维持管网系统压力约0.7MPa。

2.1 放空处理

冰醋酸储罐排放的醋酸气具有刺激性酸臭气味,对环境会造成污染,其尾气应采取无害化的吸收处理再排放。设计的呼吸阀排气口应符合环境卫生和安全要求,不直接排气,而是集中进行处理后再排放。尾气处理工艺为二塔串联的逆流吸收工艺。

(1)根据醋酸易溶于水的特点,一塔对醋酸储罐排出的气体采用水吸收进行处理。同时根据废气中的醋酸浓度和流量,得到吸收液中醋酸的最大浓度。当吸收所得的醋酸达到一定的浓度时,再经净化回收得到副产稀醋酸。水吸收塔采用波纹填料。

(2)根据醋酸为酸性的特点,二塔采用碱液中和吸收尾气中的少量醋酸,达到治废的目的,吸收剂用NaOH溶液,吸收塔为填料塔。

2 气封装置

2.1 基本要求

在石油化工、化工等行业,很多工艺过程设备中都存在着易燃易爆气体,一旦由于某种原因与空气混合并遇明火、静电或高温,这些气体就有可能发生猛烈爆炸,使设备受到严重破坏。为了防止可燃气体爆炸,通常采用以下3种措施。

(1)在设备中通入惰性气体以隔绝氧气或降低氧化剂浓度,严格禁止火源,安装抑制高压静电产生或阻止火焰传播速度的装置,以抑制可燃气体燃烧。

(2)考虑到介质爆炸的危险性,在设计时提高设备的设计压力,保证设备的强度。

(3)在设备上设置超压泄放装置,通过泄放装置来降低介质爆炸超压。

2.2.2 设计

冰醋酸有易燃、闪点为43℃的特点,设计上采用以下气封措施。

(1)在醋酸储罐顶部设置了氮封系统,这样可以使储罐内维持一定的压力(正压),防止储罐内物料与外界气体接触。

(2)当储罐内的物料被泵抽出或由于外界温度降低,使储罐内气体冷凝或收缩时,该系统可以自动补入氮气,防止外界气体进人。(3)当向储罐内送料或由于外界温度升高使储罐内压力高于气封氮气压力时,可以通过泄压阀自动排放。

2.3 防冻和保温

2.3.1 基本要求为了避免设备和管道内介质的凝固或冻结,保证生产正常地进行,需要采取相应措施。

(1)对设备和管道采取保温措施。

(2)对于高粘度和高凝固点液体的储罐应该设置加热器进行间接加热。加热器的形式有设在罐底的盘管、罐外壁盘管、基础内排管、罐出料局部加热等。加热介质为蒸汽或热水。加热介质进、出口均设在罐体下部(罐外壁盘管除外)。

.3.2 设计

冰醋酸的熔点较低,当温度低于16.7℃时就会凝固,因此醋酸储罐就要有加热保温措施。

(1)考虑到如在醋酸储罐内采用蒸汽盘管加热,会造成局部的过热,且冰醋酸的闪点为43℃,不利于储罐的正常操作和安全运行。因此而言,系统的氨碳比应尽可能控制在指标的上限运行,系统的水碳比应尽可能控制在下限运行。在设计上采用在冰醋酸储罐外设置加热器,通过蒸汽量的调节控制,将储罐内的醋酸温度维持在恒定的温度范围内。冰醋酸加热器采用列管式换热器,换热面积310m2,加热蒸汽温度为180"C,蒸汽走壳程,流量为1000kg/h;醋酸走管程,流量为82500kg/h。

(2)设计上对储罐采取了有效的保温措施,对管道采用伴管保温的方式。

该罐区已经运行了半年,各项指标良好。实际生产效果表明,对该罐区设计所采取的一些特殊处理是必要的,也是成功的。

冰醋酸知识

冰醋酸知识 【给药说明】 1.治疗甲癣,病甲清洁后以刀片将病甲削薄后用药,注意不要接触甲沟,指甲邻近皮肤可涂一薄层凡士林作保护。 2.面部癣病勿用该品治疗。 3.高浓度冰醋酸有腐蚀作用,除甲癣外,勿作其他癣病治疗。 4.治疗鸡眼和疣,用药前将病变部位清洁,并浸在热水中15~30分钟,邻近正常皮肤以凡士林涂抹保护,然后以药品滴上。 【用法与用量】 1.甲癣:以浸有30%冰醋酸溶液的棉花球放在病甲上,每日1次,1次10~15分钟,直至病甲去除,继续治疗2周。 2.手足癣:用10%冰醋酸溶液浸手足,每日1次,1次10分钟,连续10日,如未痊愈,隔1周可重复1次。 3.花斑癣:用5%冰醋酸溶液外涂,每日2次。 4.体癣:用5%~10%冰醋酸溶液外擦,每日2次。

5.鸡眼和疣:用30%冰醋酸溶液滴患处,每日1次。 6.灌洗创面:用0.5%~2%溶液。 【不良反应】可引起接触性皮炎。以30%的冰醋酸溶液治疗甲癣可引起化学性甲沟炎。也有刺痛或烧灼感。 【禁忌证】过敏和中耳炎穿孔者禁用。 醋几乎贯穿了整个人类文明史。乙酸发酵细菌(醋酸杆菌)能在世界的每个角落发现,每个民族在酿酒的时候,不可避免的会发现醋——它是这些酒精饮料暴露于空气后的自然产物。如中国就有杜康的儿子黑塔因酿酒时间过长得到醋的说法。 乙酸在化学中的运用可以追溯到很古老的年代。在公元前3世纪,希腊哲学家泰奥弗拉斯托斯详细描述了乙酸是如何与金属发生反应生成美术上要用的颜料的,包括白铅(碳酸铅)、铜绿(铜盐的混合物包括乙酸铜)。古罗马的人们将发酸的酒放在铅制容器中煮沸,能得到一种高甜度的糖浆,叫做“sapa”。“sapa”富含一种有甜味的铅糖,即乙酸铅,这导致了罗马贵族间的铅中毒。8世纪时,波斯炼金术士贾比尔,用蒸馏法浓缩了醋中的乙酸。 文艺复兴时期,人们通过金属醋酸盐的干馏制备冰醋酸。16世纪德国炼金术士安德烈亚斯·利巴菲乌斯就描述了这种方法,并且拿由这种方法产生的冰醋酸来和由醋中提取的酸相比较。仅仅是因为水的存在,导致了醋酸的

报告示例:实验三__醋酸解离度和解离常数的测定

山东轻工业学院实验报告 成绩 课程名称 基础化学实验1 指导教师 周磊 实验日期 院(系) 专业班级 实验地点 实验楼A 座412 学生姓名 学号 同组人 实验项目名称 醋酸解离度和解离常数的测定 一、实验目的 1. 学习正确使用酸度计。 2. 进一步练习溶液的配制与酸碱滴定的基本操作。 3. 用 pH 法测定醋酸的解离度和解离常数。 二、实验原理 HAc 为一元弱酸,在水溶液中存在如下解离平衡: HAc = H + + Ac - K a 起始浓度 (mol ?L -1) c 0 0 平衡浓度 (mol ?L -1) c –c α c α c α K a 表示 HAc 的解离常数 , α 为解离度 , c 为起始浓度。根据定义: 醋酸溶液总浓度 c 可以用 NaOH 标准溶液滴定测定。配制一系列已知浓度的醋酸溶液,在一定温度下,用酸度计测出其 pH 值,求出对应的 [H + ],再由上述公式计算出该温度下一系列对应的 α 和K a 值。取所得的一系列K a 值的平均值,即为该温度下醋酸的解离常数。 三、主要仪器和试剂 仪器 :酸度计, 碱式滴定管 (50mL), 锥形瓶 (250mL), 移液管 (25mL), 吸量管 (5mL), 容量瓶 (50mL), 烧杯 (50mL) 试剂:HAc 溶液, NaOH 标准溶液, 酚酞 四、实验步骤(用简洁的文字、箭头或框图等表示) 1. 醋酸溶液浓度的测定 2. 配制不同浓度的醋酸溶液 2 [H ]1a c K c θ ααα += = -

3. 不同浓度醋酸溶液pH 值的测定 五、结果记录及数据处理 表1 醋酸溶液浓度的测定 表2 HAc解离度和解离常数的测定

乙酸乙酯的工业制备方法研究

制备乙酸乙酯的工业方法研究 摘要:乙酸乙酯是一种重要的精细化学品应用比较广泛,世界需求量很大。其主要工业制备方法有乙酸酯化法、乙醛缩合法、乙醇脱氢法和乙烯加成法。本文介绍了四种制法的反应原理和工艺特点,结合当代社会精细化工产业的发展特点对这几种制法进行比较分析。 关键字:乙酸乙酯酯化反应反应机理乙醛缩合乙醇脱氢乙烯加成Abstract: Ethyl acetate is an important fine chemicals,it is used widely in the world and in great demand.The main industrial preparation of ethyl acetate are acid esterification,oxidation of acetaldehyde,ethanol dehydrogenation and ethylene-plus method.This article describes the principle of the reaction system of law and process characteristics.With contemporary society characterized by the development of fine chemical industry we compare these various methods . Keywords: ethyl acetate、esterification、reaction mechanis、aldehyde condensation Dehydrogenation of ethanol、Addition of ethylene 1.前言 精细化工产品(即精细化学品)是指那些具有特定的应用功能,技术密集,商品性强,产品附加值较高的化工产品。精细化工产品种类多、附加值高、用途广、产业关联度大,直接服务于国民经济的诸多行业和高新技术产业的各个领域。大力发展精细化工已成为我国调整化学工业结构、提升化学工业产业能级和扩大经济效益的战略重点[1]。 乙酸乙酯( EA),又名醋酸乙酯,作为一类重要的精细化学品应用较为广泛,具有良好的溶解性、快干性,被广泛用于醋酸纤维、乙基纤维、氯化橡胶、乙烯树酯、乙酸纤维树酯、合成橡胶等生产;也可用于生产复印机用液体硝基纤维墨水;在纺织工业中用作清洗剂;食品工业中用作特殊改性酒精的香味萃取剂;香料工业中是重要的香料添加剂,可作为调香剂的组分。此外,乙酸乙酯也可用作

乙酸乙酯的几种制备方法

几种工业乙酸乙酯制备方法的技术经济对比 李雄 (中国石化上海石油化工股份有限公司,200540) 乙酸乙酯是应用最广泛的脂肪酸酯之一,其制备方法有乙酸酯化法、乙醛缩合法、乙烯加成法和乙醇脱氢法等。相对比,乙醛缩合法生产乙酸乙酯路线投资低、成本也较低,较适合乙醛富裕地区投资生产。 关键词:乙醛乙酸乙酯技经指标成本 1 用途及市场情况介绍 乙酸乙酯(EA),又名醋酸乙酯,是应用最广泛的脂肪酸酯之一,具有优良的溶解性能,是一种快干性的、极好的工业溶剂,被广泛用于醋酸纤维、乙基纤维、氯化橡胶、乙烯树酯、乙酸纤维树酯、合成橡胶等生产;也可用于生产复印机用液体硝基纤维墨水;在纺织工业中用作清洗剂;食品工业中用作特殊改性酒精的香味萃取剂;香料工业中是最重要的香料添加剂,可作为调香剂的组分。以外,EA也可用作粘合剂的溶剂、油漆的稀释剂以及制造药物、染料的原料。 1.1 国际市场分析 乙酸乙酯由于其特殊的性能,在世界化工市场相当活跃。美国和日本是世界上最大的乙酸乙酯生产和消费国。全世界生产能力中美国占31.73%,日本占35.75%。美国的主要生产公司是Eastman公司、Hoechst Calanese及孟山都公司,总生产能力为127 kt/a。日本的主要生产公司是千叶乙酸乙酯、日本合成化学、德山石油化学及协和油化,总生产能力为193 kt/a。 在亚洲地区,乙酸乙酯的主要市场是日本、中国和东南亚。日本是该地区乙酸乙酯的净出口国,有近50%的生产能力在日本,该地区的生产缺口达70 kt/a,目前主要从美国和欧洲进口。近年来,日本的乙酸乙酯产量以每年10%的速率增长,增加量基本用于出口。 1.2 国内供需及预测 (1)生产能力 目前,我国乙酸乙酯的生产企业有30多家,年生产能力在万吨以上的仅有两家,其余均为千吨级生产装置,除上海石化采用乙醛法生产、山东临沭化肥厂是采用乙醇脱氢法生产外都是采用直接酯化法。 (2)产量和进口量

醋酸钠含量测定流程介绍

醋酸钠含量测定流程介绍 醋酸钠,无色无味的结晶体,在空气中可被风化,可燃。易溶于水,微溶于乙醇,不溶于乙醚。123℃时失去结晶水。但是通常湿法制取的有醋酸的味道。水中发生水解,呈碱性。在生产生活中需要对其含量进行测定,具体过程如下: 实验目的 1.掌握非水溶液酸碱滴定的原理及操作。 2.掌握结晶紫指示剂的滴定终点的判断方法。 实验原理 醋酸钠在水溶液中,是一种很弱的碱(pKb=9.24),不能在水中用强酸准确滴定,因此需用非水滴定法。选择适当的溶剂如冰醋酸则可大大提高醋酸钠的碱性,可以为标准溶液进行滴定,其滴定反应为:邻苯二甲酸氢钾常作为标定标准溶液的基准物,其反应如下: 由于测定和标定的产物为和,它们在非水介质中的溶解度都较小,故滴定过程中随着标准溶液的不断加入,慢慢有白色混浊物产生,但并不影响滴定结果。本实验选用乙酸酐、冰醋酸混合溶剂,以结晶紫为指示剂,用标准高氯酸-冰醋酸溶液滴定。 仪器试剂 1.仪器:25mL酸式滴定管,250mL锥形瓶。 2.试剂: (1)(0.1mol·L-1):在700~800mL的冰醋酸中缓缓加入72%(质量比)的高氯酸8.5mL,摇匀,在室温下缓缓滴加乙酸酐24mL,边

加边摇,加完后再振摇均匀,冷却,加适量的冰醋酸,稀释至1L,摇匀,放置24h(使乙酸酐与溶液中水充分反应)。 (2)结晶紫指示剂:0.2g结晶紫溶于100mL冰醋酸溶液中。 (3)冰醋酸(A.R) (4)邻苯二甲酸氢钾(A.R) (5)乙酸酐(A.R) 实验步骤 1、滴定剂的标定 准确称取0.15~0.2g于干燥锥形瓶中,加入冰醋酸20~25mL使其溶解,加结晶紫指示剂1滴,用(0.1mol/L)缓缓滴定至溶液呈稳定蓝色(略带紫色),即为终点,平行测定三份。取相同量的冰醋酸进行空白试验校正。根据的质量和所消耗的的体积,计算溶液的浓度。 2、醋酸钠含量的测定 准确称取0.1g无水醋酸钠(0.25g试样三水醋酸钠),置于洁净且干燥的250mL锥形瓶中,加入20mL冰醋酸使之完全溶解,再加5mL乙酸酐,加结晶紫指示剂1滴,用0.1mol/L标准溶液滴至溶液由紫色转变为蓝色,即为终点。平行测定三份,并将结果用空白试验校正。根据所消耗的体积(mL),计算试样中醋酸钠的质量分数。 注意事项 乙酸酐是由2个醋酸分子脱去1分子而成,它与作用发生剧烈反应,反应式为: 同时放出大量的热,过热易引起爆炸,因此,配制时不可使高氯

工业乙酸乙酯的制备方法

工业乙酸乙酯的制备方法 目前世界上工业乙酸乙酯主要制备方法有乙酸酯化法、乙醛缩合法、乙烯加成法和乙醇脱氢法等。传统的乙酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要是乙醛缩合法和乙醇脱氢法,在乙醛原料较丰富的地区万吨级以上的乙醛缩合法装置得到了广泛的应用。乙醇脱氢法是近年开发的新工艺,在乙醇丰富且低成本的地区得到了推广。最新的乙酸乙酯生产方法是乙烯加成法,1998年在印度尼西亚迈拉库地区采用日本昭和电工专利技术建成了50 kt/a生产装置。 (1)乙酸酯化法 乙酸酯化法是传统的乙酸乙酯生产方法,在催化剂存在下,由乙酸和乙醇发生酯化反应而得。 CH3CH2OH+CH3COOH=CH3COOCH2CH3+H2O 乙醇乙酸乙酸乙酯水 反应除去生成水,可得到高收率。该法生产乙酸乙酯的主要缺点是成本高、设备腐蚀性强,在国际上是属于被淘汰的工艺路线。 (2)乙醛缩合法 在催化剂乙醇铝的存在下,两个分子的乙醛自动氧化和缩合,重排形成一分子的乙酸乙酯。 2CH3CHO→CH3COOCH2CH3 乙醛乙酸乙酯 该方法20世纪70年代在欧美、日本等地已形成了大规模的生产装置,在生产成本和环境保护等方面都有着明显的优势。 (3)乙醇脱氢法 采用铜基催化剂使乙醇脱氢生成粗乙酸乙酯,经高低压蒸馏除去共沸物,得到纯度为99.8%以上乙酸乙酯。 2C2H5OH→CH3COOCH2CH3+H2 乙醇乙酸乙酯氢 (4)乙烯加成法

在以附载在二氧化硅等载体上的杂多酸金属盐或杂多酸为催化剂的存在下,乙烯气相水合后与气化乙酸直接酯化生成乙酸乙酯。 CH2CH2+CH3COOH=CH3COOCH2CH3 乙烯乙酸乙酸乙酯 该反应乙酸的单程转化率为66%,以乙烯计乙酸乙酯的选择性为94%。Rhone-Poulenc 、昭和电工和BP等跨国公司都开发了该生产工艺。 由于上海石化股份有限公司具有丰富的乙烯、乙酸和乙醛,故本文对乙酸酯化法、乙醛缩合法和乙烯加成法生产乙酸乙酯的技术经济指标予以对比分析。 技术经济指标对比 对于同为80 kt/a级的工业乙酸乙酯生产装置,分析其各项经济技术指标,对比如表2。表2 乙酸乙酯各工艺路线技术经济指标对照 工艺路线 乙醛缩合法 乙烯加成法 酯化法 原料单耗 /t·t-1 乙烯 - 0.355 乙醛 1.02 乙酸 0.718 0.692 乙醇 - 0.533 其他 0.005 0.01 0.005

冰醋酸含量测定报告

冰醋酸含量测定报告 Prepared on 22 November 2020

冰醋酸的成分含量测定方法 实验目的:主要是为了测定供应商提供的冰醋酸的浓度含量是否达到标准要求(CH3COOH%>=98%)。 实验器材:烧杯三个(50ml)锥形瓶两个(带活塞1个)(250ml)酸式滴定管1个100g的精密电子秤一个 .滴管2个 实验原料:100ml的冰醋酸(无色透明液体,具有很强的挥发性,刺激性气味)的氢氧化钠(L的NaoH是无色透明液体,有腐蚀性)酚酞指示剂(主要是为了测 定溶液的碱性)蒸馏水(500ml以上)(注意不能用自来水) 实验原理:主要是通过冰醋酸与氢氧化钠的中和反应,酚酞试剂遇碱变色的原理.往稀释的冰醋酸溶液中滴入的NaOH溶液,直至溶液变成微红色。(通过化学反应, 可知1摩尔的醋酸消耗1摩尔的氢氧化钠。测出消耗多少体积的氢氧化钠, 就可以算出消耗多少摩尔的氢氧化钠,进而计算出消耗多少质量的醋酸,通 过反应消耗醋酸的质量与样品的质量百分比,就求出样品中醋酸的含量百分 比。) 化学反应式: NaOH + CH3COOH = CH3COONa + H2O 计算公式:CH3COOH%={N(NaOH)*V(NaOH)*样品重(g)*1000}*100% 实验步骤:1.先在实验室充分准备好此次实验的器材和实验的原料。(拿一个250ml的锥形瓶(带活塞)到车间的助剂室提取100ml的冰醋酸,并立即盖好塞子。 贴上标签)其他的材料均可在实验室提取。 2. 分别给烧杯编上(1、2、3)号,锥形瓶((装有样品醋酸的为1)、装稀 释的醋酸为2),滴定管(1、2) 3.开电子秤(待电子秤显示数据),接着把烧杯1放到电子称上面称量,调 零。并关闭好各个电子称的各个门。 4.把装有醋酸的锥型瓶半倾,将滴管1伸进醋酸溶液的中间吸取溶液,接着将 滴管1取出,并盖好锥形瓶1瓶子。 5.先打开电子称的顶门,将滴管1伸入电子秤上空中,滴2-3滴()左右的醋 酸溶液,关好电子秤的顶门,待秤上读数稳定,读取读数,并记录读数g。 6.把滴定管放到烧杯2中,迅速打开电子秤的侧门,将烧杯1取出,并用蒸馏 水进行稀释(将蒸馏瓶嘴贴着烧杯1口环绕注入蒸馏水),导入锥形瓶2 中,25ml左右一次,进行四次,共100ml, 7.关闭电子秤,将其他器材与移到滴定管旁边。并在滴定管下方放一张白纸, 防止滴定管漏出的NaOH溶液腐蚀试验台。 8.用滴管2吸取酚酞试剂,往锥形瓶2滴入1—2滴酚酞试剂。 9.倒入适量的氢氧化钠溶液到烧杯3.在将烧杯3的氢氧化钠溶液缓慢的倒入滴 定管中,使得滴定管的液面升到刻度10ml左右。 10.将烧杯3沾取滴定管口溢出的NaOH溶液,读取滴定管的数据,并记录V2. 11.将锥形瓶2放到滴定管的正下方,左手控制滴定管的旋转开关(主要是为 了控制滴定管的滴定速度。)一滴,一滴的放,右手拿着锥形瓶2.晃动锥形

醋酸的制备

氧衍生物。分子式C2H4O2,结构 分子结构:

部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下: C6H12O6 →3 CH3COOH 更令工业化学感兴趣的是,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。 2 CO2 + 4 H2 →CH3COOH + 2 H2O 2 CO + 2 H2 →CH3COOH 梭菌属因为有能够直接使用糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。到现在为止,使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用仍然被限制在一个狭小的范围。 甲醇羰基化法 大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下 CH3OH + CO →CH3COOH 这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要一个一般由多种金属构成的催化剂(第二部中) (1) CH3OH + HI →CH3I + H2O(2) CH3I + CO →CH3CO I(3) CH3COI + H2O →CH3COOH + HI 通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司的Henry Drefyus已经开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此法一度受到抑制。直到1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产的办法。到了1968年,以铑为基础的催化剂的(cis?[Rh(CO)2I2])被发现,使得反映所需压力减到一个较低的水平并且几乎没有副产物。1970年,美国孟山都公司建造了首个使用此催化剂的设备,此后,铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此法是基于钌,使用([Ir(CO)2I2]),它比孟山都法更加绿色也有更高的效率,很大程度上排挤了孟山都法。 乙醇氧化法 由乙醇在有催化剂的条件下和氧气发生氧化反应制得。 C2H5OH + O2=CH3COOH + H2O

4000 m3醋酸储罐的选型及计算解析

化工安全设计课程设计任务书 设计题目 某化工储运公司安全设计(4000 m3醋酸储罐选型及计算) 学院 专业安全工程班级 起讫日期 指导教师 2015 年6 月18 日

8只4000 m3醋酸储罐,建设地点位于南京贮运码头罐区的预留地,当地全年最小频率风向为西北风。查相关规范得知,设计压力为常压,设计温度为55℃,储存介质为醋酸,属于乙A类液体(由《石油化工企业防火设计规范》 GB50160-2008查得)。 相关规范:《石油化工企业防火设计规范》GB50160-2008;《石油化工储运系统罐区设计规范》SH/T3007-2014;《立式圆筒钢制焊接油罐设计规范》GB50341-2014;《石油化工立式圆筒形钢制焊接储罐设计规范》SH3046-1992;《建筑结构荷载规范》;《化工设备设计全书》等。

第1章醋酸的理化性质 (1) 第2章醋酸储罐的选型和选材 (2) 2.1储罐的选型 (2) 2.1.1储罐的选型 (2) 2.1.2物料管的设计 (2) 2.2储罐的选材 (2) 第3章醋酸储罐经济尺寸的选择 (4) 3.1储罐的储存液位 (4) 3.2储罐的罐壁设计 (5) 3.2.1储罐的技术特性表 (5) 3.2.2壁厚的计算 (6) 3.2.3罐壁加强圈的计算 (8) 3.2.4罐壁包边角钢 (9) 3.3储罐的罐底设计 (9) 3.3.1罐底的选型 (9) 3.3.2罐底板厚度的计算 (11) 3.4储罐的罐顶设计 (11) 第4章醋酸储罐的安全附件 (13) 4.1储罐的一般附件 (13) 4.1.1通气管 (13) 4.1.2量油孔 (14) 4.1.3透光孔 (14) 4.1.4人孔 (15) 4.1.5、排污孔 (15) 4.1.6放水管 (15) 4.1.7阻火器 (15) 4.2安全仪表 (16) 4.2.1液位计 (16) 4.2.2液位报警器 (16) 4.2.3温度计 (17) 4.2.4压力表 (17) 4.2.5流量计 (17) 第5章其他安全措施 (18) 5.1放空处理 (18) 5.2气封装置 (18) 5.3 防冻和保温 (18) 5.4防爆措施 (19)

乙酸乙酯的工业生产方法

乙酸乙酯的工业生产方法乙酸乙酯(EA)又名醋酸乙酯,是醋酸的一种重要的下游产品,具有优异的溶解性、快干性,在工业中主要用作生产涂料(油漆和瓷漆)、粘合剂、乙基纤维素、人造革、油毡着色剂以及人造纤维等的溶剂,也可作为粘合剂用于印刷油墨、人造珍珠等的生产,作为提取剂用于医药、有机酸的产品的生产等·,此外还可用作生产菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的原料,用途十分广泛,发展前景看好。 目前,乙酸乙酯的工业生产方法主要有醋酸酯化法、乙醛缩合法、乙醇脱氢法和醋酸/乙烯加成法4种。传统的醋酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要采用乙醛缩合法、乙醇脱氢法和醋酸/乙烯加成法,其中新建装置多采用醋酸/乙烯加成法,我国的乙酸乙酯则主要采用醋酸酯化法进行生产。 1醋酸酯化法 醋酸酯化法是乙酸乙酯最常见的生产方法,是在催化剂(通常为硫酸)存在下,醋酸和乙醇发生酯化反应生成乙酸乙酯,该方法适用于拥有大量低成本乙醇的地区。传统的酯化法生产工艺技术成熟,原料供应充足,生产工艺简单,投资少,在世界范围内,尤其是在美国和西欧地区被广泛采用。由于酯化反应可逆,转化率只有约67%,为增加转化率,一般采用乙醇过量的方法,并在反应过程中不断分离出生成的水。根据生产需要,既可采取间歇生产,也可采取连续式生产。该法存在反应温度高,乙酸利用率低,易发生副反应,产品处理困难、催化剂对设备腐蚀性强,废液污染环境以及生产成本高等缺点。 面对传统醋酸酯化法工艺以浓硫酸为催化剂的诸多问题,新近研究开发工作主要集中在对催化剂和生产工艺的改进上。主要有分子筛合成法、杂多酸合成法、联产法以及催化精馏法等。 1.1分子筛法 分子筛合成法主要是指以分子筛,可固载的催化剂等作催化剂的合成方法。此种工艺是将催化剂经过特殊处理,固载到某种团体物质上,制成大小均匀有一定粒度的颗粒,然后填装到特制的反应器中。此反应器下部是容器,起到加热物料的作用。中部装催化剂,起到催化缩合的作用,上部是精馏段,起到分离产品的作用。工艺过程为:用耐酸泵将配好的物料(酸稍过量)输送到反应器下部,加热到150℃左右汽化,控制反应器中部反应温度在110-120℃起缩合反应,反应混合物在精馏分离,未反应的物料返回到反应器下部继续反应。精馏段的温度控制在75℃左右,得到含酯量在94%以上的粗产品,若需要得到含酯量在98驰以上的产品,用无水硫酸镁干燥即可。分子筛法具有工艺流程短、设备紧凑且少,生产连续化、产品得率高,产品成本低,设备腐蚀小,催化剂寿命长等优点,不足之处是反应器制作技术要求高,设备制造费用大,物料需要加热到较高温度,热量损失大,且物料返回较多等。 1.2杂多酸合成法 此种乙酸乙酯合成法包括使用多元固体酸直接催化的生产方法。此种工艺是将预先制好的杂多酸催化剂加入到反应物料中起催化作用。工艺过程为:用耐酸泵将配好的反应物料(酸稍过量)输送到缩合釜,加入催化剂升温到120-130℃进行缩合反应,产品混合物人精馏塔进行分离,精馏塔温度控制在70℃左右,得到含酯量在95%左右的粗产品,再用无水硫酸镁进行干燥脱水处理可得到含量98%以上的产品,未反应的物料返回到缩合釜循环使用。杂多酸合成法具有设备技术要求不高,制造费用低,操作简单,物料反应较完全,产品得率较高,缩合温度较’低,热能耗低,设备腐蚀小,缺点是设备多,总投资费用大,工艺流程长,生产周期较长,催化剂需要特别制造技术,价格昂贵等。 1.3催化精馏法 催化精馏法以固体酸为催化剂的连续催化精馏法,属非均相反应精馏过程,是酯化反应的发展方向,与以浓硫酸为催化剂的间歇搅拌式传统酯化生产工艺相比具有酯化连续进行,转化率高;

罐区日常注意事项样本

原料罐区日常注意事项 我公司罐区当前由甲类罐区和酸碱罐区及车间周边部分周转罐区组成。 甲类罐区储罐组成部分: 甲醇钠、甲苯、甲基叔丁基醚、γ-丁内酯、甲醇、γ氯代丁酸甲酯; 酸碱罐区组成部分: 硫酸、盐酸、 30%浓度液碱、 30%浓度氨水、亚硫酸氢氨; 车间周边周转罐组成部分: 氯化亚砜、锂水、冰醋酸、一甲胺。 各原料安全特性: ( 甲类罐区) 甲苯: ( 3类易燃易爆危险物料) 急救措施【皮肤接触】: 脱去被污染的衣着, 用肥皂水和清水彻底冲洗皮肤。【眼睛接触】: 提起眼睑, 用流动清水或生理盐水冲洗。就医。【吸入】: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难, 给输氧。如呼吸停止, 立即进行人工呼吸。就医。【食入】: 饮足量温水, 催吐, 就医。 灭火措施: 喷水保持火场容器冷却。尽可能将容器从火场移至空旷处。处在火场中的容器若已变色或从安全泄压装置中产生声音, 必须马上撤离。灭火剂: 泡沫、干粉、二氧化碳、砂土。用水灭火无效。 洩漏处理方法: 迅速撤离泄漏污染区人员至安全区, 并进行隔离, 严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器, 穿消防防护服。尽可能切断泄漏源, 防止进入下水道、排洪沟等限制性空间。小量泄漏: 用活性炭或其它惰性材料吸收。也能够用不燃性分散剂制成的乳液刷洗, 洗液稀释后放入废水系统。大量泄漏: 构筑围堤或挖坑收容; 用泡沫覆盖, 降低蒸气灾害。用防爆泵转达移至专用收集器内, 回收或运至废物处理场所处理。如有大量甲苯洒在地面上, 应立即用砂土、泥块阴断液体的蔓延; 如倾倒在水里, 应立即筑坝切断受污染水体的流动, 或用围栏阴断甲苯的蔓延扩散; 如甲洒在土壤里, 应立即收集被污染土壤, 迅速转移到安全地带任其挥发。事故现场加强通风, 蒸发残液, 排除蒸气。 甲醇钠: ( 3类易燃易爆危险物料) 急救措施皮肤接触: 脱去污染的衣着, 用流

巯基乙酸钠含量的测定

巯基乙酸钠含量的测定 1、主题内容与适用范围 本主题的内容是用碘酸钾与碘化钾氧化法测定巯基乙酸含量的方法,适用于分析生产过程中含巯基乙酸(或其盐类)的各种物料,如尾液、酸化液、除臭液、萃取尾液以及各种含巯基乙酸的产品,分析结果均以巯基乙酸百分含量表示。2、原理 碘酸钾在弱酸性溶液中与碘化钾作用,析出的碘氧化巯基乙酸成二硫撑酯酸,反应式如下: KIO3 + 5KI+ 3H2SO4 →3I2 + 3K2SO4 + 3H2O 2HSCH2COOH + I2 →HOOCCH2SSCH2COOH + 2HI 3、试剂及标准溶液 3.1、硫酸溶液,1+1 将100 ml 浓硫酸慢慢地加入100 ml 水中,冷却后使用。 3.2、硫酸溶液,20% 量取128 ml 浓硫酸,慢慢地加入约700 ml 水中,冷却稀释到1000 ml。3.3、碘化钾 3.4、淀粉指示剂,5 g/L 称取0.5g淀粉,加入5ml 水使成糊状。在搅拌下将糊状物加到90ml沸腾的水中,煮沸1-2分钟,冷却稀释到100 ml。 3.5、硫代硫酸钠标准溶液,C(NaS2O3)-0.1mol/L 3.5.1 配制: 称取26g硫代硫酸钠,溶于1000ml水中,缓缓煮沸10分钟。冷却放置两周后过滤备用。 3.5.2 标定: 称取0.15g于120℃烘至恒重的基准试剂重铬酸钾,称准至0.001g,置于500ml碘量瓶中,溶于25ml水中,加2g 碘化钾及20 ml 硫酸溶液(20%),摇匀,于暗处放置10分钟加150ml水,用配好的硫代硫酸钠溶液滴定,近终点时加3ml淀粉指示剂,继续滴定至溶液由蓝色变为亮绿色,同时作空白试验。 3.5.3 计算 硫代硫酸钠标准溶液浓度按下式计算: C(NaS 2O 3 )= m/(V1-V2)*0.04903 式中: V1---硫代硫酸钠溶液之用量,ml V2---空白试验硫代硫酸钠溶液之用量,ml C(NaS 2O 3 )---硫代硫酸钠标准溶液之物之的量浓度,mol/L m---称取重铬酸钾的量,g 0.04903---重铬酸钾,1/6 重铬酸钾之毫摩尔质量,g/m mol 3.5.4 标定允差,平行测定不得少于四次,四次平行测定值的极差不大于0.0001 mol/L时取平均值。 注:也可以准确称取5g烘至恒重的重铬酸钾溶于1000ml容量瓶中,在此准确量取30ml重铬酸钾标准溶液用以标定硫代硫酸钠溶液。

冰醋酸.

乙酸 百科名片 乙酸又称醋酸,广泛存在于自然界,它是一种有机化合物,是典型的脂肪酸。被公认为食醋内酸味及刺激性气味的来源。在家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。 [编辑本段] 简介 乙酸(acetic acid)分子中含有两个碳原子的饱和羧酸,是烃的重要含氧衍生物。分子式C2H4O2,结构简式CH3COOH,官能团为羧基。因是醋的主要成分,又称醋酸。例如在水果或植物油中主要以其化合物酯的形式存在;在动物的组织内、排泄物和血液中以游离酸的形式存在普通食醋中含有3%~5%的乙酸。乙酸是无色液体,有强烈刺激性气味。熔点16 .6℃,沸点117 .9℃,相对密度1.0492(20/4℃)密度比水大,折光率1.3716。纯乙酸在16.6℃以下时能结成冰状的固体,所以常称为冰醋酸。易溶于水、乙醇、乙醚和四氯化碳。当水加到乙酸中,混合后的总体积变小,密度增加,直至分子比为1∶1 ,相当于形成一元酸的原乙酸CH3C(OH)3,进一步稀释,体积不再变化。 分子量:60.05 分子结构: 冰醋酸

冰醋酸 纯的无水乙酸(冰醋酸)是无色的吸湿性液体,凝固点为16.6 °C (62 °F) ,凝固后为无色晶体。尽管根据乙酸在水溶液中的离解能力它是一个弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。乙酸是一种简单的羧酸,是一个重要的化学试剂。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。 [编辑本段] 历史 醋几乎贯穿了整个人类文明史。乙酸发酵细菌(醋酸杆菌)能在世界的每个角落发现,每个民族在酿酒的时候,不可避免的会发现醋——它是这些酒精饮料暴露于空气后的自然产物。如中国就有杜康的儿子黑塔因酿酒时间过长得到醋的说法。 乙酸在化学中的运用可以追溯到很古老的年代。在公元前3世纪,希腊哲学家泰奥弗拉斯托斯详细描述了乙酸是如何与金属发生反应生成美术上要用的颜料的,包括白铅(碳酸铅)、铜绿(铜盐的混合物包括乙酸铜)。古罗马的人们将发酸的酒放在铅制容器中煮沸,能得到一种高甜度的糖浆,叫做“sapa”。“sapa”富含一种有甜味的铅糖,即乙酸铅,这导致了罗马贵族间的铅中毒。8世纪时,波斯炼金术士贾比尔,用蒸馏法浓缩了醋中的乙酸。 文艺复兴时期,人们通过金属醋酸盐的干馏制备冰醋酸。16世纪德国炼金术士安德烈亚斯·利巴菲乌斯就描述了这种方法,并且拿由这种方法产生的冰醋酸来和由醋中提取的酸相比较。仅仅是因为水的存在,导致了醋酸的性质发生如此大的改变,以至于在几个世纪里,化学家们都认为这是两个截然不同的物质。法国化学家阿迪(P ierre Adet)证明了它们两个是相同的。 1847年,德国科学家阿道夫·威廉·赫尔曼·科尔贝第一次通过无机原料合成了乙酸。这个反应的历程首先是二硫化碳经过氯化转化为四氯化碳,接着是四氯乙烯的高温分解后水解,并氯化,从而产生三氯乙酸,最后一步通过电解还原产生乙酸。 1910年时,大部分的冰醋酸提取自干馏木材得到的煤焦油。首先是将煤焦油通过氢氧化钙处理,然后将形成的乙酸钙用硫酸酸化,得到其中的乙酸。在这个时期,德国生产了约10000吨的冰醋酸,其中30%被用来制造靛青染料。 [编辑本段] 制备 乙酸的制备可以通过人工合成和细菌发酵两种方法。现在,生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是由生物制备的。75%的工业用乙酸是通过甲醇的羰基化制备,具体方法见下。空缺部分由其他方法合成。

危险化学品安全管理规章制度

危险化学品安全管理制度 1.目的 为了加强公司危险化学品安全管理,防止火灾、爆炸、中毒等事故的发生,建立完善公司应急救援体系,特制定本制度。 2.适用范围 本制度适用于公司危险化学品生产、经营、储存、运输、使用、废弃处置全过程的安全管理。 3.职责 3.1安全管理部负责危险化学品的综合监督管理。 3.2物料管理部负责危险化学品的采购运输管理,并向供应商索要“一书一签”。 3.3仓储管理部负责危险化学品的储存、发放管理。 3.4生产技术部、仓储管理部、安全管理部、保卫部负责危险化学品进行日常监督和控制。 3.5使用单位负责危险化学品的安全操作与日常安全管理。 4.引用法规、标准 4.1《中华人民共和国安全生产法》 4.2《安全生产许可证条例》 4.3《危险化学品安全管理条例》 4.4《国务院关于进一步加强安全生产工作的决定》 4.5《山东省安全生产条例》 5.内容及要求 5.1术语 5.1.1危险化学品:是指具有易燃易爆、有毒有害及有腐蚀特性,会对人员、设施、环境造成伤害或损害的化学品,包括爆炸品、压缩气体和液化气体、易燃液体、易燃固体、自燃物品和遇湿易燃物品、氧化剂和有机过氧化物、毒害品和腐蚀品等。危险化学品的界定,参照《危险化学品名录》。 5.1.2 毒害品:是指进入肌体后,累积达一定的量,能与体液组织发生生物化学作用或生物物理变化,扰乱或破坏肌体的正常生理功能,引起暂时性或持久性的病理状态,甚至危及生命的危险化学品。毒害品按其毒性大小分为一级毒害品(剧毒品)和二级毒害品(有毒品)。 5.1.3甲类物品:甲类物品是指闪点小于28℃的液体;爆炸下限小于10%的气体;常温下受到水或空气中水蒸汽的作用,能产生可燃气体并引起燃烧或爆炸的物质;常温下能自行分解、在空气中氧化、受撞击、摩擦即能导致迅速自燃或爆炸的物质等。

醋化反应平衡常数的测定实验报告

醋化反应平衡常数的测定 (一)目的要求 1.由化学分析方法测定醋化反应的平衡常数 2.加深理解化学平衡和化学平衡常数的意义 (二)原理 乙酸和乙醇反应生成乙酸乙酯和水;乙酸乙酯水解得到乙酸和乙醇:CH3COO H+C2H5OH→CH3COOC2H5+H2O 在一定条件下,当正向反应和逆向反应速度相等时,反应物和产物的浓度就不再随时间的变化而变化,这种状态称为化学平衡。化学平衡是个动态平衡。 反应达到平衡时,产物浓度的乘积与反应物浓度的乘积的商值叫做平衡常数。热力学平衡常数K。用活度a表示。 αCH3COOC2H5αH2O ΧCH3COOC2H5γCH3COOC2H5ΧH2OγH2O K=-------------=---------------------------- (1)αCH3COOHαC2H5OH ΧCH3COOHγCH3COOC2H5ΧC2H5OHγC2H5OH 在指定温度下,热力学平衡常数的数值不因反应物的起始浓度不同而发生变化,所以热力学平衡常数的数值可以作为反应进行程度的标志,Kα越大,反应进行程度越高。 显然K与Kα的关系为: γCH3COOHγC2H5OH K=Kα·------------- (2)γCH3COOC2H5γH2O 平衡常数Kα的数值可以用热力学公式计算得到: △G0=-RTLnKα(3)查出这个酯化反应各物质在25℃呈纯液态时的标准吉布斯自由能△G0的数据,便可计算出标准自由能的变化△G0=-3.5J,通过(3)计算出Kα≈4 平衡常数的测定,一般有化学方法和物理方法两种。化学方

法就是通过化学分析方法测得各物质平衡时的浓度。此法因分析试剂的加入而扰乱平衡,使得浓度并非真真的平衡浓度,因此在使用化学分析方法是平衡“冻结”,通常采用骤冷时反应停止,这样所得的分析结果比较准确。物理方法就是利用物质的某些物理特性与浓度的关系,来测定浓度的变化,如通过折光率、电导、颜色、压力或者容器的改变来测定物质的浓度。这种方法的优点是在测定时不会扰乱或破坏体系的平衡状态。 本实验采用的是化学分析法。由于酯化反应平衡移动比较慢,所以乙酸的平衡浓度可以用中和滴定法来测定,由乙酸的浓度可以求出其他物质的平衡浓度,然后便可计算出表现平衡常数K来。 有了平衡常数的数值,就可以由指定反应物浓度计算出产物的最大产量。 反应达到平衡常数的时间有时很慢,因而必须提高适应反应加速的条件(如提高温度或加入催化剂)来加快反应速度。在这个实验中有盐酸来催化反应。此反应受温度的影响很小,反应可以在25℃的恒温箱中进行,亦可在室温下进行。(三)仪器药品 50ml碱式滴定管一支 5ml、2ml、1ml移液管一支;10ml 带玻璃塞的称量瓶1个;100ml磨口瓶14个;0.500M氢氧化钠;乙酸乙酯;无水乙醇;冰醋酸;酚酞;浓盐酸。

氯乙酸的生产工艺

氯乙酸的生产工艺 中文名称:氯乙酸(一氯乙酸) 英文名称: chloroacetic acid 中文名称2:一氯醋酸 英文名称2: monochloroacetic acid mono-chloroacetic acid ,MCA,,CAS No.: 79-11-8 分子式: CH2Cl?COOH 分子量: 94.49 理化特性 主要成分:含量: 一级≥96.5; 二级≥95.0% 外观与性状:有较大潮解性的无色晶体。 有三种类型: α型α为稳定型,分子量94.50, 相对密度1.58(20°/20℃) 沸点: 189℃(100 Kpa)160℃(40 Kpa)、132 ℃(10 Kpa)、 104℃(2.7 Kpa), 溶点: 61.3℃(α型),56.2℃(β型),52.5℃(γ型)。相对密度(水=1) : 1.58 (20/20℃) 相对蒸气密度(空气=1) : 3.26 饱和蒸气压(kPa) :0.67(71.5℃)

引燃温度(℃): >500 爆炸下限%(V/V): 8.0 溶解性:可溶于水、乙醇、乙醚、二硫化碳、氯仿和苯。备注: MCA能腐蚀多种金属,耐腐蚀的金属只有钛、钽。

处理 立即脱离事故现场,转移到空气新鲜处,脱去污染的衣物,并用大量清水冲洗污染皮肤至少15分钟;眼污染时应分开眼睑用微温水缓流冲洗至少15分钟。注意勿让冲洗后流下的水再污染健康的眼; 使病人安静,保暖,休息, 密切观察病情变化。轻度中毒病人以支持疗法为主,同时给予对症治疗。较重中毒病人应早期、适量、短程给予糖皮质激素,以控制肺水肿。 【氯乙酸生产工艺】 【试剂级制法】在500mL烧反应瓶种加入冰乙酸300g和乙酐15g,油浴加热至105℃时,开始徐徐通入氯气,控 制108^~112℃,氯化反应需10h,每隔2h,向反应物 中加入乙酐5g,停止通入氯气后,将反应物料移至蒸 馏瓶中,收集186~188℃的馏分,冷凝得到氯乙酸结 晶。

冰醋酸应急预案【最新版】

冰醋酸应急预案 一、化学品名 中文名:乙酸;醋酸;冰醋酸 英文名:acetic acid 二、危险性概述 1、危险性类别:酸性腐蚀品,易燃液体 2、侵入途径:吸入、食入、眼睛和皮肤接触。 3、健康危害: 吸入本品蒸气对鼻、喉和呼吸道有刺激性。对眼有强烈刺激作用。皮肤接触,轻者出现红斑,重者引起化学灼伤。误服浓乙酸,口腔和消化道可产生糜烂,重者可因休克而致死。慢性影响:眼睑水肿、结膜充血、慢性咽炎和支气管炎。长期反复接触,可致皮肤干燥、脱脂和皮炎。

4、环境危害: 醋酸的存在遍及整个自然界,如动植物的一般代谢物。 5、燃爆危险: 其蒸气和液体可燃,蒸气比空气重会传播至远处,与火源可能造成回火。 三、急救措施 1、皮肤接触: 立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 2、眼睛接触: 立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 3、吸入:

迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 4、食入:用水漱口,就医。 四、消防措施 1、危险特性: 可燃性液体会与空气形成爆炸性混合物;蒸汽比空气重会传播至远处,遇火源而回火;蒸汽会累积在封闭地区,有中毒危险;密闭容器受热会破裂。 2、灭火方法: 用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。 3、灭火剂: 雾状水、抗溶性泡沫、干粉、二氧化碳。

4、灭火注意事项及措施: 消防人员特殊防护设备、自给式呼吸防护具;需做静电测量以避免静电危害;水雾不能有效灭火,但可以冷却火场的容器,驱散未着火的蒸气且保护消防员。 五、泄漏应急处理 1、应急行动: 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。 个人防护-穿戴适当的防护服,佩带呼吸保护设备。消除所有火源(包括禁止使用非防爆电器)。疏散泄漏污染区域人员至安全区。切断泄漏源。注意可燃蒸气能够在低洼地区积聚,强制送风使污染地区通风良好,防止可燃蒸气与空气混合形成爆炸性气体。

醋酸成分测定与分析

食醋成分分析 俞中锋,陈以满,霍东娟,朱吉 氨基酸成分的测定 采用高效阴离子交换色谱及脉冲安培检测法分离并测定了食醋中多种氨基酸。用不同比例的氢氧化钠溶液、乙酸钠溶液及水组成的混合溶液作为淋洗液,以梯度淋洗方式将分离柱上的氨基酸先后洗脱并测定。用提出的方法分析了4种不同品牌的食醋样品,共测得18种氨基酸,此方法毋需柱前或柱后衍生化操作,对18种氨基酸的检出限在1.7"---20.0,ug/L范围内。根据测定每种氨基酸中所得保留时间值算得的相对标准偏差(竹一6)均小于1.2%,作标准加入法测定了各氨基酸的回收率,其值在84%~108%之间。 1试验部分 1.1仪器与试剂 Dionex ICS 2500 BioLC离子色谱装置,包括GSS0四元梯度泵,LC30柱温箱(30℃),AS50自动进样器(25 pL进样),ED50A电化学检测器。Chromeleon 6.5色谱工作站。氨基酸标准(生化级)储备液均为0.01 mg,为防止微生物生长,用20 mg叠氮化钠溶液稀释配制工作溶液。氢氧化钠溶液:用球状的氢氧化钠加水配成浓度为19.3 tool·L_1溶液,静置24 h后,取13.1 mL用水稀释至l L,配成浓度为250 mmol·L-1溶液。乙酸钠溶液:1 mol/L,称取乙酸钠820 g,用水溶解后稀释到l L,用0.20m尼龙滤膜过滤。水为去离子水。为防止淋洗液(氢氧化钠溶液和乙酸钠溶液的混合溶液)吸收空气中二氧化碳,淋洗液瓶上方需要施加大约40~50 kPa的氮气进行保护。 1.2分析条件 色谱柱:AminoPac PAl0分析柱(250 mm×2 mm)和保护柱(40 mm×2 ram)。定量环体积25肛L,柱温箱温度设为30℃。淋洗液由去离子水、250 mmol·L-1氢氧化钠溶液和l mol·L叫乙酸钠溶液按照一定的梯度程序混合得到(表1),流速0.25 mL/min。电化学检测器:金工作电极,Ag-AgCl参比电极。 2结果与讨论 2.1分离和检测条件的优化 以氢氧化钠和乙酸钠为淋洗液,选择合适的淋洗液梯度,18种常见氨基酸可在高效阴离子交换色谱柱上实现分离。其中,氢氧化钠溶液淋洗能力较弱,用来洗脱弱保留的碱性氨基酸和脂肪族氨基酸;乙酸钠溶液洗脱能力强,用来洗脱强保留的酸f生氨基酸和芳香族氨基酸,如组胺酸、苯丙氨酸、谷氨酸、天冬氨酸、胱氨酸和酪氨酸可以从色谱柱上洗脱。为了保证每次进样分析时色谱柱状态一致,每次分离结束后需要用一定浓度的氢氧化钠溶液平衡色谱柱25 min,从而提高测定结果的重现性。电极电位会影响金电极的使用寿命以及测定结果的灵敏度和精密度,试验选择的电位波形见图

相关文档
最新文档