高等代数与中学数学概念的衔接问题研究 Microsoft Word 文档 (2)

高等代数与中学数学概念的衔接问题研究 Microsoft Word 文档 (2)
高等代数与中学数学概念的衔接问题研究 Microsoft Word 文档 (2)

高等代数与中学数学概念的衔接问题研究摘要:高等代数是师范院校数学与应用数学专业的一门重要的基础课程,也是中学数学的继续和提高。在教学过程中利用中学数学知识启发引导学生探讨高等代数的相关内容,既有利于学生巩固中学数学知识,又有利于学生认识学习高等代数的重要性,同时为学生学习后继课程及今后从事中学数学教育教学工作奠定一定的基础。

关键词:高等代数;中学数学;教学

高等代数是民族师范院校数学与应用数学专业的一门重要的基础课程,也是中学数学的继续和提高,同时也是培养学生建立现代数学思想的基础工具课程之一。随着中学数学课改的不断深入,“高等代数”作为从“中学代数”到“抽象代数”的过渡课程,无论是在课程内容上还是在教学方法上都需要进一步的改革。本文根据师范院校的学生专业特点,并结合自身多年的教学实践经验和与中小学一线数学骨干教师及学生之间的交流,就高等代数教学与中学数学内容的衔接问题作如下阐述。在交流过程中,大部分学生认为高等代数纯数学理论强,抽象难学,对有些概念和问题含糊不清,似懂非懂,尤其是向量空间、线性变换、欧氏空间等概念因对公理化的定义难以全面理解,使部分学生对高等代数失去深入学习的兴趣,进而影响到后续课程的学习。在对近300名学生的调研中发现70%的学生能够掌握基本概念及其性质,独立完成课本上的计算题,而对于证明题仅有50%的学生能够独立完成。为了激发学生进一步学习高等代数的积极性和主动性,培养其良好的数学思维品德。同时让学生深入理解高等代数

的有关概念,全面系统的掌握概念产生的背景,提高学生的创新能力和实践能力。笔者在教学过程中尝试以中学数学知识为背景启发引导学生学习高等代数,激发学生的学习兴趣。课堂教学效果有了明显的转变,同时学生学习高等代数的积极性也在不断提高,为进一步学习后续课程起到了一定的积极作用。具体做法是:

一、在高等代数的教学方法上做好与中学数学知识的衔接工作

随着中学数学新课程理念的全面推广,学生应用数学知识解决实际问题的能力在不断提升,教师的教育观念正逐步从“应试教育”向“素质教育”转变。在中学数学课堂上师生双边互动的教法随处可见,参与式、讨论式、启发式教学方法已占据主流,对知识点的传授和应用,师生主要通过交流探讨、细致分析及反复练习来完成,教师也尽量做到讲深讲透。而进入大学学习高等代数时,教师在课堂教学中注重对学生进行知识的传授,重视数学理论的连续性与严谨性,课堂行为主要是“讲授+板书”。教学方法的不同,使刚步入大学的学生很难在短期内适应教师的教学方法,再加上高等代数内容抽象、难懂,对概念产生的背景、方法和意义学生无从了解。所以在教法上教师要关注中学数学新课程的内涵和教法对学生学习产生的影响,教学过程中要注重讲授概念的形成过程,通过实例引导学生进一步了解概念的内涵与外延,明确学习的目的,探讨数学的思想方法,同时应加强培养学生应用数学知识解决实际问题的能力。在学习方式上中学时代学生主要依赖于老师,主体意识不强。学生习惯了猜想、观察、实验、归纳、类比、推广、应用等方法,习惯了通过实例了解概念的形成过程。

而学习高等代数时学生仅靠课堂上听讲,对所学知识的理解很难达到熟练掌握的程度。因此,教师要做好学法指导,关注学生学习的全过程。强调课前预习和课后查阅资料的重要性,注重培养学生的自学能力。

二、利用中学数学知识为背景,让学生在回顾与探究的过程中消化高等代数的有关概念。

高等代数的很多概念与中学数学知识有着内在的联系,如多项式、行列式、矩阵、线性空间、线性变换、二次型等等。因此,在教学过程中应从学生熟悉的问题出发来组织教学,创设一些既能引起学生兴趣又是学生熟悉的问题情景,引导学生通过类比、归纳、反演等方法来思考新问题,从而引出概念的定义及性质。如讲述线性相关与线性无关时,先举例引出齐次线性方程组同解的概念,再引导学生讨论不同类型方程组的方程个数与解集大小之间的关系,从而总结出方程组中某一个方程是其余方程的线性组合,就称这个方程组中的方程线性相关,反之线性无关。这样让学生在回忆已学知识的基础上引出线性相关及线性无关的概念,学生就容易理解,再举例加以巩固,教学效果会更好。再如讲行列式时,先让学生解方程组讨论一般二元一次方程组的解的情况,归纳何时有唯一解或无穷多解?然后给出二阶行列式的定义,学生就容易接受。在此基础上由对角法则定义三阶行列式,然后用类比的方法让学生讨论四阶以上的行列式能否用对角法则定义,让学生自己发现不能定义后,引导学生回过头来重新讨论二、三阶行列式的计算过程,从而用归纳的思想方法引出行列式的定义。

然后让学生思考用定义计算行列式的值时难度较大,从而引出行列式的性质及展开定理。这样既能激发学生学习的兴趣,又能培养学生的创新能力,同时为学生在今后利用矩阵的秩来判断线性方程组的解的情况打下基础。

三、多举实例让学生逐步理解高等代数中比较抽象的概念

中学数学新课程改革对教学内容作了较大的调整,总体上来说知识点面广,结构比较松散。而高等代数的有些概念结构严谨,内容抽象,从定义到定理再到推理,基本上是现成的结论及证明,因此在教学过程中多举实例是很有必要的。如“线性空间”是学生遇到的第一个用公理化来定义的抽象概念,也是第一次接触到的代数结构。如果教师一开始就完全公理化的给出定义,学生会感到太枯燥、太抽象,也难以理解,反而会抑制学生学习的积极性。若教师从数的运算启发学生分析一元多项式、矩阵及空间向量的运算,通过比较、分析,最后给出线性空间的定义,然后利用课本上的例题,使学生知道线性空间的元素是抽象的,就具体空间来说其元素可以是数,也可以是向量、多项式、矩阵,其运算也是抽象的。再回头来看集合、实数集的运算,让学生了解概念形成的过程,把握概念的本质,才能在脑海中逐步建立起线性空间的概念,在此基础上讲线性变换学生就容易掌握。在由具体到抽象的转变过程中,让学生感受从特殊到一般的辩证关系。这样学生既能深刻理解线性变换的概念,又能在今后的学习中利用线性变换去解决实际问题。

四、运用中学数学思想方法解决高等代数的有关问题

中学数学教学过程中常用的分解、构造、转换、数形结合、猜想、类比、分析、归纳、演绎、递推、反演、综合等思想方法,在高等代数教学过程中教师应在中学所学思想方法的基础上不断引导学生加以提炼和升华,才能培养学生良好的学生思维品德。最后引导学生用数学归纳的思想加以证明,让学生在回顾与反思中体验数学的魅力。

总之,在高等代数的教学过程中注重通过学生已有的知识,逐步渗透抽象的数学概念,这样既有利于学生巩固所学的知识,又有利于培养学生的抽象思维能力和空间想象能力。教师只要在教学过程中不断的总结经验,挖掘中学数学与高等代数的内在联系,改进教法,才能激发学生的创新意识,为其进一步学习后续课程及今后从事数学教育教学工作奠定坚实的基础。

参考文献

[1] 张禾瑞,郝鈵新 .高等代数[M]. 北京:高等教育出版社,

2004.2第9次印刷

[2] 刘振宇. 高等代数的思想与方法[M].济南:山东大学出版社,

2009.11

[3] 李尚志. 从问题出发引入线性代数概念[J].高等数学研究,

2006(6)

[4] 郭微,扬月婷. 数学思想方法在高等代数教学中的渗透[J].

高等数学研究, 2009

教学大纲-厦门大学高等代数

教学大纲 一.课程的教学目的和要求 通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。 要突出传授数学思想和数学方法,让学生尽早地更多地掌握数学的思想和方法。突出高等代数中等价分类的思想,分解结构的思想,同构对应的思想,揭示课程内部的本质的有机联系。 二.课程的主要内容: 代数学是研究代数对象的结构理论与表示方法的一门学科。代数对象是在一个集合上定义若干运算,且满足若干公理所构成的代数系统,线性空间则是数学类专业本科生所接触和学习的第一个代数对象。本课程力求突出代数学的思想和方法。 《高等代数》分为两个部分主要内容。一部分是基本工具性质的,包括多项式,行列式,矩阵初步,二次型。既然是工具性质的,因而除了多项式内容外,也是数学专业以外的理科、工科、经管类《线性代数》的内容,以初等变换为灵魂的矩阵理论是这部分内容的核心。另外一部分是研究线性空间的结构,这是研究代数结构的起点和模型,也是《高等代数》有别于《线性代数》之所在。《高等代数》从三个角度进行研究。从元素的角度看,研究向量间的线性表示,线性相关性,基向量;从子集角度看,研究子空间的运算和直和分解;从线性空间之间的关系来研究线性空间结构,就是线性映射,线性变换,线性映射的像与核,Jordan 标准形对应的空间分解。而欧氏空间则是具体的研究空间的例子。在研究线性空间中,始终贯穿着几何直观和矩阵方法的有机结合,矩阵的相似标准形和对应的线性空间分解则是这种有机结合的生动体现和提升,因而是本课程的精华内容。 本课程力求突出几何直观和矩阵方法的对应和互动。我们强调矩阵理论,把握简洁和直观的代数方法,同时重视线性空间和线性映射(变换)的主导地位和分量,从几何观点理解和把握课程内容。 三.课程教材和参考书: 教材:林亚南编著,高等代数,高等教育出版社,第一版 参考书:1. 姚慕生编著,高等代数(指导丛书),复旦大学出版社,第二版 2. 北京大学数学系编,高等代数,高等教育出版社,北京(1987) 3. 张禾瑞、郝炳新,高等代数,高等教育出版社,北京(1999)

高等数学基本知识

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等代数与中学数学的联系

目录 摘要................................................................................ I Abstract........................................................................... I 1 引言 (1) 2 知识方面的联系 (1) 2.1多项式理论的应用 (1) 2.2行列式的应用 (2) 2.3柯西不等式的应用 (3) 2.4二次型的应用 (4) 3 思想方面的联系 (4) 3.1符号化思想 (4) 3.2分类思想 (5) 3.3化归与转化思想 (5) 3.4结构思想 (6) 3.5公理化方法 (6) 3.6坐标方法 (6) 3.7构造性方法 (7) 4 观念方面的联系 (7) 结束语 (8) 参考文献 (8)

致谢 (10)

摘要:运用高等代数的理论、方法、思想与观点剖析和阐述中学数学相关内容的若干问题,通过若干典型试题的解析,从知识方面、思想方面以及观念方面研究了高等代数与中学数学的联系,探索高等数学观点对中学数学一些教学内容的理论依据,深化与发展高等代数在中学数学的相关内容,促进高等代数在中学数学领域的应用,探求二者的内在的联系,以便高等代数能与中学数学完美的结合. 关键词:高等代数;中学数学;数学思想方法;应用 Abstract: The problems related to elementary mathematics are analyzed and explained by using the theory,method,thoughts and views of higher algebra.Through analyzing some typical test questions,the relation between higher algebras and elementary mathematics are investigated from the aspects of knowledge、thought and idea. Exploring the higher mathematics view to middle school mathematics some teaching content theory and model,deepening and development in higher algebra in middle school mathematics related content,and promote higher algebra in the middle school mathematics field of application,and to explore the inner link,so that higher algebra can be combined with the middle school closely.Keywords: higher Algebra;middle school mathematics;mathematical thinking;application

高等代数最重要的基本概念汇总

第一章 基本概念 1.5 数环和数域 定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。 定义2 设F 是一个数环。如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠, a F b ∈,那么就称F 是一个数域。 定理 任何数域都包含有理数域,有理数域是最小的数域。 第二章 多项式 2.1 一元多项式的定义和运算 定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式 ()1 2012n n a a x a x a x ++++L , 是非负整数而012,,,n a a a a L 都是R 中的数。 项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。 定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数 为零的项,那么就说()f x 和()g x 就说是相等 ()()f x g x = 定义3 n n a x 叫作多项式2012n n a a x a x a x ++++L ,0n a ≠的最高次项,非负整数n 叫作 多项式2012n n a a x a x a x ++++L ,0n a ≠的次数。 定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么 ()i 当()()0f x g x +≠时, ()()()()()()()()0 max ,;f x g x f x g x ? +≤?? ()ii ()()()()()()()0 f x g x f x g x ? =?+?。 多项式的加法和乘法满足以下运算规则: 1) 加法交换律: ()()()()f x g x g x f x +=+;

浅谈高等代数中的等价思想及其应用

浅谈高等代数中的等价思想及其应用 蒋红梅 高等代数是数学专业学生必修的一门基础课程,该课程概念多,定理多,教学内容抽象。对于大学一年级学生来说,基本上是介绍新的代数理论,利用新的定义、定理、方法解决代数问题,缺少数学模型,学生总感到难学,遇到新的问题就不知如何下手。究其原因在于学生不了解高等代数与初等代数的区别,用中学生的思想观念和学习方法来学习,未领会高等代数中蕴含的数学方法和思想,对概念和定理的理解不足,缺少对数学方法的理解和总结。高等代数涉及的数学思想有很多,比如等价、类比、化归、结构、分类等思想,了解和应用这些数学思想可以更好地了解和掌握高代中的数学知识。等价思想是高等代数中比较重要的一种思想方法,是学生从计算解题到学习代数结构的结合点,为后续课程的学习起到了铺垫的作用。在教学中,教师应深刻理解和把握课程内容,澄清教学体系,学科思想,把握重点,化解难点,解决疑点,达到帮助学生更好地学习和掌握高等代数知识的目的,也有助于我系高等代数精品课程的建设。本文就高等代数中的等价思想及其应用作了一些探究。 1、高等代数中的等价关系 1.1关于矩阵的等价关系 高等代数中关于矩阵的等价关系有矩阵的等价、矩阵的相似、矩阵的合同,弄清它们的联系与区别是十分必要的。 首先,这三者的研究对象不同,矩阵的等价、矩阵的相似、矩阵的合同的研究对象分 别是mn A ,n A ,n A ;其次,满足的条件不一样,但n 阶实对称矩阵既相似又合同,相似或 合同的矩阵是等价的,等价矩阵不一定相似或合同。 在()F M mn 中矩阵等价是等价关系,由于初等变换法不改变矩阵的秩,因此矩阵的秩 是等价关系的完全不变量,每一类的代表元是??? ? ??000r I ,r 为矩阵的秩,按等价关系可以分为{}1,min +n m 类。用消元法求解线性方程组时,运用矩阵的初等变换法将线性方程组化为同解线性方程组的问题转化为增广矩阵的等价问题。 在()F M n 中矩阵的相似是等价关系,由于相似矩阵有相同的行列式因子、不变因子、初等因子和Jordan 标准形,因而行列式因子、不变因子、初等因子和Jordan 标准形是()F M n 上矩阵相似的完全不变量,而特征多项式、秩、迹只是矩阵相似的不变量。Jordan 标准形 是一个等价类的代表元,按等价关系可以分为1+n 类。 在()F M n 中对称矩阵的合同是等价关系,对角阵是等价类的代表元,对角阵的表达形式与数域有关。在()C M n 中的合同矩阵,对角阵??? ? ??000r I 是等价类的代表元,也是复二次型

高等代数发展史

初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。 高等代数发展简史 代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。 人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。 到了十九世纪初,挪威的一位青年数学家阿贝尔(1802~1829)证明了五次或五次以上的方程不可能有代数解。既这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数

(完整版)高等代数知识点归纳

1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1 (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 范德蒙德行列式: ()12222 1211 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 分块对角阵相乘:11 112222,A B A B A B ???? == ? ???? ??11112222A B AB A B ??= ???,1122n n n A A A ?? = ??? 分块矩阵的转置矩阵:T T T T T A B A C C D B D ?? ??= ? ????? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 1 1A A --=. 分块对角阵的伴随矩阵:* * *A BA B AB ?? ??= ? ???? ?

高等代数课程的基本内容与主要方法

2010年第2期 牡丹江教育学院学报 No 12,2010 (总第120期) JOU RN A L OF M U D AN JIA N G CO LL EG E OF EDU CA T IO N Serial N o 1120[收稿日期]2009-10-25 [作者简介]戴立辉(1963-),男,江西乐安人,闽江学院教授,研究方向为矩阵论;林大华(1959-),男,福建福州人,闽江学院副教授,研究方向为代数学;吴霖芳(1979-),女,福建永安人,闽江学院讲师,硕士,研究方向为微分方程;陈翔(1980-),男,福建连江人,闽江学院讲师,硕士,研究方向为代数环论。 [基金项目]/十一五0国家课题/我国高校应用型人才培养模式研究0数学类子课题项目(F IB070335-A2-03)。 高等代数课程的基本内容与主要方法 戴立辉 林大华 吴霖芳 陈 翔 (闽江学院,福建 福州 350108) [摘 要] 对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时体现高等代数课程要求学生掌握的知识体系。 [关键词] 高等代数;基本内容;主要方法[中图分类号]O 15 [文献标识码]A [文章编号]1009-2323(2010)02-0146-03 高等代数是高等学校数学专业的一门必修的专业基础课程,它是由多项式理论和线性代数两部分组成。多项式部分以一元多项式的因式分解理论为中心,线性代数部分主要包括行列式、线性方程组、矩阵、二次型、线性空间、线性变换、K -矩阵与若尔当标准形、欧几里得空间等。 通过高等代数课程的教学,要求学生掌握一元多项式及线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力。根据我们多年的教学经验,本文拟对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时也体现出了高等代数课程要求学生掌握的知识体系。 一、多项式 一元多项式理论主要讨论了三个问题:整除性理论,因式分解理论和根的理论。其中整除性是基础,因式分解是核心。 (一)基本内容 1.整除性理论)))整除,最大公因式,互素。 2.因式分解理论)))不可约多项式,典型分解式,重因式。 3.根的理论)))多项式函数,根的个数,根与系数的关系。 (二)主要方法 1.多项式除多项式的带余除法。 2.用辗转相除法求两个多项式的最大公因式,最大公因式的判别法。 3.两多项式互素的判别法。 4.不可约多项式的判别法,多项式标准分解式求法,重因式的判别法。 5.多项式函数值的求法,x -c 除多项式f (x )的综合除法,多项式按x -x 0的方幂展开的方法。 6.多项式根的判别法,多项式重根的判别法。 7.整系数多项式有理根的求法,艾森斯坦判断法。二、行列式 行列式是线性方程组理论的一个重要组成部分,是一种重要的数学工具。 (一)基本内容 n 级排列及其性质,n 级行列式的概念,行列式的性质,行列式的计算,克拉默规则。 (二)主要方法 1.求一个排列的逆序数的方法。 2.行列式的计算方法:定义法,性质法,化为三角形行列式的方法,降级法(按一行或一列展开法、拉普拉斯展开法),化为范得蒙行列式的方法,递推法,加边法,数学归纳法,拆项法。 3.一些特殊行列式的计算方法)))三角形行列式,ab 型行列式,范得蒙行列式,爪型行列式,三对角行列式。 4.克莱姆规则。三、线性方程组 /线性方程组0这部分在理论上解决了线性方程组有解的判定、解的个数及求法、解的结构等。 (一)基本内容 1.向量的线性关系)))n 维向量,向量的线性运算,线性组合,线性表出,线性相关,线性无关,极大线性无关组,向量组等价,向量组的秩。 2.矩阵的秩)))矩阵的秩=矩阵行(列)向量组的秩,即矩阵的行(列)秩=矩阵不为零的子式的最大级数,初等变换不改变矩阵的秩,用初等变换计算矩阵的秩。 3.线性方程组的解的情形)))线性方程组有解的判定,线性方程组解的个数,齐次线性方程组解的情形。 4.线性方程组解的结构)))齐次线性方程组的基础解系,齐次线性方程组解的表示,非齐次线性方程组解的表示。

数学基本概念

基本概念 第一章数和数的运算一概念(一)整数 1整数的意义:自然数和0都是整数。2自然数: 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除 整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a 能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

高等代数习题

高等代数习题 第一章基本概念 §1.1 集合 1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集? 2、设a是集A的一个元素。记号{a}表示什么? {a} A是否正确? 3、设 写出和 . 4、写出含有四个元素的集合{ }的一切子集. 5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个? 6、下列论断那些是对的,那些是错的?错的举出反例,并且进行改正. (i) (ii) (iii) (iv) 7.证明下列等式: (i)

(ii) (iii) §1.2映射 1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射. 2、找一个全体实数集到全体正实数集的双射. 3、是不是全体实数集到自身的映射? 4.设f定义如下: f是不是R到R的映射?是不是单射?是不是满射? 5、令A={1,2,3}.写出A到自身的一切映射.在这些映射中那些是双射? 6、设a ,b是任意两个实数且a

9、设是映射,又令,证明 (i)如果是单射,那么也是单射; (ii)如果是满射,那么也是满射; (iii)如果都是双射,那么也是双射,并且 10.判断下列规则是不是所给的集合A的代数运算: 集合 A 规则 1 2 3 4 全体整数 全体整数 全体有理数 全体实数 b a b a+ → |) , ( §1.3数学归纳法 1、证明: 2、设是一个正整数.证明 ,是任意自然数. 3、证明二项式定理: 这里 , 是个元素中取个的组合数.

高等代数与解析几何教材特色与比较

1、《高等代数与解析几何(上下册)(第2版)》简介:数学分析、高等代数与解析几何是大学数学系的 三大基础课程,南开大学数学系孟道骥 出版社:科学出版社; 第2版 (2011年1月5日) 丛书名:普通高等教育"十一五"国家级规划教材 平装: 480页https://www.360docs.net/doc/e412331692.html,/jpkc/gdds/ 第二版在以下几个方面作了修改。 为了降低学习难度,根据第一版使用的经验和反馈,我们把第一章里有关线性流形和子空间的内容删去,让这些概念到第三章才出现。第二章的行列式定义还是使用通常的乘积交叉和的形式,把第一版使用的有向体积(即多重线性函数)定义作为几何意义放在评注里。还把几何空间的直线与平面的内容集中放到新设的第四章。考虑到以后计算多重积分的需要,在第六章第8节补充了有关求空间区域到坐标平面投影的求法,给出一个例题和一些习题。此外对习题的顺序和配备做了整理,增加了一些入门级的基本题,较难的题排在后面,还打上星号,这样虽然每一节后面有不少习题,但教师可以根据不同的要求选取习题,从最易到很难,有很大选择余地。根据华东师范大学几年来的经验,第一学年每周6学时(其中2学时习题课)可以把不打星号的内容教完。第3学期开设每周2学时的选修课,讲授第十四章以及其他一些打星号的内容,这样可以使兴趣不同的学生各得其所。 在帮助学生熟悉数学软件方面,第二版增加了与Mapie平行的:Mathematica的内容,使用者可以从中选择一种。由肖刚教授开发的网上互动式多功能服务站(WIMS)有了汉化的光盘版KNOWIMS,这是一个开放软件,可以免费使用。即使在上网不易的偏远地区,只要有一台电脑,就能拥有一个w:IMS系统,而且教师还可以在这个系统里自行开发各种练习。我们在附录中介绍了WIMS的用法,许多章节后面会介绍相应的练习。希望广大师生能喜欢它,发展它。当然这些有关计算机的内容都是选学的,有兴趣的读者可向高等教育出版社数学分社索取相关软件光盘。 第一章向量代数 本章的主要内容是向量及其代数运算。我们在力学和物理中已经遇到过既有大小义有方向的量,如力、速度等。现在我们面临的问题是从数学的观点研究向量的特性以及它的各种运算。利用向量往往能使某些几何问题更简捷地得到解决。向量方法也是力学、物理学和工程技术中常用的有力工具。向量无疑是一个几何概念,但是在空间中建立了坐标系后,向量与它的坐标问有了一个一一对应的关系。这样就使得许多涉及向量的几何问题转换成了它的坐标(数组)间的代数问题,为应用代数方法解决几何问题提供了桥梁。本章的有些例题与习题就是展示向量代数方法在立体几何中的应用。反之,取定了原点和坐标系后,一个二元或三元的数组又能被看成以原点为始点的向量。例如复数就可被看成平面向量。这样又使得许多抽象的代数概念获得了具体的几何背景。数(或公式)与图形的结合及转化始终是数学发展的有力手段。于是几个数的数组被看成了虚构的高维空间中的向量。现实空间中向量的各种运算被推广到了高维数组构成的“空间”,抽象的数组被赋予了直观的形象。我们这门课程把高等代数与解析几何揉合在一起,既是为了给几何问题提供代数工具,也是为了给抽象的代数概念提供几何的背景。希望同学们在学习时对于形数结合给予更多的重视。并把本章学习的重点放在对各种向量运算以及向量的线性相关性的直观理解上,为以后的代数化作准备。 《高等代数与解析几何(上下册)(第2版)》分上、下册,第1章讨论多项式理论;第2章介绍行列式,包括用行列式解线性方程组的Craner法则;第3章矩阵,主要介绍矩阵的计算、初等变换及矩阵与线性方程组的关系;第4章介绍线性空间;第5章介绍线性变换;第6章多项式矩阵是为了讨论复线性变换而设的;第7章介绍Euclid空间;第8章介绍双线性函数与二次型;第9章讨论二次曲面;第10章介绍仿射几何与影射几何。 《高等代数与解析几何(上下册)(第2版)》附有相当丰富的习题。 个人认为这套教材总体还算不错(虽然系里大多数人都认为很烂),内容、观点还是比较新颖的,不同于一般的教材。不足之处(应该也是同学们“讨厌”的地方)在于有些比较重要的定理写的过于简略,进展太过

如何学好高等代数

如何学好《高等代数》 ——范崇金(哈尔滨工程大学陈赓班高等代数教师) 笔者现承担哈尔滨工程大学陈赓实验班的《高代》课程的教学工作,很早就有很多同学追问笔者,如何才能学好《高代》,虽然笔者在课堂上也简略地谈过此问题,但笔者一直不敢以文字的形式讨论此问题。因为对此没有正确的答案,就如同谈学习方法,一个人认为正确的方法不一定适合他人,对他人甚至是错误或有害的,但鉴于目前同学们的学习状况,也为了应付许多同学给笔者布置的作业,故写点东西,完全从个人角度谈谈如何学习《高代》,未必正确,仅供同学们参考! 一、认识《高代》课程 学习一门课程,兴趣无疑是极为重要的,但大学中不可能针对每个学生的兴趣安排 课程,许多学生往往要‘被迫’学习许多课程。当然课程也是专家针对专业需要所 安排的,特别是一二年级的重要基础课。对于一门课程,如果对其有一个全面的认 识,对学习也是大有好处的: (1) 从理科角度,如对数学专业、理论物理专业等,《高代》是新生的基础课,是学习许多后续课程的基础。 (2) 从工科角度,《线性代数》(英文是Linear Algebra)是工科学生的重要基础课,《高代》(英文是Advanced Linear Algebra)实际上就是偏理的《线性代 数》。对于线性代数要求较高或偏理的工科,一般以《高代》替代《线代》。 (3) 从应试角度,《高代》是理科硕士研究生的入学必考课程;《线代》也是工科硕士研究生入学考试课程必考的;对于我们大家,《高代》是高学分的必 修课,总不及格. . . ? 二、大学数学课程与中学数学课程的差异 就宏观角度,大学数学与中学数学没有本质差别,但从微观上,大学数学课程与 中学的数学有很大的不同。首先,中学数学很大程度上是数的计算,恒等式的推 演以及少量而简单的不等式推演;从教学角度,中学数学是知识积累型教育,虽 然也渗透数学思想的教育,但不是主线。大学数学课程不仅在内容上比中学数学 要难的多,而且除了特别的计算类数学课程,数的计算在大学数学中虽然也是重 要的,但已经不是主要的,大学数学,特别是偏理的数学课程,更关注于理论、 数学方法和数学思想;在学习一门数学课程时,在积累知识时,更要求学生能从 整体和宏观上认识这门课程中的数学内容和思想方法。 三、高等代数的特点 《高代》是大学数学, 但《高代》与数学分析比又有自身的特点: (1) 《高代》的概念更抽象。在数学分析中, 在引入导数和定积分时, 我们有很直观的几何背景, 初学者容易接受,而《高代》中为什么要引入什么概 念(如向量组的秩、矩阵的秩)往往是后验式的,也就是当我们学习了后 面的内容后才明白为什么要引入此概念,这一点与中学数学大不相同。当 我们将行列式、线性方程组理论、矩阵的矩阵、向量组理论学习完后,再 来整体认识这个理论体系,我们才会明白矩阵的秩是它们的灵魂。 (2) 《高代》中的推理多数是逻辑运算。在任何数学理论中,逻辑运算都是不

高等代数最重要的基本概念汇总

第一章 基本概念 数环和数域 定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。 定义2 设F 是一个数环。如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠, a F b ∈,那么就称F 是一个数域。 定理 任何数域都包含有理数域,有理数域是最小的数域。 第二章 多项式 一元多项式的定义和运算 定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式 ()1 2 012n n a a x a x a x +++ +, 是非负整数而012,,,n a a a a 都是R 中的数。 项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。 定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数 为零的项,那么就说()f x 和()g x 就说是相等 ()()f x g x = 定义3 n n a x 叫作多项式2 012n n a a x a x a x +++ +,0n a ≠的最高次项,非负整数n 叫作 多项式2 012n n a a x a x a x +++ +,0n a ≠的次数。 定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么 ()i 当()()0f x g x +≠时, ()()()()()()()()0 max ,;f x g x f x g x ? +≤?? ()ii ()()()()()()()0 f x g x f x g x ? =?+?。

高等数学基本知识大全

高等数学

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

《高等代数》课程教学大纲

《高等代数》课程教学大纲 课程编号:090085、090022 总学时:162 学分:8 适用专业:数学与应用数学、信息与计算科学 课程类型:专业必修课 开课单位: 一、课程的性质、目的与任务 通过本课程的教学,使学生对高等代数乃至代数学的思想和方法有较深刻的认识, 提高他们的抽象思维、逻辑推理和运算的能力;使学生初步地掌握基本的、系统的代数知识和抽象的、严格的代数方法,进而加深对中学代数的理解;使学生能应用代数思想和方法去理解与处理有关的问题, 培养与提高代数的理论分析问题与解决问题的能力;使学生学习数学学科后续课程(如近世代数、离散数学、计算方法、偏微分方程、泛函分析等)提供一些所需要的基础理论和知识;使学生在智能开发、创新能力培养等方面获得重要的平台。 《高等代数》是数学与应用数学、信息与计算科学本科专业最重要的基础课程之一,是数学各专业报考研究生的必考课程之一,也是理论性、应用性很强的一门数学基础课。讲授本课程的目的主要在于培养学生的代数基础理论和思想素质,基本掌握代数中的论证方法, 获得较熟练的演算技能和初步应用的技巧, 提高分析问题、解决问题的能力,为进一步学习其它数学知识打下坚实的基础。 本课程的主要任务是通过教学的主要环节(课堂讲授与讨论、习题课、作业、辅导答疑等),使学生学习和掌握多项式理论、线性代数的代数理论(行列式、线性方程组、矩阵、λ矩阵)及线性代数的几何理论(线性空间、线性变换、欧氏空间)。 二次型、- 二、课程教学内容和基础要求 (1)理解多项式的定义,掌握最大公因式,互素,不可约多项式, 因式分解等有关的一系列性质。 (2)理解行列式的定义, 掌握行列式的基本运算性质和行列式的行(列)展开性质;理解向量组的线性相关性,掌握线性方程组的通解求法;理解矩阵的概念和运算,掌握矩阵的可逆、矩阵的分块、矩阵的等价关系的性质及应用;理解二次型的定义,掌握二次型的标准形的求法及正定二次型的一系列性质。 (3)理解线性空间的定义,掌握交空间、和空间及直和的判定及性质;理解线性变换的定义及简单性质,掌握线性变换在不同基下的矩阵的性质、线性变换的值域与核的应用问

从高等代数看中学数学

从高等代数看中学数学 高等代数是大学数学专业的主干专业基础课,是初等代数的继续和提高。高中新课改形势下的师范院校数学系的学生,经常面临着怎样运用所学的大学数学知识指导中学数学这个老大难的问题。因此,在教学中应该注意联系中学教学实际,引导学生在中学知识和大学知识之间架起一座桥梁,从而顺利实现思维方式和学习方法的过渡和转变,指导学生、也是未来的中学数学教师能利用课程的理论、方法与观点去剖析中学数学的方法问题,有利于帮助他们融会贯通中学数学的相关内容,提高解决中学数学问题的能力,高屋建瓴地深刻理解中学数学有关内容的来龙去脉,知其然且知所以然,培养较高层次的数学素质,为今后的教学实践打下专业基础。同时,反过来也有利于激发学习兴趣,促进知识深化。下面将从数学知识、数学思想方法、数学观念等方面发掘高等代数与中学数学的联系。 一线性方程组理论的应用 1.关于消元法与解的结构。线性方程组的理论是线性代数的重要理论结果,它是中学数学方程组求解方法的理论化与规范化。线性方程组是否有解、有解时解的数量、通解的公式表示、解的几何意义等一系列问题都得到了圆满的解决,体现了高等代数相对于初等代数的新观点、新思想、新方法的优越性,对中学数学教学具有高屋建瓴的指导作用。消元法是中学数学求解二(三)元一次方程组的基本方法,在高等代数中可以得到理论上的完美解释,即由于线性方程组的初等变换保持同解性,所以消元法可行,而且消元法的实质是反复对方程组作初等变换,或者说消元法是对线性方程组的增广矩阵作行的初等变换的过程。并且,根据线性方程组解的理论容易知道解的只有三种情况(唯一解、无解、无穷多解)以及具体判定方法和解的结构特征。特别地,在一定条件下,方程组的唯一解可以用公式形式给出,即Cramer法则。Cramer法则的意义主要在于:明确了解的存在性与唯一性,为判断这类方程组的有解性提供了比较直接的方法;将求解问题,转化为行列式的计算,避免了消元法的繁琐计算;以公式的形式给出了解与系数的明显关系,为一般线性方程组公式解的表达式提供了理论依据。 2.几个平面共点、共线、平行与重合的问题。利用线性方程组的理论容易解决平面共点、共线、平行与重合的问题。 实际上,平面族交于一点的条件是对应的方程组有唯一解,相当于系数矩阵与增广矩阵的秩都等于3;平面族共线的条件是系数矩阵与增广矩阵的秩都等于2;平面族过同一平面(重合)的条件是系数矩阵与增广矩阵的秩都等于1;平面族互相平行的条件是对应的方程组无解,相当于系数矩阵与增广矩阵的秩不相等。此外线性方程组理论还可解决直角坐标平面上四点共圆或者过不共线的三点的圆的方程等问题。 二向量线性关系的几何意义 向量思想体现了数学的抽象性与严谨性,反过来又展示了应用广泛性的特点,向量之间的线性相关性有着明显的几何意义。 一维情况:非零向量a与向量e共线(平行)的充要条件是a可由e线性表示。更一般的,两个向量共线(平行)的充要条件是它们线性相关。 二维情况:向量a与不共线的两个向量e1,e2共面的充要条件是a可由e1,e2线性表示。更一般的,三个向量共面的充要条件是它们线性相关。

高等数学基础知识点归纳

第一讲函数,极限,连续性 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给 定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集,记作N+。 ⑶、全体整数组成的集合叫做整数集,记作Z。 ⑷、全体有理数组成的集合叫做有理数集,记作Q。 ⑸、全体实数组成的集合叫做实数集,记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就 说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。 ⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中 的元素完全一样,因此集合A 与集合B 相等,记作A=B。 ⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合 B 的真子集,记作A 。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。 ②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作U。

相关文档
最新文档