原电池电动势的测定

原电池电动势的测定
原电池电动势的测定

实验三:原电池电动势的测定

一、实验目的:

1、了解各类电极的构造、制备和使用;

2、掌握盐桥的制备方法和它在电动势测定中的作用;

3、掌握SDC型电极电位仪的原理和使用方法;

4、测量下列原电池的电动势:

(1)Hg(l) ,Hg2C12(s)| KCl(饱和)| H+ (待测)Q,H2Q| Pt

求待测盐酸溶液的pH值。

(2)Hg(l),Hg2C12(s)| KCl(饱和) || AgNO3(0.02mol·kg-1)|Ag(s)

求Ag电极电极电位。

(3)Ag(s),AgCl(s)| KCI(0.02 mol·kg-1) || AgNO3(0.02mol·kg-1)| Ag(s)

求AgCl溶度积。

二、实验基本原理:

1、电极电位及电动势:

原电池是由二个电极组成,即发生氧化作用的负极,发生还原作用的为正极。故原电池电动势值等于组成该原电池两电极的电极电位的代数和。虽然电极电位的绝对值不能测量,但只要确定各个电极相对于同一基准的相对电位,利用相对电位的数值,就可计算任意两个电极所组成的电池的电动势。现统一规定以标准氢电极作为基准,并规定任意温度下标准氢电板的电极电位为零。若将标准氢电极作为发生氧化作用的负极,给定电极作为发生还原作用的正极,组成原电池,规定此原电池的电动势为该给定电极的电极电位(称还原电极电位),其计算通式为:

φ=φ0 +RT/nF*㏑a氧化态/a还原态 (1) 上式中:a为活度,a和φ0 分别为给定电极的电位和标准电极电位,R、T、

F和 n分别为气体常数、绝对温度、法拉弟常数和单位电极反应所需电子的物质的量。当溶液很稀时,活度a可用浓度c表示。

由任意两电极构成原电池时,其电动势值可按下式计算:

ε=φ+-φ- (2) 但使用(2)式计算电动势的条件是两个电极的不同电解质溶液接触时的液体接界电位已被消除。为此,在电动势测量时,常用“盐桥”连接原来产生显著接界电位的两电解质溶液,使它们不相接触,而且盐桥中使用正负离子迁移数相当接近的电解质(KCl、NaAc等),这样可大大减少了接界电位的数值。本实

验用的电解质是NaAc,因银电极中的Ag+易与KCl中的Cl—发生作用。

还有,实际测量还原电极电位时,一般因标准氢电极使用时的条件要十分严格,故往往采用其它电极作为参比电极,最常用的有甘汞电极和银—氯化银电极。 2.电极性质和制备

(1)醌氢醌电极

醌氢醌是醌(Q)与氢醌(H2Q)等分子化合物。由它组成的电极是一种对氢离子可逆的氧化还原电极。醌氢醌在水中的溶解度很小,并且依下式部分解离:

C6H4O2·C6H4(OH2) ?C6H4O2+C6H4(OH)2

醌氢醌醌氢醌

将少量醌氢醌放入含有H的待测溶液中,并使其达到饱和,然后插入铂电极就成为一+

支醌氢醌电极。在电极上发生的电极反应为;

C6H4O2 +2H+ +2e ? C6H4(OH)2

醌氢醌

其电极电位可表示为:

φ醌=φ0

醌-RT/F* ln 1/aH+ (3)

氢醌电极标准电极电位与温度的关系为:

φ0

醌=0.6884-0.00074(t-25) (4)

(2)Ag电极

把Ag电极用3mo1·L-1HNO3清洗,除去表面油污,处理干净,插入盛有Ag NO 3溶液的半电池中,组成Ag电极,其电极反应及电极电位如下:

Ag+ (a1)+e?Ag(s)

φAg =φ0

Ag-RT/F*ln(1/ aAg+) (5)φ0

Ag=0.7999-0.00097(t-25) (6)(3)Ag-AgCl电极

Ag-AgCl电极也是常用的参比电极,其电极反应如下:

Ag(s)+Cl(a) ?AgCl (s)+e

其电极电位由下式表示:

φAgCl=φ0 AgCl-RT/F*lnacl- (7)

在不同温度下,AgCl电极的标准电极电位由下式表示:

φ0 AgCl=0.2224-0.000645(t-25) (8)

Ag-AgCl电极制备方法,把Ag电极用3mol·L HNO3清洗,除去表面油污(若Ag电极上已度AgCl,可先用氨水洗净,以免影响镀层质量),插入0.1mol·L-1HCl溶液中,以Ag电极为阳极,另一支铂电极为阴极,电镀一层AgCl (电流密度为2mA/cm2 ,通电30分钟)。电镀好的电极呈紫褐色,然后用蒸馏水清洗,放入与待测体系相同氯离子浓度的KCl溶液中。(4)甘汞电极甘汞电极做为测量电池电动势参比电极使用,其电极反应为:

2Hg (l) + 2C1- (a)—→Hg2C12(s) + 2e

电极电位以下式表示;

φ

甘汞=φ0

甘汞

-RT/F*ln acl - (9)

常用三种不同浓度的甘汞电极与温度的关系式为:

0.1mol·L-1 KClφ

甘汞

=0.3337-7×10-5(t-25) (10)

1.0mol·L-1 KClφ

甘汞

=0.2801-2.4×10-4(t-25) (11)

饱和 KClφ

甘汞

=0.2412-7.6×10-4(t-25) (12)

三、实验步骤:

1、盐桥的制备;

2、用SDC型电极电位仪测量;

(1)测量1号电池;

(2)测量2号电池;

(3)测量3号电池;

测量完后,放好电极电位仪,关掉电源,清洗电池装置。

四、数据处理:

电池号测定值(v)

平均值(v)一次二次三次

pH=-lga H

+

=(φ

醌-φ饱和甘汞-ε1)/0.000198T

3、由下式计算银电极电位:

φAg+/Ag=ε2+φ

饱和甘汞4、由下式计算AgCL溶度积:

Ag +

(aAg+)+CL

-

(acl

-

)=AgCL(s)

ε=ε0

-RT/F*㏑(1/a cl-·a Ag+)

=RT/F*(㏑(a cl-·a Ag+/Ksp))

五、注意事项:

1、测电动势之前应对电极电位仪校正,即采零;

2、测定时绝对不可将标准电池及原电池摇动,倾斜,躺倒或倒转,以防电池内

液体混合使电动势变化;

3、待测电池电动势的液体应浸没电极;

六、思考题:

1、测电池电动势为何要用盐桥,如何选用盐桥以适应不同的体系?

答:用盐桥是用来消除液接电势,提高实验精度;选择盐桥中电解质的要求是:(1)高浓度(通常是饱和溶液);

(2)电解质正负离子的迁移率接近相等;

(3)不与电池中的溶液发生反应,具体选择时应防止盐桥中离子与原电池溶液中的物质发生反应。

原电池电动势的测定实验报告

原电池电动势的测定实验报告范本(完整版) After Completing The Task According To The Original Plan, A Report Will Be Formed To Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas?

互惠互利共同繁荣

原电池电动势的测定实验报告范本 (完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提岀今后设想。文档可根据实际情况进行修改和使用。 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的 操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池 (或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;⑵电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时 通过电池的电流应为无限小。

因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法, 可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为e+,负极电势为e-,则电池电动势 E = e+ - e-。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测岀,具体的电极电位可参考相关文献资料。

电导的测定及其应用实验报告

电导的测定及其应用 以C 对 作图,其直线的斜率为 心,如知道值,就可算出K 0 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml )2只,移液管(25ml )3只,洗 瓶1只,洗耳球1只 试剂:10.00 (mol ? m -3) KCl 溶液,100.0 (mol ? m -3) HAc 溶液,电导水 四、实验步骤 、实验目的 1、测量KCI 水溶液的电导率,求算它的无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中的解离平衡常数。 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G 可表示为: 式中,k 为电导率,电极间距离为 I ,电极面积为 A , l/A 为电导池常数 Kcell ,单位为m -1 。 本实验是用一种已知电导率值的溶液先求出 Kcell ,然后把欲测溶液放入该电导池测出其电导值 G ,根据(1)式求出电导率 k 。 A ~ 摩尔电导率与电导率的关系: 1 式中C 为该溶液的浓度,单位为 mol ? m -3 2、 总是随着溶液的浓度降低而增大的。 对强电解质稀溶液, " 1;, K " 式中 是溶液在无限稀释时的极限摩尔电导率。 至C=0处,可求得 。 A 为常数, 故将,对,c 作图得到的直线外推 4 CX> i I i OT 3、对弱电解质溶液, " ■ ■ 式中 、分别表示正、负离子的无限稀释摩尔电导率。 在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为: 对于 HAc , 1 (6) HAc 的可通过下式求得: - ' CA= 把⑷代入(1) 得: UA 八(A ;『仏亠心 或

电动势的测定及其应用(实验报告)

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

原电池电动势的测定

原电池电动势的测定 ——杨兰森(20096842) 一、实验目的 1. 了解各类电极的构造、制备和使用; 2. 掌握盐桥的制备方法和它在电动势测定中的作用; 3.掌握SDC型电极电位仪的原理和使用方法; 4. 测量下列原电池的电动势: (1)Hg(l),Hg2Cl2(s)︱KCl(饱和)︱H+(待测)Q,H2Q︱Pt,求待测盐酸溶液的pH值。 (2)Hg(l),Hg2Cl2(s)︱KCl(饱和)‖AgNO3(0.02mol·kg-1)︱Ag(s),求Ag电极的电极电位。 (3)Ag(s),AgCl(s)︱KCl(0.02mol·kg-1)‖AgNO3(0.02mol·kg-1)︱ Ag(s),求AgCl溶度积。 二、实验原理 1. 电极电位及电动势: 原电池是由两个电极组成,即发生氧化作用的负极和发生还原作用的正极。故原电池电动势值等于组成该原电池两电极的电极电位的代数和。虽然电极电位的绝对值不能测量,但只要确定各个电极相对于同一基准的相对电位,利用相对电位的数值,就可以计算任意两个电极所组成的电池的电动势。现以标准氢电极作为基准,规定任意温度下标准氢电极的电极电位为零。若将标准氢电极作为发生氧化作用的负极,给定电极做正极,组成原电池,规定此原电池的电动势为给定电极的电极电位(称还原电极电位),其计算通式为: (1) 由任意两个电极组成原电池时,其电动势可按下式计算: (2) 使用(2)式计算电动势的条件是两个电极不同电解质溶液接触时的液体接界电位已被消除,为此需用“盐桥”连接电解质溶液以降低接界

电位。 另外,实际测量还原电极电位时,由于标准氢电极使用条件十分严格,故往往采用其他电极作参比电极,最常用的有甘汞电极和银-氯化银电极。 2. 电极性质和制备 (1)醌氢醌电极 醌氢醌是醌(Q)与氢醌(H2Q)等分子化合物。由它组成的电极是一种对氢离子可逆的氧化还原电极。醌氢醌在水中依下式部分解离:C6H4O2·C6H4(OH)2 C6H4O2+C6H4(OH)2 醌氢醌醌氢醌 将少量醌氢醌放入含有H+的待测溶液中,并使其达到饱和,然后插入铂电极就成为一支醌氢醌电极。 其电极电位可表示为: 氢醌电极标准电极电位与温度的关系为: (2)Ag电极 把Ag电极清洗干净,插入盛有AgNO3溶液的半电池中,组成Ag电极,其电极电位如下: (3)Ag-AgCl电极 Ag-AgCl电极的电极电位由下式表示: (4)甘汞电极 甘汞电极的电极电位由下式表示: 饱和KCl甘汞电极:

电导率的测定

实验一电导的测定及其应用 一、实验目的 1.了解溶液的电导,电导率和摩尔电导的概念。 2.测量电解质溶液的摩尔电导及难溶盐的溶解度。 二、实验原理 1、电解质溶液的电导、电导率、摩尔电导率 ①电导 对于电解质溶液,常用电导表示其导电能力的大小。电导G是电阻R的倒数,即G=1/R 电导的单位是西门子,常用S表示。1S=1Ω-1 ②电导率或比电导 κ=G l/A 其意义是电极面积为及1m2、电极间距为lm的立方体导体的电导,单位为S·m-1。 对电解质溶液而言,令 l/A = Kcell 称为电导地常数。 所以κ=G l/A =G Kcell Kcell可通过测定已知电导率的电解质溶液的电导而求得。 ③摩尔电导率Λ m Λ m =κ/ C 当溶液的浓度逐渐降低时,由于溶液中离子间的相互作用力减弱,所以摩尔电导率逐 渐增大。柯尔劳施根据实验得出强电解质稀溶液的摩尔电导率Λ m 与浓度有如下关系: Λ∞ m 为无限稀释摩尔电导率。可见,以Λm对C作图得一直线,其截距即为Λ∞ m 。 弱电解质溶液中,只有已电离部分才能承担传递电量的任务。在无限稀释的溶液中可 认为弱电解质已全部电离。此时溶液的摩尔电导率为Λ∞ m ,可用离子极限摩尔电导率相加求得。 2、PbSO 4 的溶解度的测定 首先测定PbSO 4 饱和溶液的电导率κ 溶液 ,因溶液极稀,必须从κ 溶液 中减去水的电导率κ 水即 κ PbSO4 =κ 溶液 -κ 水 三、仪器和试剂 1、DDS-307型电导率仪 1台 2、锥形瓶(250ml) 1个 3、铂黑电极 1支 4、烧杯(150ml) 1个 ∞ κ = 4 4 m.PbSO PbSO Λ C

原电池电动势的测定实验报告

实验九原电池电动势的测定及应用 一、实验目的 1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC-Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=-(9-1) 式中G ?是电池反应的吉布斯自由能增量;n为电极反应中得失电子的数目;F为法拉第常数(其数值为965001 ?);E为电池的电动势。所以测出该电池的电动势E后,进而 C mol- 又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计 测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++ - + 正极起还原反应: 22()2()C u C u a e C u s + +- + 电池总反应为: 2222()()()()C u Zn Zn s C u a Zn a C u s ++++ ++ 电池反应的吉布斯自由能变化值为: 22ln C u Zn Zn C u a a G G RT a a ++?=?- (9-2) 上述式中G ? 为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221C u Zn a a + +==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn C u a R T E E nF a ++ =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1ln 2C u C u C u RT F a ??+ ++=- (9-6) 22,1ln 2Zn Zn Zn RT F a ??+ + -=- (9-7) 式中2,Cu Cu ?+ 和2,Zn Zn ?+ 是当221C u Zn a a + +==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22() ()2Zn Zn s Zn a e ++-+ 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+ 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++ 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6) 22,1 ln 2Zn Zn Zn RT F a ??+ + -= - (9-7) 式中2,Cu Cu ? +和2,Zn Zn ?+是当221Cu Zn a a ++==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

物理化学电导及其应用

物理化学实验报告 院系化学与环境工程学院 班级0409403 学号040940302 姓名 实验名称电导与其应用 日期2011-12-1 同组者姓名 室温12.9℃ 气压977.3mmHg 成绩 一、实验目的 1.了解溶液电导的基本概念。 2.学会电导(率)仪的使用方法。 3.掌握溶液电导的测定及应用。 二、预习要求 掌握溶液电导测定中各量之间的关系,学会电导(率)仪的使用方法。 三、实验原理 1.弱电解质电离常数的测定

AB 型弱电解质在溶液中电离达到平衡时,电离平衡常数K C 与原始浓度C 和电离度α有以下关系: 2 C C K 1α α = - (1) 在一定温度下K C 是常数,因此可以通过测定AB 型弱电解质在不同浓度时的α代入(1)式求出K C 。 醋酸溶液的电离度可用电导法来测定,图19.1是用来测定溶液电导的电导池。 将电解质溶液放入电导池内,溶液电导(G)的大小与两电极之间的距离(l)成反比,与电极的面积(A)成正比: A G k l = (2) 式中,l A ?? ??? 为电导池常数,以K cell 表示;κ为电导率。其物理意义:在两平行而相距1m ,面积均为1m 2 的两电极间,电解质溶液的电导称为该溶液的电导率,其单位以SI 制表示为S·m -1 (c·g·s 制表示为S·cm -1 )。 由于电极的l 和A 不易精确测量,因此在实验中是用一种已知电导率值的溶液先求出电导池常数K cell ,然后把欲测溶液放入该电导池测出其电导值,再根据(2)式求出其电导率。 溶液的摩尔电导率是指把含有1mol 电解质的溶液置于相距为1m 的两平行板电极之间的电导。以Λm 表示,其单位以SI 单位制表示为S·m 2·mol -1(以c·g·s 单位制表示为S·cm 2·mol -1)。 摩尔电导率与电导率的关系: m C κ Λ= (3) 式中,C 为该溶液的浓度,其单位以SI 单位制表示为mol·m -3 。对于弱电解质溶液来说,可以认为: m m α∞ Λ= Λ (4) m ∞ Λ是溶液在无限稀释时的摩尔电导率。对于强电解质溶液(如KCl 、NaAc),其Λm 和C 的 关系为( ) m m 1C β ∞ Λ=Λ-。对于弱电解质(如HAc 等),Λm 和C 则不是线性关系,故它不 能像强电解质溶液那样,从 m C Λ- 的图外推至C =0处求得m ∞ Λ。但我们知道,在无限稀 释的溶液中,每种离子对电解质的摩尔电导率都有一定的贡献,是独立移动的,不受其它离 出水口 导线 电极 进水口 图 19.1 电导池

实验一原电池电动势测定

实验一 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”

电导的测定及其应用实验报告.doc

电导的测定及其应用 一、实验目的 1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中的解离平衡常数。 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G可表示为:(1) 式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。 本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。 摩尔电导率与电导率的关系:(2) 式中C为该溶液的浓度,单位为mol·m-3。 2、总是随着溶液的浓度降低而增大的。 对强电解质稀溶液,(3) 式中是溶液在无限稀释时的极限摩尔电导率。A为常数,故将对c作图得到的直线外推至C=0处,可求得。 3、对弱电解质溶液,(4) 式中、分别表示正、负离子的无限稀释摩尔电导率。 在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5) 对于HAc,(6) HAc的可通过下式求得: 把(4)代入(1)得:或 以C对作图,其直线的斜率为,如知道值,就可算出K o 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只 试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水 四、实验步骤

1、打开电导率仪开关,预热5min。 2、KCl溶液电导率测定: ⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑷重复⑶的步骤2次。 ⑸倾去电导池中的KCl溶液,用电导水洗净量杯和电极,量杯放回烘箱,电极用滤纸吸干 3、HAc溶液和电导水的电导率测定: ⑴用移液管准确移入100.0(mol·m-3)HAc溶液25.00 ml,置于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管移入25.00 ml已恒温的电导水,置于量杯中,搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再移入25.00 ml电导水,搅拌均匀,测定其电导率3次,取平均值。 ⑷再用移液管准确移入25.00 ml电导水,置于量杯中,搅拌均匀,测定其电导率3次,取平均值。 ⑸倾去电导池中的HAc溶液,用电导水洗净量杯和电极;然后注入电导水,测定电导水的电导率3次,取平均值。 ⑹倾去电导池中的电导水,量杯放回烘箱,电极用滤纸吸干,关闭电源。 五、数据记录与处理 1、大气压:102.08kPa 室温:17.5℃实验温度:25℃ 已知:25℃时10.00(mol·m-3)KCl溶液k=0.1413S·m-1;25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) ⑴测定KCl溶液的电导率: ⑵测定HAc溶液的电导率: 电导水的电导率k(H2O)/ (S·m-1):7 *10-4S·m-1

【实验报告】原电池电动势的测定实验报告

原电池电动势的测定实验报告 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池(或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为φ+,负极电势为φ-,则电池电动势E = φ+ - φ- 。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常

用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。 以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。 仪器和试剂 SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和KCl 溶液。 实验步骤 1. 记录室温,打开SDC-II型数字式电子电位差计预热5 分钟。将测定旋钮旋到“内标”档,用1.00000 V电压进行“采零”。 2. 电极制备:先把锌片和铜片用抛光砂纸轻轻擦亮,去掉氧化层,然后用水、蒸馏水洗净,制成极片。 3. 半电池的制作:向两个50 mL 烧杯中分别加入1/2 杯深0.1000 mol?L-1 CuSO4 溶液和0.1000 mol?L-1 ZnSO4 溶液,再电极插入电极管,打开夹在乳胶管上的弹簧夹,将电极管的尖嘴插入溶液中,用洗耳球从乳胶管处吸气,使溶液从弯管流出电极管,待电极一半浸没于溶液中时,用弹簧夹将胶管夹住,提起电极管,保证液体不会漏出电极管,如有滴漏,检查电极是否插紧。 4. 原电池的制作:向一个50 mL 烧杯中加入约1/2 杯饱和氯化钾溶液,将制备好的两个电极管的弯管挂在杯壁上,要保证电极管尖端上没有气泡,以免电池断路。

原电池电动势的测定

原电池电动势的测定 一、实验目的 1、测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势 2、学会一些电极的制备和处理方法 3、掌握电位差计的测量原理和正确使用方法 二、实验原理 原电池电动势不能直接用伏特计来测量,因为电池与伏特计接通后有电流通过,在电池两极上会发生极化现象,使电极偏离平衡状态。另外,电池本身有内阻,伏特计所量得的仅是不可逆电池的端电压。 准确测定电池的电动势只能在无电流(或极小电流)通过电池的情况下进行,需用对消法测定原电池电动势:原理:是在待测电池上并联一个大小相等,方向相反 的外加电势差,这样待测电池中没有电流通过,外加电势差的大小即等于待测电池的电动势。 Ew-工作电源;EN-标准电池; EX-待测电池;R-调节电阻; RX-待测电池电动势补偿电阻; RN-标准电池电动势补偿电阻; K-转换电键;G-检流计

电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内 部还可能发生其它反应。电池反应是电池中所有反应的总和。 电池除可用来作为电源 外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、 恒压、可逆条件下,电池反应有以下关系: nFE G -=? (9-1)式中△G 是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉 第常数(其数值为96500 C);E 为电池的电动势。所以测出该电池的电动势E 后,便可求得 G ?,进而又可求出其它热力学函数。但必须注意,首先要求电池反应本身是可逆的,即要 求电池电极反应是可逆的,并且不存在任何不可逆的液接界。同时要求电池必须在可逆情 况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通 过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免 出现液接界,在精确度要求不高的测量中,出现液接界电势时,常用“盐桥”来消除或减小。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位差计 测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势, 就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势 的表达式。下面以铜-锌电池为例进行分析。 电池表示式为:Cu m CuSO m ZnSO Zn )()(2414 符号“ ”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“ ”代表连通两个液 相的“盐桥”;m 1和m 2分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应 -++→+e Zn Zn Zn 2)(22α 正极起还原反应 Cu e Cu Cu →+-++2)(22α 电池总反应为 Cu Zn Cu Zn Zn Cu +→+++++)()(2222αα 电池反应的吉布斯自由能变化值为 Zn Cu Cu Zn RT G G αααα??+?=?+ +Θ22ln (9-2) 上述式中Θ?G 为标准态时自由能的变化值;α为物质的活度,纯固体物质的活度等于1, 则有

溶液电导率的测定

电解质溶液电导的测定及应用 [适用对象]生物工程、药学、药物制剂、中药学、制药工程、中药学(国际交流方向)专业 [实验学时] 3学时 一、实验目的 1.测定氯化钾的无限稀释摩尔电导。 2.测定醋酸的电离平衡常数。 3.掌握测定溶液电导的实验方法。 二、实验原理 电解质溶液的电导的测定,通常采用电导池,如图1 若电极的面积为A,两电极的间的距离为l,则溶液的 电导L为 L = KA / l 式中K称为电导率或比电导,为l=1m,A=1m2 时溶液的电导,K的单位是S/m. 电解质溶液的电导率与温度、溶液的浓度 及离子的价数有关.为了比较不同电解质溶液的导 电能力.通常采用涉及物质的量的摩尔电导率Λm来 衡量电解质溶液的导电能力. 图1 Λm=K/C 式中Λm为摩尔电导率(Sm2 /mol) 注意,当浓度C的单位是mol/L表示时,则要换算成mol/m3,后再计算. 因此,只要测定了溶液在浓度C时的电导率K之后,即可求得摩尔电导率Λm。 摩尔电导率随溶液的浓度而变,但其变化规律对强、弱电解质是

不同的.对于强电解质的稀溶液有: 式中A 常数, 0,m Λ也是常数,是电解质溶液 无限稀释时的摩尔 电导,称为无限稀释摩尔电导。因此以Λm..和根号C 的关系作图得一直线,将直线外推至与纵轴相交,所得截距即 为无限稀释时的摩尔电导0,m Λ. 对于弱电解质,其0,m Λ值不能用外推法求得.但可用离子独立运动定 律求得: 0,m Λ=I 0,++I 0,- 式中I 0,+ 和I 0,-分别是无限稀释时正、负离子的摩尔电导,其值可通过 查表求得。 根据电离学说,可以认为,弱电解质的电离度α等于在浓度时的摩尔电导Λ与溶液在无限稀释时的电导0,m Λ之比,即 a K AB 型弱电解质的另外还可以求得 所以,通过实验测得α即可得a K 值。 三、仪器设备 DDS -11A 型电导率仪器(图2) 1台 DJS -电报 1支 恒温槽 1套 电导池 1个 100ml 容量瓶 2个 α αα-=ΛΛ=120 ,C K a m m

大学物理化学实验报告-原电池电动势的测定.docx

大学物理化学实验报告-原电池电动势的测 定 篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验p实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势e。 如图所示,电位差计就是根据补偿法原理的,它由工作电流回路、标准回路和测量电极回路组成。 ① 工作电流电路:首先调节可变电阻rp,使均匀划线ab上有一定的电势降。 ② 标准回路:将变换开关sw合向es,对工作电流进行标定。借助调节rp 使得ig=0来实现es=uca。③ 测量回路:sw扳回ex,调节电势测量旋钮,直到ig=0。读出ex。 uj-25高电势直流电位差计: 1、转换开关旋钮:相当于上图中sw,指在n处,即sw接通en,指在x1,即接通未知电池ex。 2、电计按钮:原理图中的k。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻rp。

-1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此 示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100ml容量瓶5个,50ml滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0.200mol·lkcl溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0.200 mol·l的kcl溶液分别稀释成0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 -1-1 mol·l,0.0900 mol·l各100ml。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至n处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池,hg |hg2cl2,kcl(饱和)‖kcl(c)|agcl |ag 5、将转换开关拨至x1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 mol·l,0.0900 -1 mol·l,测各不同浓度下的电极电势ex。

大学物理化学实验报告-原电池电动势的测定

篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势。 如图所示,电位差计就是根据补偿法原理设计的,它由工作电流回路、标准回路和测量电极回路组成。 ①工作电流电路:首先调节可变电阻,使均匀划线AB上有一定的电势降。 ②标准回路:将变换开关合向,对工作电流进行标定。借助调节使得 =0来实现 = CA。③测量回路:扳回,调节电势测量旋钮,直到 =0。读出。 -25高电势直流电位差计: 1、转换开关旋钮:相当于上图中,指在处,即接通,指在 1,即接通未知电池。 2、电计按钮:原理图中的。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻。 -1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此

示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100 容量瓶5个,50 滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0. · C 溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0. ·的 C 溶液分别稀释成0.0100 ·,0.0300 ·,0.0500 ·,0.0700 -1-1 ·,0.0900 ·各100 。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池, | 2C 2, C (饱和)‖ C (c)|A C |A 5、将转换开关拨至 1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 ·,0.0300 ·,0.0500 ·,0.0700 ·,0.0900 -1

电导的测定及应用实验报告

实验名称电导的测定及其应用 一、实验目的 1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率; 2、用电导法测量醋酸在水溶液中的解离平衡常数; 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G:对于电解质溶液,常用电导表示其导电能力的大小。电导 G就是电阻R的倒数,即G=1/R。电导的单位就是西门子,常用S表 示。1S=1Ω-1 2、电导率或比电导:κ=Gl/A (2、5、1) 其意义就是电极面积为及1m2、电极间距为lm的立方体导体的电导, 单位为S·m-1。 对电解质溶液而言,令l/A = K cell,K cell称为电导池常数。 所以κ=G l/A =G K cell 3、摩尔电导率:Λm=κ/ C (2、5、2) 强电解质稀溶液的摩尔电导率Λm与浓度有如下关系: Λm=Λ∞m- A C(2、5、3) Λ∞m为无限稀释摩尔电导率。可见,以Λm对C作图得一直线,其截距即为Λ∞m。 弱电解质溶液中。在无限稀释的溶液中可认为弱电解质已全部电离。此时溶液的摩尔电导率为Λ∞m =V+ Λm ,++ V- Λm ,-(2、5、4) 根据电离学说,可以认为,弱电解质的电离度α等于在浓度时的摩尔电导Λ与溶液在无限稀释时的电导Λ∞m之比,即:α=Λm/ Λ∞m(2、5、5) 4、弱电解质电离平衡常数:弱电解质AB型的电离平衡常数:Kθ=(Cα2)/Cθ(1-α)(2、 5、6) 所以,通过实验测得α即可得Kθ值。 把(2、5、4)代入(2、5、6)式可得 Kθ=(CΛ∞m2)/ Λ∞m Cθ(Λ∞m-Λm) (2、5、7) 或CΛm=(Λ∞m2) KθCθ1/Λm -Λ∞m KθCθ 以CΛm对1/Λm作图,其直线的斜率为(Λ∞m2) KθCθ,如知道Λ∞m值,就可算出Kθ。 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台;电导电极一只,量杯(50mL)2个;移液管(25mL)3只; 洗瓶一只;洗耳球一只。 药品:10、00(mol/m3)KCl溶液;0、093mol/dm3)HAc溶液;电导水。 四、实验步骤 1、打开电导率仪开关,预热5min。

原电池电动势的测定及其应用实验报告

原电池电动势的测定及其应用实验报告 林传信 高分子101 12 一、实验目的 1、理解电极、电极电势、电池电动势、可逆电池电动势的意义 2、掌握用对消法测定电池电动势的基本原理和数字式电子电位差计的使用方法 3、学会几种电极和盐桥的制备方法 二、对消法侧电动势的基本原理: 测量电动势只能在无电流通过电池的情况下进行,因此需要用对消法(补偿法)来测定电 动势。对消法测定电动势就是在所研究的电池的外电路上加一个方向相反的电压。当两者 相等时,电路的电流为零(通过检流计指示)。对消法测电动势常用的仪器为电位差计, 其简单原理如图所示 A C A C E E X S 12= 电极电势的测定原理: 原电池是化学能转变为电能的装置,在电池放电反应中,正极(右边)起还原反应,负极起 氧化反应。电池的电动势等于组成的电池的两个电极电位的差值。即: E= +?—-?=右?—左? 氧化还原αα??θ ln ZF RT -=-+ 氧化 还原αα??θ ln _ZF RT -=- R=?11--?K mol F=96500C α 为参与电极反应的物质的活度。纯固体物质的活度为1。 浓差电池: 一种物质从高浓度(或高压力)状态向低浓度(或低压力)状态转移,从而产生电动势,而 这种电池的标准电动势为零。 三、电池组合: ⑴Hg Cl g KCl L mol ZnSO Zn 224H )()1.0(饱和 ⑵Cu L mol KCl Cl Hg Hg )(饱和0.1CuSO )(422 ⑶Cu L mol SO Cu L mol ZnSO Zn )1.0()1.0(44

⑷Cu L mol CuSO Cu L mol CuSO )1.0()01.0(44 四、数据处理 实验室温度T= 标准电动势Es= 电池电极电动势: 五、误差分析 在较长的电极电势测量过程中,工作回路中电流发生变化,导致测量误差 部分电解质溶液在测量过程中发生电解,浓度变化影响测量的结果

相关文档
最新文档