电缆常见质量问题

电缆常见质量问题
电缆常见质量问题

电缆常见质量问题

浏览次数:7日期:2010-01-26 16:20

摘要:

有些材料制造厂商片面追求降低成本,或者一味迎合用户压价要求,而粗制滥造、偷工减料,致使材料质量不合使用要求,给电线电缆制造厂商造成直接经济损失,于是退货、扯皮、拒付款的事经常发生,使双方都不愉快。正确的态度应该是,供需双方协商一致,共同探讨既降低材料成本又不影响产品质量的办法,互利互惠,共同发展。

电线电缆行业是“料重工轻”的行业,材料成本约占产品成本的65%~85%。因此,选用性能—价格比合理的材料,保证材料的进厂质量,是降低产品成本、提高企业竞争力的重要途径之一。

常见的材料质量问题如下:

1.铜杆:用回收的杂铜制造、表面氧化变色、拉力不够、不圆整等。

塑料:杂质多、热失重不合格、挤出层有气孔、难以塑化、颜色不正等。

绝缘料:抗焦烧时间短、容易前期交联等。

4.硅烷交联料:挤出温度不好控制、热延伸差、表面粗糙等。

5.铜带:厚度不匀、氧化变色、拉力不够、荷叶边、软化不足、偏硬、短头多、接续不良、漆膜或锌层脱落等。

6.钢丝:外径偏大、锌层脱落、镀锌不足、短头多、拉力不够等。

填充绳:材质差、直径不匀、接续不好有疙瘩等。

填充条:偏硬、易折断、弧度不对等。

9.无纺布:实际厚度货不对版、拉力不够、时有宽度不匀等。

包带:偏厚、拉力不够、短头多、厚度不匀等。

11.耐火云母带:分层、拉力不够、发粘、带盘起皱等。

12.无碱岩棉绳:粗细不匀、拉力不够、接头多、易落粉等。

13.玻璃丝带:偏厚、抽丝、编制密度小、搀杂有机纤维、易撕裂等。

14.无卤涂胶阻燃带:易折断、带盘起皱、抽丝、阻燃性差、有烟等。

15.热缩封帽:规格尺寸不准、材料记忆性差、久烧缩、强度差等。

家庭装修电线推荐用量电线用量计算:

以100平米的房屋面积家装为例,电线用量可大致参考如下:

■如采用铜芯单股线(BV)或BVR:隐藏在地下或墙里边:

■如采用铜芯护套线(BVVB)明装或走在外边线槽里:

说明:

①的电线用于走灯线,的电线用于开关插座,4mm2的电线用于入户线及空调等大功率的电器,双色地线用于电器的漏电保护。

②以上只是100mm2房屋的推荐用量,实际用量要根据房屋面积的大小及灯具、电器、插座、空调的多少作相应调整。

③目前新房家装一般采用铜芯单股线或铜芯多股线(用量与铜芯单股线一致)套管敷设在墙内;护套线一般敷设在墙外,现在多用于农村地区或旧房装修,新房装修现已较少使用护套线。

④温馨提示:购买电线和购买其它装修材料一样,有一个重要原则:宜少不宜多——买少了可以再买,买多了却容易浪费钱财。

RVV 与KVV、RVVP 与KVVP 其参考标准(JB

区别:RVV 和RVVP 里面采用的线为多股细铜丝组成的软线,即RV线组成。

KVV 和KVVP 里面采用的线为单股粗铜丝组成的硬线,即BV线组成。

作为KVV和KVVP的延伸即为KYJV和KYJVP,改变就是在KYJV和KYJVP所采用的绝缘材料是硅烷交联绝缘料。

AVVR 与RVVP

区别:东西一样,只是内部截面小于平方毫米的名称为AVVR,

大于等于平方毫米的名称为RVVP.

SYV 与SYWV其参考标准(YD/T1174-2001,YD/T1175-2001)

区别:SYV是视频传输线, 用聚乙烯绝缘。

SYWV是射频传输线,物理发泡绝缘。用于有线电视。

RVS 与RVV 2芯

区别:RVS为双芯RV线绞合而成,没有外护套,用于广播连接。

RVV 2芯线直放成缆,有外护套,用于电源,控制信号等方面

YZ、YZW与YC、YCW其参考标准(JB 8735-1998):

区别:YZ、YZW是中型橡套软电缆,用于各种移动电器设备和工具。电压等级为300/500V。

YC、YCW是重型橡套软电缆,用于各种移动电器设备,能够承受较大的机械外力作用。电压等级为450/750V。且在导体截面相等前提下,YC、YCW要比YZ、YZW的护套厚度大

助航灯光回路故障分析_201905121557121

助航灯光回路故障分析 一、主要故障类型 1.高压回路故障。 2.开路故障:电缆断开、隔变一次绕组断路、电缆连接器断开或接触不实。 3.接地故障:低阻接地、高阻接地,接地故障又分为一点接地和多点接地。 4.二次线故障:灯箱于灯具之间的二次线故障 5.低压回路故障 6.单相接地故障 7.电缆、电缆头绝缘损坏 8.相间短路故障 9.二次线故障 10.灯箱于灯具之间的(断线、短路) 二、故障实例 实例 1: 【故障现象】 调光器在运行中温升异常,监控系统显示输出电压下降、输出电流超过额定值;外场灯光回路灯亮,且无明显变化。 【原因分析】

两个回路的电缆经过同一灯箱时,检修或查找故障过程中将电缆连接器连接错误,造成两个回路串联后由两台调光器同时供电。由于两台调光器所带的负载发生变化,远离交叉点的调光器带的灯多,出现过负荷运行。其表现是输出电压下降、电流超过额定值。 【查找方法】 1.首先对该调光器进行检查判断,确定调光器是否正常。如果原因在调光器可更换备机,且带负载试运行。在实际运行过程中由于调光器故障引起上述故障的很少。 2.在查找故障时,检修人员在断开(或拆除)电缆连接时会发现虽然调光器已经关机,但电缆仍然带电。为了快速查清故障,在允许的情况下将相关回路的调光器逐台关闭;观察故障回路电缆是否还带电,并用钳型电流表卡测电缆。 3.将一个回路的电缆从调光器的输出端拆开,将电缆悬空放置;开启另外一个回路的调光器,观察外场灯光回路亮灯情况;灭灯的位置就是故障点。 实例 2: 【故障现象】 调光器没有开启,但调光器控制器上显示有电流;且电流值很小。 【原因分析】 当外场电缆回路(YJYD)绝缘明显降低,接地点电缆发热造成电缆烧坏,严重时造成同沟多条电缆被烧坏。当故障点在调光器至第一

电缆的故障几种类型

电缆的故障几种类型 从今年已查找的低、中、高压电缆故障的结构特点分析,电缆单相接地故障较为普遍,多是因为电缆遭受外力破坏原因造成。也不排除本体质量造成,但这种内部短路从外表看不出痕迹较少见。电缆相间短路故障中较少,这是因为相间短路一般都是在运行中发生,发生故障时会产生强大的短路电流造成速断保护动作而跳闸。强大的电流所造成的高温一般都会把电缆烧断造成开路性故障。电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。 从电缆的故障位置看,一条电缆最薄弱的地方是中间接头,一般的电缆都有一个或几个中间接头,在做电缆中间接头时由于环境条件限制,加上电缆敷设后不进行防潮处理,制作时中间接管压接不紧密,都可能造成电缆中间接头受潮、工艺缺陷的出现。当运行中长期在高压电场的作用下产生电晕及游离放电,使绝缘本体形成水树直至绝缘老化并击穿。 从电缆故障的性质区分可分为开路、低阻、高阻和闪络性 故障四种:开路故障就是工作电压不能传输到终端,或虽然终端有电压,但带负载能力差。 低阻故障就是电缆相间或对地的绝缘受损,其绝缘电阻减小到100KΩ以下。 高阻故障就是电缆相间或对地的绝缘电阻大于100kΩ。 闪络性故障就是在高压保压过程中,突然击穿,在此电压下又能保压的故障。有别于高阻故障,在高压达到一定的电压肯定能击穿的故障。 故障性质Rf 间隙的击穿情况 开路∞ 在直流或高压脉冲作用下击穿 低阻小于100Z0 Rf不是太低时,可用高压脉冲击穿 高阻大于100Z0 高压脉冲击穿 闪络∞ 直流或高压脉冲击穿 说明:表中Z0为电缆的波阻抗值,电力电缆波阻抗一般在10-40Ω之间。) 以上分类的目的也是为了选择测试方法的方便,根据目前流行的故障测距技术,开路与低阻故障可用低压脉冲反射法,高阻故障要用冲击闪络法,而闪络性故障可用直流闪络法测试。以上几种故障都可以用二次脉冲法测试,这是目前世界上最先进的故障测试技术,国外以德国、奥地利为代表。现场人员有Rf<100KΩ的故障称为低阻故障的习惯,主要是因为传统的电桥法可以测量这类故障。 综合以上分析掌握以下几点是我们查找电缆故障的关键: 1、确定电缆故障到底属于开路故障、低阻故障还是高阻故障;

110千伏高压电缆异常的分析及处理

110千伏高压电缆异常的分析及处理 发表时间:2019-12-27T16:39:25.243Z 来源:《中国电业》2019年18期作者:何义良 [导读] 高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障 摘要:高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障,直接威胁到高压电缆的正常运行。本文根据某高压电缆工程展开分析,针对引起高压电缆异常情况的原因进行分析,采用局部放电试验进行验证,并提出了电缆故障的处理,并提出了高压电缆常见故障处理措施。 关键词:高压电缆;110kV;故障处理 高压电力电缆有着较高的安全性,施工起来比较便捷,已经被广泛应用到电力工程施工当中。随着城市规模的不断变大,要求高压电力电缆不要占用太多的空间,交联聚乙烯电缆有着很好的安全性,不会占用太多的面积。但电力电缆在实际运行过程中经常会存在异常现象,很多故障都是由电缆终端或中间连接部位而导致的,电缆连接终端制作工艺水平与能否安全应用有着直接关系,本文对某变电所110kV 高压电缆应用前的试验过程中发生异常现象进行分析,并制定了切实有效的解决措施,要求工作人员在高压电缆终端制作工艺提高重视,避免应用过程中产生运行故障。 1 110kV高压电缆工程基本情况 某变电所位于市区范围内,110kV高压线路进线采用交联聚乙烯绝缘保护材料,应用无缝铝护套进行防护,电缆长度为150米,采用交联户外油浸终端。按照电力工程施工计划,三根电缆施工完成后进入到试验环节。对外防护套、绝缘性能测试都达到合格标准,工频耐压测试应用串联谐振加压处理方法。采用的试验电压为2Ue,则试验电压为128kV。查找电缆资料可以得知,该高压电缆电容值每公里 0.162uF,然后按照串联谐振频率值进行计算:,电流值则为,公式当中的f则为谐振频率,I为试验样品电流值,则是试验样品电容,是分压器具备的电容值,L是电抗器具备的电感值,U是试验电压值。从试验加压曲线可以得知,A和B相电缆都通过了耐压性能试验,电流值设置在2A。C相电缆试验过程中,把电压提升到额定值,发现试验样品电流值为2.35A,已经超过计算数据1.936A,但还在正常区间。采用额定电压持续加压13分钟,户外电缆终端设备出现了轻微的放电声音,试验运行电流也呈现出变大的趋势。由于放电声音的不断变大,试验运行电流也呈现出变大趋势,如果试验电流上升到保护电流上限数值5A,保护装置会自动把电源完全切除掉,试验则会迫终止。对该高压电缆外观进行仔细地观察,没有发现该电缆存在着较为明显的放电痕迹。对该电缆再次进行加压测试时,试验电压只保持5分钟左右时间,再次出现试验电流超过保护上限值而出现的电源被切断问题,使得高压电缆耐压实验无法继续开展。 2 110kV高压电缆异常情况分析 2.1电缆绝缘或终端密封材料老化而导致的绝缘性能降低 按照以往的电缆测试经验,如果高压电缆运行时间比较长,或者存在绝缘材料局部发电现象,电缆具备的绝缘性能会出现下降问题。油浸电缆终端密封材料出现老化,环境水分进入也会导致电缆绝缘性能降低。由于该电缆为新建设变电所电源进线,还没有正式投入使用。对电缆生产厂家试验报告进行分析,发现每个电缆主绝缘电阻的实际测量值和出厂试验值并没有太大的差别,可以有效地排除掉高压电缆绝缘性能降低使得耐压试验无法继续完成的可能。高压电缆终端密封材料出厂时期只达到了一个月,还没有出现密封材料安装不当或者受损问题。 2.2电缆保护层被损坏而导致的绝缘性能下降 110kV电缆在施工作业过程中,受到异物刺伤而出现绝缘层受损。比如,铁钉、刀片等对电缆绝缘进行了破坏,会使电缆绝缘出现异常。通过对电缆绝缘性测验可以发现,没有存在绝缘受损的现象,具有较好的外绝缘保性性能,绝缘电阻值可以达到1万兆欧左右,表明电缆外绝缘保护层保存完好,在外保护内部的绝缘不会存在受到损坏的可能性,可以排除高压电缆主绝缘受损的可能。 3.3电缆终端制作工艺不合理导致的主绝缘性能降低 随着电缆故障的逐渐排除,把电缆故障的可能性转移到电缆接头制作上来,尤其是户外电缆终端制作时存在的问题,对施工作业人员进行沟通发现,在进行户外电缆终端接头制作过程中,存在着天气影响因素。对制作记录中可以发现,高压电缆终端接头制作前一天有阴雨,制作当天气温降低,气温最低达到了3度,而且空气湿度比较大。对电缆终端接头加入的为聚丁烯油,该绝缘物质可以有效地填充到电缆终端每个部位的间隙中,从而更好地保护电缆内部的绝缘。该绝缘油有着较高的粘稠度,会随着外界温度的减小而变大。该绝缘油在环境温度为5度时,呈现出较高的粘稠度,内部会夹杂着气泡。高压电缆终端接产学研制作厂家对填加的聚丁烯油过程中的温度有着较高的要求,如果环境温度低于20度,应该采用加热措施来减小绝缘油粘度,然后方可以把其注入到电缆终端,但电力工程施工作业现场的人员却没有对环境温度影响因素提高重视,缺少了加热处理工艺。 从上面的分析中可以看出,可以初步确定高压电缆缺陷是由于在户外电缆终端接头加工过程中,外界环境温度不高、空气湿度大而导致的,没有采取合理的加热处理措施,使得绝缘油中存在着气泡,混入了大量的湿度较大的空气。对高压电缆施加2倍额定电压进行性能试验时,绝缘油中存在着水分和气泡,会在高电压作用下形成游离态的气体分子,使得绝缘油中产生数量较多的带电粒子,会在气泡部位出现局部放电。释放出更多的气体会使得气泡体积不断变大,会产生更为明显的局部放电问题,使得试验电流不断变大,当大于设定保护值之后会自动退出试验。在该种条件下,高压电缆投入应用会存在着较大的安全隐患,较长时间的绝缘油内部放电会使得终端接头部位的绝缘性性能减小,最后会使电缆内部被击穿,使得电缆终端接头出现故障,严重情况下会引起爆炸问题。 3局部放电试验对电缆故障的验证 采用三相电缆分别进行局部放电试验,对每相电缆放电性能进行分析来验证,也就是在相同的试验电压和试验方法情况下,比较性能正常的A、B相和具备故障的C相高压电缆局部放电数据,对放电初始电压、熄灭电压和放电波形等进行对比分析,可以进一步证明C相电缆中存在着明显的局部放电现象,可以对故障原因进行证实,可以为后续的处理提供数据支持。 按着相关的标准,可以在环境温度条件下对每相电缆进行局部放电试验,采取的试验方法是先把试验运行电压逐步提高到1.75Ue,然后在该电压条件下保持10秒钟,再缓慢减小到1.5Ue。在该电压值下,如果放电量不超过5pC则达到合格标准。三相高压电缆在相同的性能试验条件下,获取到的试验结果有着较大的不同,从试验数据统计表1中可以看出,C相高压电缆有着较大幅度的局部放电,但该电缆在出厂性能试验中的局部放电量都达到了合格标准,也就是不超过2pC。A、B两相高压电缆在施工现场完成终端接头的制作和安装,电缆具备

电缆故障的查找与处理

电缆故障的查找与处理 电缆常见故障有漏电接地、短路(俗称电缆“放炮“)、断线等。主要原因是电缆老化或受到外力碰、砸、挤压、接线工艺不合格以及保护失灵等。电缆故障的查找与处理程序是:先判断故障性质,后找故障点,再根据情况按规定进行处理。 (一)电缆故障性质的判断 1、漏电故障 ①电缆的绝缘水平低,出现漏电现象。 ②芯线相间或对地绝缘电阻达不到要求。 ③芯线之间或对地泄露电流过大。 2、接地故障 ①完全接地(也称“死接地”),即电缆某相芯线接地,如用摇表(或万用表)测量两者之间绝缘电阻为零。 ②低电阻接地,即电缆一相或几相芯线对地的绝缘电阻值低于500K?。 ③高电阻接地,即电缆一相或几相芯线对地的绝缘电阻值在500 K?以上,甚至1M ?以上。 3、短路故障 有完全短路、低电阻或高电阻短路;有两相同时接地短路或两相直接短路;有三相短路或接地。 4、断线故障 电缆一相或几相芯线断开,或者一相导电芯线断一部分。 5、闪络性故障 当电缆的电压达到某一定值时,芯线间或芯线对地发生闪络性击穿;当电压降低后,击穿停止。在某些情况下,即使再次提高电压时,击穿亦不出现,经过若干时间后又会发生。这种故障有自动封闭故障点的特点。

6、电缆着火 电缆着火事故,其原因是发生相间短路故障后,熔断器、过电流继电器等保护失灵,强大的短路电流产生的高温点燃了橡套电缆的胶皮,引起火灾。 7、橡套电缆龟裂 这种故障在煤矿井下低压橡套电缆中较为常见,其主要原因是由于长期过负荷运行,造成绝缘老化,芯线绝缘与芯线粘连,就容易出现相间短路事故。产生的故障原因,除电缆的型号和截面选择不当、施工工艺质量不好、电缆质量有问题外,许多故障都和电缆的管理、运行和维护有关。因此,对电缆的选用、敷设、吊挂等都要按《煤矿安全规程》有关规定进行。 (二)电缆故障点的查找 1、直接判断 首先应确定哪条电缆出了故障。当维修人员无法查明是过负荷跳闸还是故障跳闸时,可以进行一次试送电来判断跳闸停电原因。 如果属于电缆事故跳闸,应首先用摇表测定电缆芯线之间和对地的绝缘电阻,初步判断故障的性质。凡属电缆漏电故障,往往是通过检测绝缘电阻和做泄露实验时发现,或者从检漏继电器指针数值判断。凡接地事故,可通过检漏继电器跳闸发现;如果属于短路故障,常常是因接地短路或短路后接地,也有少数只短路不接地。 对于在空气中敷设的电缆,包括井下沿巷道敷设的电缆,如果因短路故障造成外皮烧伤,一般通过沿电缆线路查找外观就可找到故障点。电缆接线盒出现短路事故时,如果检查得及时,接线盒表面可以摸到有温度。电缆某处短路,有时可以看到烧穿的伤痕或穿孔,在短路点还可以嗅到绝缘烧焦的特殊气味。 2、用万用表查找 首先将电缆两端的芯线全部开路,如果电缆故障是相间短路,将发生短路的两根芯线的端头与万用表相连接;如果是接地故障,就将发生接地的芯线和接地芯线接到万用表上。将万用表的选择开关打到欧姆档,然后由检修人员对电缆逐段进行弯曲或翻动。当弯曲到某一点,万用表指针有较大的摆动时,说明这就是故障点;也可用干燥的木棒敲打电缆护套,当敲打到某处,万用表针有较大的摆动时,也就找到了故障点。

交联电缆常见故障及原因分析

交联电缆常见故障及原因分析 本文针对交联电缆常见的故障进行了分析,并提出了可行的预防措施,旨在提高交联电缆运行的可靠性。 标签:交联电缆;常见故障;预防措施 1 交联电缆常见故障 1.1 制造原因 制造引起的交联电缆故障属于电缆本体不足,根据发生部位不同可将制造原因分为本体原因、电缆接头原因和电缆接地系统原因,现分别针对这些故障进行详细说明。 电缆本体原因引起的缺陷。现阶段我国交联电缆生产技术已经趋于成熟,为保障安全性和材料的可靠性,在出厂过程中会对电缆进行交流耐压试验,只有通过质检的电缆才可以流向市场。但是随着市场经济的高速发展,企业竞争日趋激烈,部分企业单纯追求利润率和生产量而忽视了对生产环境的控制,没有按标准做好质检,也就造成了交联电缆在生产过程中出现绝缘偏心、电缆内部杂质、交联度不均匀、电缆受潮、电缆金属护套密封不良等问题,最终导致线路在运行过程中发生故障。 1.2 施工原因 使用引起的交联电缆故障主要有以下三方面原因:第一,施工现场自然环境和人文环境的影响。施工现场条件较差,温度、湿度和灰尘不受控制,容易造成电缆故障;此外,电缆施工过程中在绝缘表面容易留下一些细小的划痕,如果灰尘或者砂砾等嵌入绝缘层中或将绝缘层暴露在空气中,都会造成绝缘层吸入水分,产生安全隐患。第二,施工工艺和安装过程不规范的影响。交联电缆对施工工艺要求较高,没有将安装条件与现场条件相结合進行分析而盲目施工则会诱发高故障率。第三,密封处理不善的影响。终端接头密封主要是为了防止绝缘油渗漏,绝缘接头漏油问题不易被发现且接头内油量无法检测,若发生漏油会导致电场分布改变,造成电缆内绝缘爬距变化,最终导致接头击穿,产生安全隐患。施工原因造成的问题在运行初期就会显现,同时也给交联电缆的长期安全运行造成不利的影响,必须引起足够重视。 1.3 外力破坏 外力破坏是导致交联电缆运行故障的主要原因。交联电缆普遍铺设于地下,隐蔽性较强,如果交联电缆铺设时间较长或者没有做好相应标识,亦或是线路变动时没有及时做好记录等,当遇到大规模市政建设工程时很容易受到外力破坏。其中,直埋铺设方式的交联电缆最容易遭到外力破坏。外力破坏主要分为直接外

分析电力工程电缆故障类型的总结与预防 黎逸韬

分析电力工程电缆故障类型的总结与预防黎逸韬 发表时间:2019-09-17T11:06:23.290Z 来源:《电力设备》2019年第7期作者:黎逸韬 [导读] 摘要:随着我国社会近年来的不断发展,城市化建设的持续推进,人们的生活质量不断改善,这一切都对电力的需求越来越大,对电力工程的要求也越来越高。 (广州市电力工程有限公司 510000) 摘要:随着我国社会近年来的不断发展,城市化建设的持续推进,人们的生活质量不断改善,这一切都对电力的需求越来越大,对电力工程的要求也越来越高。因此我国的电力工程也在不断发展进步,电网规模也越来越大。但是在电力工程发展的过程当中,电缆故障始终是电力工程发展的阻碍,给人们的生活和工作用电造成了困扰。近年来电缆故障类型呈现出多样化的趋势,本文以下通过对众多电缆故障的分析,总结了电缆故障的主要类型,并提出了预防的措施。 关键词:电力工程;电缆故障;类型总结;预防措施 引言 现如今各行各业的生产和发展、人们的日常生活以及工作都离不开电力供应,电力工程的建设质量直接决定着人们生活和工作的质量。电缆故障的存在在很大程度上影响了电力网络的质量和效率,对电力企业的经济效益造成了严重的损失。因此在进行电力工程的建设的过程中应该对电缆故障的排查和解决加以重视,从电缆的施工工艺、质量控制以及后期维护检查等方面进行严格控制,确保电缆故障能够被及时发现及时解决,保证人们用电的质量和安全,保障电力企业的经济效益。 1电缆故障类型的总结 1.1电缆接地故障 如果电力工程中的电缆在进行接地的过程中发生断裂,就会造成各种各样的安全隐患,如果不彻底将这些隐患进行排查消除,就会给工作人员的人身安全造成威胁。所以要对断裂的接地电缆所造成的安全隐患进行全面排查并消除,将断裂的电缆中的电流彻底释放,保障电缆能够正常稳定运行,并确保工作人员的人身安全。室内的电缆线接地未达到相关标准的要求,接地电缆网络没有与铁件相连接,对此应该在电缆头的铁件处依照相应规范安装相应的装置,并对铁件进行固定。电缆发生故障以后,严禁接去故障电流,因为此时接入故障电流不利于对电缆线的保护,很可能直接破坏电缆线使得其无法使用。在电缆接地工作完成以后要依照相关标准进行严格的验收检查,要求工作人员对验收工作高度负责,确保电缆接地达到标准的要求,保证电缆的接地质量,消除电缆接地故障,保障电力的正常供应。 1.2电力电缆单相故障 单相开(断)路故障:电缆导体被损伤后,导体与电缆形成似断非断的联接状态,其中芯线以及金属屏蔽层等均属于导体范围之内的组成部分。 开(断)路故障:即RAA′=∞,也就是说电缆的芯线或金属屏蔽层在某一处或多处断开,如实际中,电缆被人为挖断、电缆被烧断、在电缆接头处,电缆芯线或电缆的两边屏蔽层根本没有连接上、XLPE电缆在生产过程中屏蔽层不连续等。 似开(断)非开(断)故障:即RAA′<

电力电缆故障点分析及查找

电力电缆故障点分析及查找 自从电被人类发现并使用之后,给工业的发展和社会的进步带来了翻天覆地的变化,现代社会的正常运转已离不开电能的供给,城市化进程的加速促使电力电缆被运用到电力系统和生活中的各个领域,所以谨防电缆故障,保证供电的稳定性十分重要,本文通过阐述电力电缆对于社会发展的作用,对常见的电力电缆故障点进行了分析总结,并提出了一些查找办法,从而进一步提升电力系统的供电可靠性。 标签:电力电缆;故障点分析;查找办法 1 电力电缆对于社会发展的作用 电力行业作为我国的经济支柱产业之一,始终在国民经济中占有重要位置,回顾电力电缆的发展历程,起源于新中国成立之后,随着社会主义经济的发展,各项体制制度的完善,以及科学水平的提升,与生产、生活密切相关的电缆工业终于从无到有,由小变大,不仅规模和数量日益扩大,而且所生产的产品技术与工艺水平都得到突飞猛进,在国家大力支持基础公共设施建设的同时,其对国民经济状况的影响也越来越大,例如:据有关调查统计,我国的电缆工业从发展以来,生产技术水平已经达到或者接近世界的先进水平,电力电缆年产值达到了惊人的900亿元,占国民经济总产值的2%,由此不难看出,电力电缆的运行程度好坏直接影响着国家的经济发展,而由于电力行业中很多电气火灾事故都源于电缆的故障,所以完善电缆的施工质量,加强维护措施,将有利于排除电力电缆的安全隐患,发挥出其对于维护社会秩序安全、稳定发展的重要作用,因此,针对电力电缆的故障点进行及时、细致、深入的分析与查找,进而一并解决显得尤为必要。 2 常见的电力电缆故障点分析与总结 2.1 短路或接地电力电缆故障 短路故障是电力电缆中最常见的故障之一,一般其有高电阻短路和低电阻短路之分,常伴随电缆的两芯或三芯短路,而当电缆发生短路故障之后,常会发生短路保护装置当中的熔丝被烧断,形成跳闸现象,而且会散发出一种绝缘烧焦的气味,这时的故障点就产生于短路,而接地故障同样分为低阻接地与高阻接地,二者无论从判断工具方面,还是自身性质的划分都有差异,通常来说,可以利用低壓电桥测得并且接地电阻小于20-100Ω的成为低阻故障,而接地电阻高于100Ω,且需要使用高压电桥才能测得的则为高阻故障,一旦发生此类事故,接地所用的监视装置会发出信号,漏电继电保护装置馈电开关产生跳闸。 2.2 断线电力电缆故障 断线故障的发生常会产生两种状况,一种属于高阻断线故障,那么另一种必

电力电缆故障分析

电力电缆故障分析 随着我国经济建设的飞速发展,在各行各业中大量使用电力能源,而电力电缆又是电力输送的主要工具之一。作为电力企业电缆故障会直接威胁到发、变电及电网系统的安全运行,造成巨大的经济损失、严重威胁人民的生命安全。当电缆发生故障后,如何准确快速地查找故障点,修复故障,尽快恢复供电,是长期困扰我们的一项难题。本人根据多年的工作经验,罗列了一些主要的故障类型,浅析了故障原因,介绍常用的故障点的查找方法并在此基础上提出一些故障的防范措施。 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。电缆故障的原因大致可归纳为以下几类:了解电缆故障原因,有利于尽快地找到故障点。 要注意电缆敷设、维护资料的整理与保存。 主要故障原因: 机械损伤(外力破坏):占58% 附件制造质量的原因:占27%。 敷设施工质量的原因:占12%。 电缆本体的原因:占3%。 一、电缆故障的类型 无论是高压电缆还是低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面:

1.电缆相芯接地; 2.芯线间短路; 3.芯线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短 路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障的原因 1.机械损伤 机械损伤是引起电缆故障最重要的原因。虽然有些机械损伤很轻微,当时并没有造成故障,但是在一段时间内就有可能随着损伤的加重而发展成故障。造成电缆机械损伤的主要原因有: (1)电缆与外部物体造成的擦伤;如:与地面、电缆管口、桥架的磨插。 (2)机械敷设时由于牵引力过大而引起的绝缘拉伤; (3)电缆过度弯曲而导致的损伤。 2.绝缘受潮 造成电缆受潮的主要原因有:

10kV电力电缆故障类型和故障点查找分析

10kV电力电缆故障类型和故障点查找分析 发表时间:2017-07-17T11:12:01.353Z 来源:《电力设备》2017年第8期作者:胡延江 [导读] 摘要:10kV配电网络是城市供配电系统的重要组成,其涉及面十分广泛且影响面积较大,对于工农业生产、人民群众日常生活与市政建设的供电可靠性产生了积极的影响 (国网甘肃省电力公司平川区城郊供电公司) 摘要:10kV配电网络是城市供配电系统的重要组成,其涉及面十分广泛且影响面积较大,对于工农业生产、人民群众日常生活与市政建设的供电可靠性产生了积极的影响。10kV电力电缆在配电网络中的应用逐渐普及,所以,一旦发生了电缆故障,必须要在短时间内明确故障的类型并准确定位,找出具体的故障点,进一步提高供电的可靠性,才能够节省故障维修的费用,降低停电所带来的经济损失。 关键词:10kV电力电缆;故障类型;故障点;查找;分析 一、10kV电力电缆故障原因与类型研究 (一)故障原因 第一,机械损伤因素。在电缆事故中,因机械损伤所引发的电缆事故比重相对较大,而主要的原因可以归纳成以下三点:外力损伤,一般出现在施工与交通运输过程中;安装损伤,在安装的过程中因碰伤或者是电缆拉伤等对于电缆产生的损伤;自然力损伤,电力电缆中间接头与终端接头会在自然拉力与内部绝缘胶膨胀的作用之下损伤电缆的护套。 第二,绝缘受潮因素。如果电力电缆的中间接头与终端头的结构密封与安装效果不理想,很容易增加绝缘受潮的几率[1]。另外,因电缆的制造质量不达标,使得金属护套之上存在裂缝或者是小孔等诸多缺陷,同样会引发电缆受潮故障的发生。 第三,过热因素。受电缆绝缘内部气隙游离的影响,会导致电力电缆的局部温度过高,致使绝缘炭化或者是电缆处于超负荷状态,最终提高了其实际温度。另外,如果电缆被安装在电缆密集区域或者是电缆沟与隧道当中,因通风条件不理想,也同样会提高电缆本身的温度,加快了绝缘的损坏速度。 第四,过电压因素。所谓的过电压,具体指的就是大气过电压与电缆内部过电压。而在实际运行过程中可以了解到,大部分户外终端头故障发生的原因都是大气过电压[2]。 第五,设计与安装因素。如果电力电缆的中间接头与终端头防水设计周密性欠缺,而选择使用的材料不合理,亦或是未综合考虑电场分布,都会引发设计问题。 (二)故障类型 第一,以故障现象为依据,可以将电力电缆的故障划分成开放性与封闭性故障两种。 第二,以接地现象为依据,可以将电力电缆的故障划分成开路故障、多相接地、相间故障与单相接地等。其中,单相与多相接地故障是最常见的。 第三,以故障绝缘电阻大小为依据,可以将电力电缆的故障划分成开路故障、高阻故障与低阻故障三种。其中,开路故障主要是电缆相间或者是相对地绝缘电阻满足规范数值,而工作的电压难以被传输至终端,或者是终端存在电压而负载能力薄弱。最典型的开路故障就是断线故障[3]。而低阻故障则是电缆相间与相对地绝缘受到损坏,绝缘电阻数值可以利用低压脉冲的方法对某种故障进行测量。如果故障点的对地电阻是零,就可以将其判断成短路故障。高阻故障则是电缆相间与相对地绝缘受到损坏,而绝缘电阻相对较大,无法使用低压脉冲的方法对故障进行测量。 二、10kV电力电缆故障点的查找 查找故障点的具体步骤 通常情况下,在查找电力电缆故障点的过程中,应将故障电缆的基本情况与故障的性质以及定点精确等作为参考依据。 第一,对故障电缆的基本情况进行检查。所谓的电缆基本情况具体指的就是电缆资料内容,具体涉及到了电缆的长度、接头的位置与路径走向等。只有保证电缆资料的完整性,才能够在短时间内找到故障点。 第二,对故障电缆性质的诊断。对电缆导电性能以及绝缘性能进行测量,进而对故障电缆的相关情况予以深入了解,初步掌握故障性质,以保证测试方法选择的正确性,合理地诊断故障电缆故障。 第三,粗测距离。可以将测试信号施加在故障电缆的芯线之上,也可以对故障信息进行测量与分析,进而获得故障距离。这样一来,就可以为定点的精确性提供所需的信息。 第四,定点的精确性。基于粗测距离,对故障点的位置进行准确地查找,为后期检修工作的开展奠定基础。常见的定点精测方法主要有时差定点、声测定点与同步定点方法。 第五,深入分析误差。因电缆运行的环境十分复杂,所以很容易出现电缆对接头较多或者是长期运行等问题,导致一次定位的误差较大。针对这一问题,应当高度重视假信号窜入的情况。 (二)粗测距离方法 第一,阻抗方法。这种方式具体是对故障点至测量端阻抗的测量与计算,充分结合线路的参数,列出故障点方程并求解,获得故障距离。在此过程中,将线路集中参数作为重点构建模型,基本原理十分简单且实现容易。而在实践运用的过程中,会将电桥法作为主要的形式。其中,电桥法最大的优势就是简单,且精准度很高,然而适用的范围不大。常见的高阻故障与闪络性故障,会因为故障的电阻值相对较大而电桥电流较小,严重影响了测距的效果。 第二,行波方法。行波测量故障距离的方法主要是在行波传播速度确定以后,利用其传播的时间对故障的位置进行确定。一般情况下,可以将行波离线测距的方法细化成几种类别: 其一,低压脉冲反射方法。这种方法通常被应用在不超过40Ω的绝缘电阻故障当中,可以利用被测电缆发射脉冲电压,一旦在电缆线路中遇到故障点或者是接头与电缆终端,受阻抗变化的影响,就会形成向着测试端运动的反射脉冲,对仪器进行利用对发射脉冲和反射脉冲的时间差异进行详细地记录,最终确定故障点[4]。这种方法的优势就是直观与简单,并不需要具备电缆原始资料,还应当将反射脉冲极性作为参考依据对故障的类型进行辨别,但是却不能够在高阻故障、泄露性与闪络性故障测量中应用。 其二,脉冲电压方法。通过对直流高压亦或是脉冲高压信号的利用,可以将电缆的故障点击穿,就会形成闪络放电。在这种情况下,

电缆故障事故调查

电缆故障着火事故调查报告 事故发生时间:2006年4月21日凌晨 事故地点:主井井口 事故经过:2006年4月21日凌晨主井口着火,2:20分发现火情时,西面塔衣中部有1.5m见方着火面,因气候干燥、风力大、塔衣又属易燃化纤物,所以很快引起西侧塔衣的全面燃烧及围墙外电缆大面积着火。 电缆着火后引起开关跳闸,吊泵断电停运。潜水泵电源开关跳闸。 施工单位立即组织灭火。6:45分水泵恢复排水。 早7:00通知工程部, 工程部人员赶到现场时。施工单位在做现场清理工作。围墙根部电缆绝缘均已烧毁,堆积部分电缆未发现短路迹象,电缆芯线无过载痕迹。 事故原因分析: 当时下井电缆有三根。 一.吊泵电源:电缆标注型号:VV-3×70+1×35 电缆长度720m,其中井下120m,地面600m盘8字堆放,8字长

4m、宽1m。电压等级660V,井下吊泵功率150kw,额定 电流163A,电流表显示150A。吊泵已连续运转20小时, 运转正常。事故发生后对电缆线径实测,线径不足 50mm2。灭火后将原VV-3×70+1×35电缆复用一部分 给吊泵供电,吊泵正常运转,说明吊泵是好的。 存在问题有: 1、电缆线径不足,容易过载发热; 2、电缆选型不合适,用不阻燃VV型普通电力电缆代替矿用电缆; 3、VV型普通电力电缆电缆不适用于移动电器设备,在抢险时电缆过度弯曲会造成内部绝缘损伤,塑料绝缘破坏,出现局部弧光放电现象; 4、电缆堆放不合适,会产生涡流发热、或因散热不良造成局部发热。 5、部分电缆被塔衣覆盖,散热不良。 二、潜水泵电源:电缆型号:U-3×25+1×16,电压等级380V,负荷7.5kw潜水泵,电缆截面足够,发热量不大。 三、信号电缆:不带负荷,属空载状态。 四、不排除外因火的可能性。 事故教训:本次火灾事故造成VV型电力电缆600m、信号电缆、部分矿用电缆严重损毁,虽未造成人员伤害,但事故的性质很严重。根据事故处理“四不放过”原则,要求施工单位就此事故引以为戒,结合安监局的检查时所提出的问题,制定整改措施,强化安全管理。

电线电缆各工序常见问题分析

连拉连退铜拉机常见质量问题产生原因及解决方法 序号质量现象产生原因消除及预防办法 1 尺寸和形状不合格1.用错出线模或模孔磨损过大 2.末道延伸系数过大 3.收线张力过大,使线拉细 4.模子放得不正 1.更换出线模 2.调整配模使延伸系数减小 3.将收线张力调至合适大小 4.模子放正 2 退火后铜线氧化1.铜轮转速高导致真空管进空气 2.水温过高、冷却不好 3.冷却水杂志大 4.铜线杂志大 5.水槽水位低、水封闭不严 6.真空管有空气 1.挡水及加酒精 2.采用循环水 3.更换冷却水 4.增大“系数1” 5.及时加水 6.加少量酒精 3 已退火铜线不多久氧化变色1.收线温度太高 2.除水干燥不良,铜线上有水汽 1.增大冷却或排风扇降温 2.增强除水,加大干燥电流,消 除水汽 4 断头多1.铜杆有杂质 2.接头不好 3.配模不正确,模孔形状和尺寸不正确 4.润滑剂不足或润滑效果不好 5.退火轮表面不光洁 6.反拉力过大 7.鼓轮上压线 1.提高铜杆质量 2.改进接头质量 3.核算后更换模子 4.改进润滑剂,充分润滑 5.将退火轮表面光洁处理 6.放线张力不可过大,鼓轮上绕 线圈数要进行调整 7.调整鼓轮绕线圈数;调整修正 沟槽较深的鼓轮,将表面毛糙的 鼓轮进行抛光 5 表面质量不合格(起皮毛刺、 三角口、模向擦伤、纵向道子 或沟槽等) 1.铜杆质量差(有折边等) 2.模孔不光洁 3.拉丝鼓轮不平滑,表面有伤痕 4.润滑剂太脏 1.提高铜杆质量 2.更换模子 3.鼓轮表面修磨抛光 4.更换润滑剂 6 导体表面有斑点拉丝出口模拉丝液溅出沾在铜线上堵塞飞溅处,出线处用棉纱或毛 毡擦线 7 导体伸率不合格1.铜杆质量太差 2.退火电流偏小,退火不完全 3.退火机件工作不正常 1.提高铜杆质量 2.退火电流调至合适大小 3.排除故障 8 线径粗细不匀 1.配模不当 2.拉丝机严重震动 3.线抖动厉害 4.润滑供应不均匀、不清洁 1.对配模尺寸进行适当调整,成 品模变形程度不可过小 2.检修设备,排除振动 3.调节收线张力,使收线速度稳 定均匀 4.保持润滑剂供应均匀,将润滑 剂进行过滤 绞线机常见质量问题产生原因及解决方法

电力电缆事故案例

案例3:可燃气体引发的电力电缆爆破事故 2000年11月25日凌晨至上午9点,武汉市某所变电所低压总空气开关接连发生3次跳闸现象,经查,临时从该所接电,在所住宅区北墙外施工的市自来水公司有1台电焊机电源短路,排除故障后,送电正常。下午5点,位于住宅区西北角新建球场处1个窨井突然发生爆炸,1个面积约2m<sup>2</sup>,厚度50mm的窨井水泥盖板被炸碎。据现场目击者叙述,爆炸前几分钟还有几个小孩在附近玩耍。此时,变电所低压总空气开关未跳闸,而居民家中电灯忽明忽暗非常明显,在距爆炸点正南方10m远处,检查人员听到地下断续放电声响,故判断此处埋设电缆发生故障,随后立即停电,将这2路电缆退出电网,挖开故障点,发现2路电缆已断,中间约1m多长一截电缆不知去向。 2 事故分析 该所住宅区用电是由马路对面所区一容量为315KV·A的变压器采用直埋电缆方式引到住宅区配电房的,损坏的2根电缆1根为截面70mm<sup>2</sup>动力电缆,另1根为截面120mm<sup>2</sup>照明电缆,于1987年在同一壕沟中敷设。1998年,因居民用电量增加,电缆负荷过大,

故对住宅区电网进行一次扩容,另挖一条濠沟,敷设1根截面150mm<sup>2</sup>电缆与原照明电缆并联。 经现场勘察情况发现,可燃易爆的物质就是沼气。原来,所饭店厨房下水通过1条排水沟流入1个面积约2m<sup >2</sup>,深1m多的窨井中。由于近期新球场的建立,使原本透气的排水沟至窨井盖四周被混凝土浇注严实,加上窨井盖为自制水泥盖板,没有透气孔,至使窨井中高浓度有机污水产生的沼气无法顺利排出,而沼气的主要成分是甲烷,其爆炸极限浓度在5%~15%之间,属易燃易爆气体。此外,电缆敷设又不符合规定要求:(1)电缆埋设深度为~,没有敷盖混凝土保护板,电缆外皮有明显划伤痕迹,部分划伤处已开裂;(2)所饭店厨房排水沟位置设置不当,排水沟与埋地电缆交叉,沟底与电缆几乎挨着,没有防渗措施。 综上所述,由于电缆在敷设时,外皮受到机械损伤,埋地深度不够,没有覆盖保护板,加上所饭店厨房排水沟与电缆交叉,沟底与电缆几乎挨着,安全净距为零,且没有采取防渗措施,使电缆长期受到污水浸蚀。当电焊机电源线发生短路时,短路电流使电缆迅速发热,加速了电缆绝缘老化,导致受损处电缆绝缘破损发生相间短路。由于短路产生的电弧温度可以高达6000℃,当电弧遇排水沟中沼气时,就引起窨

电缆故障排除原理

摘要:本文主要针对电力电缆的常见故障,从结构设计,人为因素,运行环境等方面进行分析,总结了电力电缆故障原因。并介绍了常用的电力电缆故障查找方法的原理、优缺点及适用范围,针对不同的电力电缆故障采用不同的方法以便快速、准确、方便查找故障,本文结合工作实际,以实际的电力电缆故障来说明各个各个电缆故障查找方法的适用性,具有一定的参考价值。 0 引言 电力电缆作为电力系统的重要组成部份,它的安全运行具有重要意义。一旦发生故障后,如何在最短时间内快速找出故障点一直电缆行业十分注重的研究课题。本文总结了多年来从事电缆运行维护的经验,对电缆故障原因进行了分析,重点介绍几种常用探测方法,并对各方法的优缺点和适用范围进行比较,以实际的例子进行分析,具有一定的参考意义。 1 电缆故障分类 电缆故障可概括为接地、短路、断线三类;如以故障点绝缘特征分类又可分 :1) 开路故障:电缆线芯连续性受到破坏,形成断线。 2 ) 低阻故障:绝缘电阻一般在几百欧姆以下。 3) 高阻故障:用兆欧表测量电缆绝缘电阻低于正常值但高于几百欧姆的故障。 2 形成电缆故障的原因分析 致使电缆发生故障的原因是多方面的,包括电缆运行环境,人为因素,施工质量等,现将常见的几种主要原因归纳如下。 2 .1 外力破坏 09年厦门电力电缆运行情况分析:10 kV电缆故障56次,其中外破28起,占50%。近几年来由于城市建设工程项目遍及各个角落,因施工单位在不明地下管线情况下进行地下管线施工或有些素质不高施工队的野蛮施工,是造成电缆受外力破坏的主要原因。

2 .2 电缆安装、产品质量不合格 09年厦门10kV电缆附件及电缆施工工艺不良造成电缆故障6起,占11%。由于附件施工人员对中间接头制作安装的操作细节不够重视或现场安装工艺条件较差等原因,导致中间接头的制作出现工艺和操作缺陷,对电缆的正常运行带来安全隐患。还有就是电缆附件产品存在质量问题;因此应加强对附件安装人员工艺培训和对电缆附件产品质量的入网把关显得尤为重要。 2 . 3 机械损伤 施工队伍在电缆敷设过程中未按要求和施工规范进行,用力不当或牵引力过大,使用的敷设工具不当或野蛮施工等原因造成电缆的机械损伤,有些机械损伤很轻微,当时并未造成故障,要在数月甚至数年后故障才会暴露出来。这类故障一般表现在 0.4 k V 电缆居多。 2 .4 电缆本体故障 电缆本体故障主要有电缆制造工艺和绝缘老化两种原因。制造工艺造成的故障现在比较少了,因国内中压电缆的制造已经达到国际先进水平了。而电缆的老化现象问题还是存在的,造成电缆提前老化的原因有: 1 、电缆在长期高温或高电压作用下容易产生局部放电,引起绝缘老化而出现故障; 2 、塑料绝缘电缆因长期浸泡在水中或水分侵入,使绝缘纤维产出水解,在电场集中处形成“ 水树枝” 现象,造成绝缘击穿等现象。 3 电缆故障检测方法及实例分析 电力电缆故障查找一般按故障性质诊断、故障测距、故障定点三个步骤进行。故障性质诊断过程是对故障电缆情况做初步了解及分析,然后用兆欧表及万用表进行故障性质判别,根据不同故障性质选择不同方法进行粗测,然后再依据粗测的结果进行精确定位。电缆故障检测的方法有许多,这些方法的适应对象及检测结果也各有不同,以下将介绍电缆故障测距电桥法、低压脉冲法、冲击高压闪络法的工作原理,并以实际的例子说明方法的适用情况,并对各种方法的优缺点进行比较。

电缆故障分析及运行维护措施

近年来,我国科学技术不断发展,电力产业作为我国国民经济中重要的组成部分,对社会的正常生产以及人们的有序生活有着重要的作用!随着市场经济的增长,人们对电网系统的依赖程度越来越高,同时对电网的电能质量和服务水平也日渐增高!10kV 配电网与城市居民生产生活息息相关,其线路运行的质量在整个输电线路工程中占据着重要的地位!在 10kV 电缆运行中,由于受到诸多不利条件的干扰,使其出现了许多故障,降低了电能的使用质量!因此相关部门必须加强 10kV 输电电缆的故障排除和检修工作,制定出相关应对措施,严格遵循相关的系统规则,做好一定的安全管理工作,从而提高 10kV 电缆运行的安全性和稳定性,确保用户用电质量。 关键词:10kV;电缆;故障分析;维护措施

摘要 ........................................................................................................................................ I 第1章绪论 .. (1) 第2章电缆故障及其原因分析 (2) 2.1自然因素的影响 (2) 2.2电缆线路自身故障 (2) 第3章典型的10 kV 电力电缆故障分析 (4) 3.2尖角或刀痕引起故障 (4) 第4章故障点的查找基本方法 (6) 4.1基本查找方法 (6) 第5章常见故障预防措施 (7) 5.2提高电缆的日常管理 (7) 5.3防范外力破坏的策略 (7) 5.4防范自然破坏的策略 (8) 5.5加强电缆线路的管理与维护工作 (8) 5.7加强高新技术设备的运用 (9) 第6章10kV 配网故障停电原因分析及解决对策研究 (10) 6.1 10kV配网故障停电的主要原因分析 (10) 结语 (16) 参考文献 (17)

相关文档
最新文档