利用向量法求点到平面的距离知识讲解

利用向量法求点到平面的距离知识讲解
利用向量法求点到平面的距离知识讲解

利用向量法求点到平

面的距离

精品文档 收集于网络,如有侵权请联系管理员删除 利用平面的法向量求点到平面的距离 甘肃省 彭长军 如图1,设n 是平面α的一个法向量,P 是α外一点,Q 是α内任意一点,则向量PQ u u u r 在法向

量n 方向上的射影长

d=PQ u u u r cos PQ,n <>uuu r u r =PQ n n

u u u r r g r 就是点P 到平面α的距离.下面举几例予以说明.

例1.已知A(2,3,1)、B(4,1,2)、C(6,3,7)、D(-5,-4,8)是空间不共面的四点,求点D 到平面ABC 的距离.

解:设),,(z y x n =是平面ABC 的一个法向量,则由0n AB =g 及10n BC =g ,得

2x 2y z 02x 2y 5z 0--+=??++=??2y x 32z x 3?=????=-??

,取x=3,得)2,2,3(-=n ,于是点D 到平面ABC 的距离为d=DA n n

u u u r r g r = 17

49=171749. 例2.已知四边形ABCD 是边长为4的正方形,E 、F 分别是AB 和AD 的中点,GC ⊥平面ABCD ,且GC=2,求点B 到平面EFG 的距离.

解:建立如图2所示的空间直角坐标系C-xyz ,

则G(0,0,2),E(2,4,0),B(0,4,0), F(4, 2,0),∴GE =(2,4,-

2),

GF =(4,2,-2),BE =(2,0,0).

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

怎样求点到平面的距离

怎样求点到平面的距离 徐加生 在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离。本文总结几种求点到平面距离的常用方法,供参考。 一 直接法 根据空间图形的特点和性质,找到垂足的位置,直接向平面引垂线,构造可解的直角三角形求解。 例1. (1998年全国高考题)已知斜三棱柱111C B A ABC -的侧面11ACC A 与底面ABC 垂直,32AC ,2BC ,90ABC ==?=∠,且C A AA ,C A AA 1111=⊥;(I )求侧棱A A 1与底面ABC 所成角的大小;(II )求侧面11ABB A 与底面ABC 所成二面角的大小;(III )求顶点C 到侧面11ABB A 的距离。 图1 简析:(I )如图1,取AC 中点D ,易得侧棱1AA 与底面ABC 所成的角为?=∠45AD A 1。 (II )由于⊥D A 1底面ABC ,过D 作AB DE ⊥于E ,连E A 1,知AB E A 1⊥,则ED A 1∠为所求二面角的平面角。易求得?=∠60ED A 1。 (III )要求C 到平面11ABB A 的距离,可直接作⊥CH 面11ABB A 于H ,CH 的长就是点到平面的距离。关键是怎样求CH 的长。注意到AB BC ⊥,连BH ,则由三垂线定理得AB HB ⊥,即HBC ∠为二面角的平面角。由(II )知HBC ∠?=60,所以360sin BC CH =?=为所求。 注:此法的关键是要找到可解的直角三角形来求解。 二. 找垂面法 找(作)出一个过该点的平面与已知平面垂直,然后过该点作其交线的垂线,则得点到 平面的垂线段。 例2. 正三棱柱111C B A ABC -的底面边长为2,侧棱长为3,11C A 的中点为D 。(1)求证//BC 1平面D AB 1;(2)求点B 到平面D AB 1的距离。

点到平面距离的若干典型求法

点到平面距离的若干典型求法 目录 1.引言 (1) 2.预备知识 (1) 3.求点到平面距离的若干求法 (3) 3. 1 定义法求点到平面距离 (3) 3. 2 转化法求点到平面距离 (5) 3. 3 等体积法求点到平面距离 (7) 3.4 利用二面角求点到平面距离 (8) 3. 5 向量法求点到平面距离 (9) 3.6最值法求点到平面距离 (11) 3.7公式法求点到平面距离 (13) 1.引言 求点到平面的距离是高考立体儿何部分必考的热点题型之一,也是学生较难准确把握难点问题之一。点到平面的距离的求解方法是多种多样的,本讲将着重介绍了儿何方法(如体积法,二面角法)、代数方法(如向量法、公式法)及常用数学思维方法(如转化法、最值法)等角度等七种较为典型的求解方法,以达到秒杀得分之功效。 2.预备知识 (1)正射影的定义:(如图1所示)从平面外一点向平面。引垂线,垂足为P,则点P'叫 做点〃在平面。上的正射影,简称为射影。同时把线段PP'叫作点P与平面。的垂线段。

图1 (2)点到平面距离定义:一点到它在一个平面上的正射影的距离叫作这点到这个平面的距离, 也即点与平面间垂线段的长度。 (3)四面体的体积公式 V=-Sh 3 其中V表示四面体体积,S、/?分别表示四面体的一个底面的面积及该底面所对应的高。 (4)直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 (5)三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它和这条斜线也垂直。 (6)二面角及二面角大小:平面内的一条直线/把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。图2所示为平面a与平面“所成的二面角,记作二面角a-1-p,其中/为二面角的棱。如图在棱/上任取一点。,过点。分别在平面。及平面”上作/的垂线。4、OB,则把平面角匕叫作二面角a-1-p的平面角,匕4彼的大小称为二面角a-1-p的大小。在很多时候为了简便叙述,也把匕称作a与平面“所成的二面角。 (7)空间向量内积: 代数定义:设两个向量刁=(而,》1,4),/;=(易况,全),则将两个向量对应分量的乘积之和 定义为向量。与片的内积,记作沁,依定义有必。二%工2 +凹)‘2 +4弓

点面距离的几种求法

点面距离的几种求法 距离的计算是历年高考的重点与热点,求距离问题可以和多种知识相结合,是诸多知识的交汇点。而点到平面的距离是是距离问题中的重中之重,线到面的距离及面到面的距离都转化为点到面的距离,线面角、二面角,多面体的体积等都可以借助点面距离使之得以解决。 求点到面的距离方法多而且灵活,可以根据定义从改点作平面的 垂线,有时直接利用已知点求距离比较困难,我们可以把点到平面的距离转化到其它点到面的距离或用空间向量法、或利用三棱锥等体积法等。下面通过几道例题介绍常用的点到面的距离求法: 1、 利用定义作垂线,解三角形。 例1, 在棱长为1的正方体1111D C B A ABCD -中,点P 在棱1CC 上,且 1CC =4CP ,求点P 到平面1ABD 的距离。 解: ∵!DC //AB ,∴平面1ABD 与平面D ABC 1是一个平面,∴点P 到平面11D ABC 的距离即为所求。过点P 作PM ⊥!BC 于M ,∵AB ⊥面 C C BB 11,PM ?面C C BB 11,∴AB ⊥PM 。AB 1C B ?=B , 1 C 1 D 1 A P M D A B C 1 B ,

∴PM ⊥1!D ABC ,∴PM 就是所求的距离,又∵ 0!45=∠BCC ,4 3!= P C ,在PM C R t !?中, 8 2 343224510= ?=?= PM P C PM Sin . 2、 转化成其它点到面的距离: 2 C A A

、向量法: 例3、 在棱长为1的正方体1111D C B A ABCD -中,点E, F 分别是 11,D A BC 的中点,求点A 到平面EDF B 1的距离。∥⊥ 解: 建系,如图,设点A 到平面EDF B 1的距离为 d , 平面EDF B 1的法 向量 =(x,y,z),则: AB → →?, y n → )1,2 1,0(),0,2 1,1(=→-=→DF DE

数学必修4_第二章_平面向量知识点word版本

数学必修4第二章 平面向量知识点 2.1 平面向量的实际背景及基本概念 1. 向量:既有大小又有方向的量。 2. 向量的模:向量的大小即向量的模(长度),如,AB a uu r r 的模分别记作|AB u u u r |和||a r 。 注:向量不能比较大小,但向量的模可以比较大小。 3. 几类特殊向量 (1)零向量:长度为0的向量,记为0r ,其方向是任意的,0r 与任意向量平行, 零向量a =0r |a |=0。由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) (2)单位向量:模为1个单位长度的向量,向量0a 为单位向量0||1a u u r 。将一个 向量除以它的模即得到单位向量,如a r 的单位向量为: ||a a e a r r r (3)平行向量(共线向量):方向相同或相反的非零向量,称为平行向量.记作a ∥b 。 规定:0r 与任何向量平等, 任意一组平行向量都可以移到同一直线上,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。 (4)相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a r 。 关于相反向量有:① 零向量的相反向量仍是零向量, ②)(a =a ; ③ ()0a a v v v ; ④若a 、b 是互为相反向量,则 a = b ,b =a ,a +b =0 。

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

求点到平面距离的基本方法

利用两个平面垂直,直接作出点到平面的距离. 2, A .AM为点A到平面的距 求点到平面距离的基本方法 北京农大附中闫小川 求点到平面的距离是立体几何中的一个基本问题,是高考的一个热点,也 是同学学习中的一个难点.本文通过对一道典型例题的多种解法的探讨,概括出 求点到平面的距离的几种基本方法. (I )求证:AE 平面BCE ; (n )求二面角B AC E的大小; (m )求点D到平面ACE的距离. (I)、( n)解略,(m)解如下: 、直接法 例 (2005年福建高考题)如图1,直二面角 D AB E中,四边形ABCD 是边长为2的正方形,AE EB,F为CE上的点, 且BF 平面ACE. D B

解:如图3,过点A 作AG 峑EC ,连结DG,CG ,则平面ADG //平面BCE , ???平面BCE 平面ACE , ???平面ADG 平面ACE , 作DH AG,垂足为H ,则DH 平面ACE. ??? DH 是点D 到平面ACE 的距离. 二、平行线法 ,B 为I 上任意一点,AM , BN ,则AM BN . 点A 到平面的距离转化为平行于平面 的直线I 到平面的距离,再转化为直 线I 上任意一点B 到平面 的距离. 解:如图5,过点D 作DM 屯AE ,连结CM ,则DM //平面ACE , 点D 到平面ACE 的距离转化为直线 DM 到平面ACE 的距离,再转化为点 M 到平面ACE 的距离. 作MN CE,垂足为N , 在 Rt ADG 中, DH AD DG 2 迈 2/3 AG 76 3 如图 4, A 1,1 // C B

???平面CEM 平面ACE , ??? MN 平面 ACE , ??? MN 是点M 到平面ACE 的距离. 三、斜线法 利用平面的斜线及三角形相似,转化为求斜线上的点到平面的距离 .如图 AO O , A,B l , AM , BN ,若竺 t,则 AM t BN.点 A 到 BO 平面 的距离转化为求直线I 上的点B 到平面 的距离. 解:如图8, BD 与AC 的交点为Q ,即BD 平面ACE Q , ??? DQ BQ , ???点D 到平面ACE 的距离与点B 到平面ACE 的距离相等. ???平面BCE 平面ACE ,BF 平面ACE , ? BF 是点B 到平面ACE 的距离. 在 Rt CEM 中,MN EM CM 2 72 C E 7 6 6、7, l N

高中数学平面向量知识点总结及常见题型x

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用a,b,c……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB几何表示法AB , a ;坐标表示法a =xi ? yj (x, y).向量 的大小即向量的模(长度),记作| A B |即向量的大小,记作I 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a = 0 = I a I = 0"由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件. (注意与0的区别) ③单位向量:模为1个单位长度的向量向量a0为单位向量二I a0I = 1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量.记作a // b ■由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 亠% =x2 小相等,方向相同(x「yj = (x2, y2)=」 y2 2向量加法 求两个向量和的运算叫做向量的加法t―4 ―4 设AB 二a, BC =b,贝y a + b =AB BC = AC (1)0 a a,0二a ;( 2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则?向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ ? QR二AR,但这时必须“首尾相连” ? 3向量的减法 ①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 记作-a,零向量的相反向量仍是零向量 关于相反向量有:(i) -(-a)=a ; (ii) a+(-a)=( - a)+ a = 0 ; (iii) 若a、b是互为相反向量, 则a=-b,b = -a,a + b=0 ②向量减法:向量a加上b的相反向量叫做a与b的差, 记作:a - b二a ? (-b)求两个向量差的运算,叫做向量的减法 ③作图法:a -b可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4实数与向量的积: ①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下: (I) a a ;

平面向量知识点及方法总结总结

平面向量知识点及方法总结总结 一、平面向量两个定理 1、平面向量的基本定理 2、共线向量定理。 二、平面向量的数量积 1、向量在向量上的投影:,它是一个实数,但不一定大于0、 2、的几何意义:数量积等于的模与在上的投影的积、三坐标运算:设,,则(1)向量的加减法运算:,、(2)实数与向量的积:、(3)若,,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标、(4)平面向量数量积:、(5)向量的模:、 四、向量平行(共线)的充要条件、 五、向量垂直的充要条件、六、七、向量中一些常用的结论 1、三角形重心公式在中,若,,,则重心坐标为、 2、三角形“三心”的向量表示(1)为△的重心、(2)为△的垂心、(3)为△的内心; 3、向量中三终点共线存在实数,使得且、 4、在中若D为BC边中点则 5、与共线的单位向量是七、向量问题中常用的方法 (一)基本结论的应用

1、设点M是线段BC的中点,点A在直线BC外,则(A)8 (B)4 (C)2 (D) 12、已知和点M满足、若存在实数m使得成立,则m= A、2 B、3 C、4 D、 53、设、都是非零向量,下列四个条件中,能使成立的条件是() A、 B、 C、 D、且 4、已知点____________ 5、平面向量,,(),且与的夹角等于与的夹角,则() A、 B、 C、 D、6、中,P是BN上一点若则m=__________ 7、o为平面内一点,若则o是____心 8、(xx课标I理)已知向量的夹角为,则、 (二)利用投影定义

9、如图,在ΔABC中,,,,则= (A)(B)(C)(D 10、已知点、、、,则向量在方向上的投影为 A、 B、 C、 D、11设是边上一定点,满足,且对于边上任一点,恒有则 A、 B、 C、 D、 (二)利用坐标法 12、已知直角梯形中,//,,,是腰上的动点,则的最小值为____________、 13、(xx课标II理)已知是边长为的等边三角形,为平面内一点,的最小值是() (三)向量问题基底化 14、在边长为1的正三角形ABC中, 设则____________、 15、(xx天津理)在中,,,、若,,且,则的值为 ___________、 16、见上第11题 (四)数形结合代数问题几何化,几何问题代数化例题 1、中,P是BN上一点若则m=__________

空间点到面的距离练习题

空间点到面的距离 一、选择题 (每小题6分,共36分) 1.平面α内的∠MON =60°,PO 是α的斜线,PO =3,∠POM =∠PON =45°,那么点P 到平面α的距离是( ) 2.在正三棱锥P —ABC 中,三条侧棱两两互相垂直,侧棱长为a ,则点P 到平面ABC 的距离为( ) A .a a a a 3.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( ) 4.空间四点A 、B 、C 、D 每两点的连线长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上, 则点P 与Q 的最小距离为( ) a a a 5.如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6 .过A 、B 分别作两平面交线的垂线,垂足为A ′、B ′,则AB ∶A ′B ′等于( ) A .2∶1 B .3∶1 C .3∶2 D .4∶3 6.已知平面α∥平面β,直线m ?α,直线n ?β,点A ∈m ,点B ∈n ,记点A 、B 之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则( ) A .b ≤c ≤a B .a ≤c ≤b C .c ≤a ≤b D .c ≤b ≤a 二、填空题(每小题6分,共18分)

7.如图所示,在正三棱柱ABC—A1B1C1中,AB=1.若二面角C—AB—C1的大小为60°,则点C到平 面ABC1的距离为________. 8.如图所示,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AC边上的一个动点,则PM 的最小值为________. 9.(2008年全国Ⅰ)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A—BD—C为120°,则点A到△BCD所在平面的距离等于________. 三、解答题 (10,11每题15分,12题16分,共46分) 10.如图所示,棱长均为a的正三棱柱中,D为AB中点,连结A1D,DC,A1C. (1)求证:BC1∥面A1DC; (2)求BC1到面A1DC的距离.

高中数学完整讲义——空间几何量的计算1.点到平面的距离问题

【例1】 已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平 面α的距离为( ) A .1 B .2 C .1或2 D .0或1 【例2】 ABC ?的三个顶点A B C ,,到平面α的距离分别为234,,,且它们在平面α的同一侧, 则 ABC ?的重心到平面α的距离为___________. 【例3】 如图,正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点.求E 到平面11ABC D 的距离. 【例4】 如图,在梯形ABCD 中,AB ∥CD ,90DAB ∠=,AD a =,PD ⊥面ABCD ,PD a =,求 点D 到平面PAB 的距离. O E A 1 D C 1 B 1 D C A H A C B D P 典例分析 板块一.点到平面的距离问题

【例5】 如图,在正三棱柱111ABC A B C -中,1AB =,若二面角1C AB C --的大小为60,求点C 到面 1ABC 的距离. 【例6】 (2007湖北文5)在棱长为1的正方体1 2 PD AB = 中,E 、F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且()101AG λλ=≤≤,则点G 到平面1D EF 的距离为( ) A B C D 【例7】 (2007湖北文5) 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上 的一点,且()101AG λλ=≤≤,则点G 到平面1D EF 的距离为( ) A B C D 【例8】 (2007江苏14)正三棱锥P ABC -高为2,侧棱与底面所成角为45?,则点A 到侧面PBC 的 E D C 1 B 1A 1 C B A A A 1 A B C D E

2019年人教版及高中数学平面向量知识点易错点归纳

§5.1 平面向量的概念及线性运算 三角形法则 3.共线向量定理 向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 方法与技巧 1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD → 且AB 与CD 不共线,则AB ∥CD ; 若AB →∥BC → ,则A 、B 、C 三点共线.

失误与防范 1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性. 2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. §5.2 平面向量基本定理及坐标表示 1.平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2. 其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则 a + b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1),|a |=x 21+y 2 1. (2)向量坐标的求法 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB → |=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ?x 1y 2-x 2y 1=0. 方法与技巧 1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同. (2)三点共线的判断方法 判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定. 失误与防范 1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况. 2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1 y 2 ,因为x 2,y 2有可能等 于0,所以应表示为x 1y 2-x 2y 1=0.

高中数学平面向量知识点总结[1]

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法),(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?| a |= 由于0 的方向是任意的,且规定0 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b (即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必 须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同 ),(),(2211y x y x =???==?2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b == ,则a +b =AB BC + =A C (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高中数学平面向量知识点总结82641

平面向量知识点总结 第一部分:向量的概念与加减运算,向量与实数的积的运算。 一.向量的概念: 1. 向量:向量是既有大小又有方向的量叫向量。 2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:可表示为 3.模的概念:向量的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 二.向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三.向量的加法: 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则: 强调: a b c a + b A A A B B B C C a +b a + b a a b b b a a

1?“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2?可以推广到n 个向量连加 3?a a a =+=+00 4?不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1?向量加法的平行四边形法则(三角形法则): 2?向量加法的交换律:+=+ 3?向量加法的结合律:(+) +=+ (+) 4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。 四.向量的减法: 1.用“相反向量”定义向量的减法 1?“相反向量”的定义:与a 长度相同、方向相反的向量。记作 -a 2?规定:零向量的相反向量仍是零向量。-(-a ) = a 任一向量与它的相反向量的和是零向量。a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.向量减法做图:表示a - b 。强调:差向量“箭头”指向被减数 总结:1?向量的概念:定义、表示法、模、零向量、单位向量、平行向量、 相等向量、共线向量 2?向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点) 1.实数与向量的积 实数λ与向量a ρ的积,记作:λa ρ 定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ 1?|λa ρ|=|λ||a ρ | 2?λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ = 2.运算定律:结合律:λ(μa ρ)=(λμ)a ρ ① 第一分配律:(λ+μ)a ρ=λa ρ+μa ρ ② 第二分配律:λ(a ρ+b ρ)=λa ρ +λb ρ ③ 3.向量共线充要条件:

高一数学必修四,平面向量知识点总结,2020最新版

平面向量知识点专题 知识点梳理: 一、向量的基本概念 1. 向量的定义:既有大小又有方向的量叫做向量,一般用c b a ,,来表示,或用有向线段的起点与终点的大写字母表示,如(其中A 为起点,B 为终点)。 2. 向量的大小:又叫向量的模,也就是向量的长度,记作||a 或||。 3. 零向量:长度为0的向量,记作0,其方向是不确定的。我们规定零向量与任何向量a 共线(平行),即a ∥0。 4. 单位向量:模长为1个单位的向量叫做单位向量。当≠||a 0时,很明显| |a a ± 是与向量a 共线(平行)的单位向量。 5. 相等向量:大小相等,方向相同的向量,记为b a =。 6. 相反向量:大小相等,方向相反的向量,向量a 的相反向量记为a -。 7. 共线向量(平行向量):方向相同或方向相反的向量,叫做平行向量,也叫做共线向量,因为任何平行向量经过平移后,总可以移到同一条直线上。 二、向量的线性运算 1. 向量的加法: 1.1. 求两个向量和的运算叫做向量的加法。已知向量b a ,,在平面内任取一点A ,作b a ==,,则向量叫做向量a 和b 的和(或和向量),即b a =+=+。 1.2. 向量加法的几何意义:向量的加法符合三角形法则和平行四边形法则,如图: 1.3. 若向量b a ,不共线,加法的三角形法则和平行四边形法则都适用;当向量b a ,共线时,只能用三角形法则。 1.4. 三角形法则可推广至若干个向量的和,如图:

2. 向量的减法: 2.1. 向量a 与b 的相反向量之和叫做向量a 与b 的差或差向量,即)(b a b a -+=-。 2.2. 向量减法的几何意义:向量的减法符合三角形法则,同起点,指向被减数,如图: 3. 向量的数乘运算: 3.1. 实数λ与向量a 的积是一个向量,记为a λ,其长度与方向规定如下: ①||||||a a λλ= ②当0>λ时,a λ与a 的方向相同;当0<λ时,a λ与a 的方向相反;当0=λ时,0=a λ,方向不确定。 3.2. 向量数乘运算的运算律:设μλ,为实数,则 ①a a a μλμλ+=+)(; ②a a )()(λμμλ=; ③b a b a λλλ+=+)(。 三、重要定理和性质 1. 共线向量基本定理:如果)(R b a ∈=λλ,则b a ∥;反之,如果b a ∥且0≠b 时,一定存在唯一实数λ,使b a λ=。 2. 平面向量基本定理: 2.1. 如果21,e e 是同一平面内不共线的两个向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数21λλ,,使得2211e e a λλ+=。 2.2. 基底:我们把不共线的向量21,e e 叫做表示该平面内所有向量的一组基底,记为{21,e e }。2211e e λλ+叫做向量a 关于基底{21,e e }的分解式。 2.3. 平面向量基本定理又叫做平面向量分解定理,是平面向量正交分解的理论依据,也是向量坐标表示的基础。 3. 线段定比分点的向量表达:如图,在△ABC 中,若点D 是边BC 上的点,且)1(-≠=λλDC BD ,则向

平面向量知识点汇总

平面向量知识点汇总 基本知识回顾: 1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向. 2.向量的表示方法: ①用有向线段表示-----AB (几何表示法); ②用字母a 、b 等表示(字母表示法); ③平面向量的坐标表示(坐标表示法): 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=,222121()()AB x x y y =-+-3.零向量、单位向量: ①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.就是单位向量) 4.平行向量: ①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行.向量a 、b 、c 平行,记作a ∥b ∥c .共线向量与平行向量关系:平行向量就是共线向量. 性质://(0)(a b b a b λλ≠?=是唯一)||b a b a a b λλλ??>????

利用向量法求点到平面的距离

利用平面的法向量求点到平面的距离 甘肃省 彭长军 如图1,设n 是平面α的一个法向量,P 是α外一点,Q 是α内任意一点,则向量PQ u u u r 在法向量n 方向上的射影长d=PQ u u u r cos PQ,n <>uuu r u r =PQ n n u u u r r g r 就是点P 到平面α的距离.下面举几例予以说明. 例1.已知A(2,3,1)、B(4,1,2)、C(6,3,7)、D(-5,-4,8) 是空间不共面的四点,求点D 到平面ABC 的距离. 解:设),,(z y x n =是平面ABC 的一个法向量,则由0n AB =g 及10n BC =g ,得 2x 2y z 02x 2y 5z 0--+=??++=??2y x 32z x 3?=????=-?? ,取x=3,得)2,2,3(-=n ,于是点D 到平面ABC 的距离为d=DA n n u u u r r g r = 17 49=171749. 例2.已知四边形ABCD 是边长为4的正方形,E 、F 分别是AB 和AD 的中点,GC ⊥平面ABCD ,且GC=2,求点B 到平面EFG 的距离. 解:建立如图2所示的空间直角坐标系C-xyz ,则 G(0,0,2),E(2,4,0),B(0,4,0), F(4, 2,0),∴GE =(2,4,-2), GF =(4,2,-2),BE =(2,0,0). 设平面EFG 的一个法向量为),,(z y x n =,则由 0n GE =g 及0n GF =g ,得2x+4y 2z 04x 2y 2z 0-=??+-=?? x=y z 3y ??=?,取y=1,得(1,1,3)n =,于是点B 到平面EFG 的距离为d=BE n n u u u r r g r =11112112=. 例3.在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求点C 1到平面A 1BD 的距离。

相关文档
最新文档