论移动通信基站铁塔的选型及设计

论移动通信基站铁塔的选型及设计
论移动通信基站铁塔的选型及设计

论移动通信基站铁塔的选型及设计

发表时间:2017-11-16T17:52:22.237Z 来源:《基层建设》2017年第23期作者:邹超[导读] 摘要:笔者主要从移动通信基站铁塔特点、设计要求及选型依据等等几方面概述了本文主题,旨在与广大同行共同探讨学习。

广东达安项目管理股份有限公司 510510

摘要:笔者主要从移动通信基站铁塔特点、设计要求及选型依据等等几方面概述了本文主题,旨在与广大同行共同探讨学习。

关键词:通信铁塔;基站;天线挂高;地质条件

如今移动通信技术和网络正在飞速发展和建设当中,目前全国范围中已经基本上覆盖了移动网络,这项技术对于提升工程质量、降低其中所产生造价,提升建设速度上有很大保障作用,同时提升对于基站所能够带来的效益是非常可观的,从移动通信基站实际情况来看,投资非常大,同时所涉及专业和范围非常管饭,因此,对于铁塔和机房等基础设备进行建设,是保证效果的关键环节,下面文章铁塔等基础设施的设计内容进行了阐述和分析。

一、移动通信基站建设基本框架结构

移动通信基站建设是构建移动通信网络的重要支撑。移动通信基站建设主要包括基站机房建设、铁塔 / 桅杆建设以及天线架构。其主要构成如图 1。

图 1 移动通信基站建设的结构框图

1.基站机房

主要包括传输设备、收发信设备、电源设备、环境动力监控装置、自动灭火装置和空调等。

2.铁塔 / 桅杆

主要包括防雷接地装置、天线支架、塔身、辅助设施、地基基础和拉线等。铁塔 / 桅杆类型主要分为三管塔、角钢塔、拉线塔、单管塔和楼顶抱杆等。

3.天线

主要包括天线座架、天线反射体以及馈电系统。天线按使用区域分为:室内分布天线和室外天线;按照发射方向分为:全向天线、定向天线。

二、移动通信基站铁塔特点、设计要求及选型依据

根据基站建设的地理环境、设计要求和铁塔自身的特点,合理的对基站铁塔进行选型是移动通信基站设计方案主要问题。合理的铁塔选型和设计,对于降低工程造价,缩短工程建设周期,保证结构安全可靠至关重要。

1.不同类型铁塔特点

移动通信基站通信基站建设一般是在楼顶、丘陵及开阔的地势构建的铁塔附近,总体地势较高,具有高柔、难维护等特点,对通信基站的设计提出了很高的要求。通信铁塔选型与天线的结构形式、结构布置、天线挂高、占地面积、风压荷载、建筑场地的环境和地质条件等有着非常密切的关系。表 1 为移动通信基站铁塔类型优缺点对比表。

表 1 移动通信基站铁塔类型优缺点

2.设计要求

(1)基站选址要求

通信基站选址要考虑周围用户话务量大、信号差、基站少的区域;要远离大功率电磁干扰或强脉冲干扰以及存储易燃易爆物品的仓库、企业;基站目标覆盖区应视野开阔,其附近没有高于基站天线高度的建筑物阻挡。同时通信基站的建设需要建设机房、铁塔以及安装设备,对施工机械有很大的需求,注意周围地势特征,选择便于施工、维护的环境。

(2)维护性要求

由于通信基站本身包含的设备比较多,连接复杂,对通信基站的维护保养提出了更高的要求,因此在通信基站建设中要注意设备安装的有序、清晰、直观,便于维护。

(3)安全性要求

通信基站设计中要充分考虑风压、周围环境、设备自身等方面可能存在的问题,构建接地网、设计防雷系统和设备工作、保护接地,在机房内完善自动灭火装置和环境温度控制装置。一座合格的通信基站,应在其设计寿命周期内,在未发生超出设计范围的自然因素情况下能够正常工作,不出现机房、铁塔倾斜、倒伏、地基下沉等现象,确保基站的安全。

脱硫设计计算

4.2废气处理工艺选择 综上比较可知,几种主要的湿法除硫的比较可知:双碱法不仅脱硫效率高(>95%),吸收剂利用率高(>90%)、能适应高浓度SO2烟气条件、钙硫比低(一般<1.05)、采用的吸收剂价廉易得、管理方便、能耗低、运行成本低,不产生二次污染,所以本次设计采用双碱法进行脱硫。 4.2.2 工艺说明 脱硫工艺原理: 干燥塔废气经洗涤塔进行降温后,进入旋风除尘器除尘,然后进入双碱法脱硫除尘系统,双碱法脱硫除尘系统采用NaOH作为脱硫吸收剂,将脱硫剂经泵打入脱硫塔与烟气充分接触,使烟气中的二氧化硫与脱硫剂中的NaOH进行反应生成Na2SO3,从脱硫塔排出的脱硫废水主要成分是Na2SO3溶液,Na2SO3溶液与石灰反应,生成CaSO3和NaOH,CaSO3经过氧化,生成CaSO4沉渣,经过沉淀池沉淀,沉淀池内清液送入上清池,沉渣经板框压滤机进一步浓缩、脱水后制成泥饼送至煤灰场,滤液回收至上清池,返回到脱硫塔/收集池重新利用,脱硫效率可达95%以上。 工艺过程分为三个部分: 1石灰熟化工艺: 生石灰干粉由罐车直接运送到厂内,送入粉仓。在粉仓下部经给料机直接供熟化池。为便于粉仓内的生石灰粉给料通畅,在粉仓底部设有气化风装置和螺旋输送机,均匀地将生石灰送入熟化池内,同时按一定比例加水并搅拌配制成一定浓度的Ca(OH)2浆液,送入置换池。 配制浆液和溶液量通过浓度计检测。 2吸收、再生工艺: 脱硫塔内循环池中的NaOH溶液经过循环泵,从脱硫塔的上部喷下,以雾状液滴与烟气中的SO2充分反应,生成Na2SO3溶液,在塔内循环,当PH值降低到一定程度时,将循环液打入收集池,在置换池内与Ca(OH)2反应,生成CaSO3浆液。将浆液送入氧化池氧化,生成CaSO4沉渣,送入沉淀池。向置换池中加Ca(OH)2和NaOH都是通过PH 计测定PH值后加入碱液,脱硫工艺要求的PH值为9~11。 3废液处理系统:

建筑结构设计

65 建筑结构设计分析 张亚超 魏强 西安骊山建筑规划设计院 摘 要:本文主要介绍建筑结构的基本内容,然后针对目前建筑结构设计当中墨守成规的现象,提倡采用概念设 计思想来促进结构工程师的创造性,推动结构设计的发展,对建筑结构设计常见问题做了分析,为以后的设计提供参考。 关键词:建筑;结构设计;方法;概念设计 而建筑结构设计优化方法的应用则既能满足建筑美观、造型优美的要求,又能使房屋结构安全、经济、合理,成为实质意义上的“经济适用”房。 1 结构设计的基本内容 1.1 屋顶(面)结构图 当建筑是坡屋面时,结构的处理方式有两种:梁板式及折板式。梁板式适用于建筑平面不规整,板跨度较大,屋面坡度及屋脊线转折复杂的坡屋面。反之,则适用折板式。两种形式的板均为偏心受拉构件。板配筋时应有部分或全部的板负筋拉通以抵抗拉力。板厚基于构造需要一般不宜小于 120 厚。此外梁板的折角处钢筋的布置应有大样示意图。至于坡屋面板的平面画法, 建议采用剖面示意图加大样详图的表示方法(实践证明此方法便于施工人员正确理解图纸)。1.2 结构平面图 在绘制结构平面布置图前有个问题需要说明一下, 就是要不要输入结构软件进行建模的问题。当建筑地处抗震设防烈度为 6 度区时,根据建筑抗震设计规范,是可以不用进行截面抗震验算的但应符合有关的抗震措施要求。那么对于砌体结构来讲如果时间不是很充足的话应该可以不用在软件中建模的,直接设计即可,但要注意受压和局部受压的问题。必要时进行人工复核。对于局部受压的防御措施是要按规定对梁下设梁垫以及设置构造柱等措施。如果时间不是很紧张的话建议还是输入建模较好, 有一个便利就是可以利用软件来进行荷载导算。另外,当建筑地处抗震设防烈度为 7 度及以上时我的观点是必须要输入软件建模计算的, 绘制结构平面图时如果没有建模的话就可以直接在建筑的条件图上来绘制结构图了, 这一步必不可少的是删除建筑图中对结构来讲没有用的部分,简单快捷的方法是利用软件的图层功能,直接冻结相关的层。然后再建立新的结构图层:圈梁层、构造柱层、梁层、文字层、板钢筋层等等。这样做的目的是提高绘图效率, 方便在不同结构平面图间的拷贝移动和删除。1.3 楼梯 楼梯梯板要注意挠度的控制, 梯梁要注意的是梁下净高要满足建筑的要求, 梯梁的位置尽量使上下楼层的位置统一。局部不合适处可以采用折板楼梯。折板楼梯钢筋在内折角处要断开分别锚固防止局部的应力集中。阁楼层处的楼梯由于有 分户墙的存在要设置抬墙梁。注意梁下的净空要求, 并要注意梯板宽度的问题。首段梯板的基础应注意基础的沉降问题, 必要时应设梯梁。1.4 基础 基础要注意混凝土的标号选择应符合结构耐久性的要求。基础的配筋应满足最小配筋率的要求(施工图审查中心重点审查部位)。条基交接部位的钢筋设置应有详图或选用标准图。条基交叉处的基底面积不可重复利用,应注意调整基础宽度。局部墙体中有局部的较大荷载时也要调整基础的宽度(因软件计算的是墙下的平均轴力)。基础图中的构造柱,当定位不明确时应给予准确定位。 2 概念设计 所谓的概念设计一般指不经数值计算, 尤其在一些难以做出精确理性分析或在规范中难以规定的问题中, 依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想, 从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法, 可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能,同时,也是判断计算机内力分析输出数据可靠与否的主要依据。 概念设计的重要性:概念设计是展现先进设计思想的关键,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。一般认为,概念设计做得好的结构工程师,随着他的不懈追求,其结构概念将随他的年龄与实践的增长而越来越丰富,设计成果也越来越创新、完善。遗憾的是,随着社会分工的细化,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计,缺乏创新,更不愿(不敢)创新,有的甚至拒绝对新技术、新工艺的采纳(害怕承担创新的责任)。大部分工程师在一体化计算机结构程序设计全面应用的今天,对计算机结果的明显不合理、甚至错误不能及时发现。 3 建筑结构设计常见问题 (下转第67页)

通信铁塔基础选型与设计初探

内容提示:通过对工程中常见的两种通信铁塔工程实例的分析,详细阐述了针对不同地质情况时,基础选型的一般原则和方法,通过合理选择基础形式,达到了减少投资、便于施工的效果。 延伸阅读:基础选型桩基础独立基础通信铁塔 0 引言 通信铁塔是装设通信天线的一种高耸结构,其特点是结构较高,横截面相对较小,横向荷载(主要是风荷载和地震作用)起主要作用。通信铁塔基础将上部结构的全部荷载安全可靠地传递到地基,并保证结构的整体稳定,是构成通信铁塔结构的重要组成部分。通信铁塔基础选型与上部结构形式、结构布置、外部荷载作用类别、建筑场地以及所在区域的地质条件等有着非常密切的关系。合理的基础选型和设计,对于降低工程造价,缩短工程建设周期,保证结构安全可靠至关重要。 由于风荷载属于随机荷载,风力的大小和方向具有任意性和脉动性,基础受力同样也具有任意性和脉动性的特征,所以基础设计选用荷载取值时,需根据不同的铁塔形式,选用最不利方向的荷载组合标准值进行设计。通信铁塔所采用的空间桁架结构自重相对较轻,而且挂设通信天线的平台竖向荷载也不大,因此三角形或四边形桁架塔塔下基础顶面的拉力或压力呈交变性,拉力值一般可达压力值的以上故桁架塔的基础抗拔计算特别重要,很多时候基础的抗拔设计起主导作用。 根据河北联通近几年来通信基站建设中的常用两种类型铁塔的基础设计,笔者针对四角塔和三管塔简要分析如何进行铁塔基础的选型与设计。 1 四边形角钢塔的基础选型与设计 四边形角钢塔简称四角塔,是近几年常见的通信塔形式。铁塔跟开一般约为铁塔高度的1/7,基础形式通常采用钢筋混凝土独立基础、灌注桩基础,计算基础所选用的荷载组合,一般取上部结构传至塔脚下最不利的第二方向(即45°角方向),在正常使用极限状态荷载效应的标准组合荷载,有下压力,上拔力和水平剪力,基础形式需依据基站所在位置的岩土工程勘察报告和周围建筑物情况,场地平整情况等综合选定。 1.1 钢筋混凝土独立基础

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 4.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= ) ln( ) ()(* ** 2 2*11*2 2*1 12 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -] 4[ 82.0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

脱硫塔设计

目录 1.设计任务书 (2) 1.1 设计题目 (2) 1.2 设计内容 (2) 1.3 主要设计参数 (3) 2.脱硫工艺的选择与工艺流程简介 (3) 2.1 脱硫工艺的选择 (3) 2.2 工艺流程简介 (4) 3. 工艺流程中主要发生的化学反应 (5) 4. 脱硫塔设计 (6) 4.1 物料衡算 (6) 4.1.1 入塔的煤气质量 (6) 4.1.2 出塔煤气的变化量 (8) 4.1.3 m3的计算 (12) 4.1.4 m4的计算 (12) 4.1.5 脱硫塔的液气比 (12) 4.2 热量衡算 (12) 4.2.1 入塔脱硫煤气带入的热量 (12) 4.2.2 出脱硫塔的煤气带走的热量 (13) 4.2.3 脱硫过程中发生的熔解热和反应热 (14) 4.2.4 总的热量衡算 (15) 4.3 设备计算 (15) 4.3.1 选择填料 (15) 4.3.2 塔径的计算 (16) 4.3.3 传质面积和填料高度 (17) 5.脱硫塔工艺设计结果表 (18) 5.1 总表 (18) 5.2 煤气入塔物质汇总表 (19) 5.3 出塔物质汇总表 (20) 5.4 其他数据 (20) 6.设计小结 (20) 7.参考文献 (23)

1. 设计任务书 1.1 设计题目 干煤气量为 40000Nm 3/h 的炼焦煤气的脱硫的工艺计算。 入口煤气 出口煤气 温度/℃ 34 36 压力(表压)/Pa 17000 15000 煤气中S H 2含量/g/Nm 3 99.5 1.0 入口煤气中杂质的含量: 组分 焦油 苯 S H 2 HCN 3NH 萘 水汽 含量/g/Nm 3 微量 28.45 5.99 1.57 8.37 0.4 23.97 剩余氨水:12470Kg/h ,t=75℃,P=0.45MPa ,氨的质量分数10%。 1.2 设计内容 (1)脱硫工艺的选择与工艺流程介绍; (2)脱硫塔的物料衡算; (3)脱硫塔的工艺尺寸计算; 3NH S H 2 2CO HCN 挥发氨 24Kg/h 97%3NH 0.18g/L 1.3g/L 0.04g/L 固定氨 18Kg/h 90%3NH

铁塔结构设计计算细则(2006)(稿)

铁塔结构设计计算细则(角钢/钢管塔) 审核: 校核: 编写:金晓华 广东省电力设计研究院送变电室 2006.9

一、设计依据 1.《110kV~500kV架空送电线路设计技术规程》(DL/T5092-1999) 2.《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002) 3.“设计条件及塔头间隙图”(广东省电力设计研究院)(附件1) 二、荷载 1.导、地线荷载见广东省电力设计研究院提供“铁塔外负荷计算书(附件2)”: 2.设计工况应包括正常运行(包括最小垂直荷载和最大水平荷载组合;直线塔最小垂直档距取0.5倍水平档距;转角塔要考虑正、负垂直档距)、断线、安装的最不利组合情况,转角塔及结构布材不对称的塔应计算反向风工况,所有塔应计算基础作用力工况。 为便于校对,应进行设计工况归并,可参考“铁塔设计工况”(附件3),并应详细列出每种荷载工况组合,而不是单纯指出第几种到第几种为事故或安装等工况。 3.参考国网典型设计,新规划的直线塔规定了计算高度,铁塔外负荷是对应这个计算高度值的。杆塔风荷载调整系数βz以及线条荷载对地距离均应按该计算高度(呼高)取值。对本塔高于该计算呼高的,应采用由我院电气专业开的缩小使用条件的铁塔外负荷来验算,原则上不增大共用段原主材构件规格,如个别共用段主材构件规格差别不大的情况下,则选用较大规格主材,而不修改档距从而修改计算荷载再重新计算,但应得到结构室内部确认。 4.引用国网典型设计,作以下特殊规定: 1).500kV直线塔考虑施工锚固工况,部分使用条件大的220kV直线塔也考虑施工锚固工况;500kV和220kV直线塔都考虑2倍起吊安装荷载,但应按4:6比例分配到前后的荷载点上。 2).为降低塔材指标,新规划的直线塔分平地和山地二类,其中平地直线塔考虑1~2种使用条件的塔型,按平腿设计,导线断线张力取一相Tm的15%(500kV)和20%(220kV 及以下);山地直线塔考虑3~4种使用条件的塔型,按长短腿设计,导线断线张力对500kV 电压等级取15%(第1种使用条件的塔)、20%(第2种)及25%(第3、4种),对220kV及以下电压等级取20%(第1种)及25%(除第1种外)。在塔的结构设计计算说明书的工程概况中列出断线张力百分数。 3).山区耐张塔的荷载组合应考虑两侧正档下压、两侧负档上拔、一侧正档另一侧负档扭转的所有正常、断线、安装工况的组合;平地耐张塔(当塔型规划有时),不考虑上拔情况。所有转角塔计算工况均应叠加跳线串荷载。

建筑结构设计试题及答案

建筑结构设计 一、选择题(每小题1分,共20分) 1、单层厂房下柱柱间支撑设置在伸缩缝区段的( )。 A 、两端,与上柱柱间支撑相对应的柱间 B 、中间,与屋盖横向支撑对应的柱间 C 、两端,与屋盖支撑横向水平支撑对应的柱间 D 、中间,与上柱柱间支撑相对应的柱间 2、在一般单阶柱的厂房中,柱的( )截面为内力组合的控制截面。 A 、上柱底部、下柱的底部与顶部 B 、上柱顶部、下柱的顶部与底部 C 、上柱顶部与底部、下柱的底部 D 、上柱顶部与底部、下柱顶部与底部 3、单层厂房柱牛腿的弯压破坏多发生在( )情况下。 A 、0.751.0 C 无论何时 q γ=1.4 D 作用在挡土墙上q γ=1.4 12、与b ξξ≤意义相同的表达式为()

铁塔结构设计计算细则

铁塔结构设计计算细则 (角钢/钢管塔) 审核: 校核: 编写:金晓华 广东省电力设计研究院送变电室 2006.9

一、 设计依据 1.《110kV~500kV架空送电线路设计技术规程》(DL/T5092-1999) 2.《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2002) 3.“设计条件及塔头间隙图”(广东省电力设计研究院)(附件1) 二、荷载 1.导、地线荷载见 广东省电力设计研究院提供“铁塔外负荷计算书(附件2)”: 2.设计工况应包括正常运行(包括最小垂直荷载和最大水平荷载组合;直线塔最小垂直档距取0.5倍水平档距;转角塔要考虑正、负垂直档距)、断线、安装的最不利组合情况,转角塔及结构布材不对称的塔应计算反向风工况,所有塔应计算基础作用力工况。 为便于校对,应进行设计工况归并,可参考 “铁塔设计工况”(附件3),并应详细列出每种荷载工况组合,而不是单纯指出第几种到第几种为事故或安装等工况。 3.参考国网典型设计,新规划的直线塔规定了计算高度,铁塔外负荷是对应这个计算高度值的。杆塔风荷载调整系数βz以及线条荷载对地距离均应按该计算高度(呼高)取值。对本塔高于该计算呼高的,应采用由我院电气专业开的缩小使用条件的铁塔外负荷来验算,原则上不增大共用段原主材构件规格,如个别共用段主材构件规格差别不大的情况下,则选用较大规格主材,而不修改档距从而修改计算荷载再重新计算,但应得到结构室内部确认。 4.引用国网典型设计,作以下特殊规定: 1).500kV直线塔考虑施工锚固工况,部分使用条件大的220kV直线塔也考虑施工锚固工况;500kV和220kV直线塔都考虑2倍起吊安装荷载,但应按4:6比例分配到前后的荷载点上。 2).为降低塔材指标,新规划的直线塔分平地和山地二类,其中平地直线塔考虑1~2种使用条件的塔型,按平腿设计,导线断线张力取一相Tm的15%(500kV)和20%(220kV 及以下);山地直线塔考虑3~4种使用条件的塔型,按长短腿设计,导线断线张力对500kV 电压等级取15%(第1种使用条件的塔)、20%(第2种)及25%(第3、4种),对220kV及以下电压等级取20%(第1种)及25%(除第1种外)。在塔的结构设计计算说明书的工程概 况中列出断线张力百分数。 3).山区耐张塔的荷载组合应考虑两侧正档下压、两侧负档上拔、一侧正档另一侧负档扭转的所有正常、断线、安装工况的组合;平地耐张塔(当塔型规划有时),不考虑上拔情况。所有转角塔计算工况均应叠加跳线串荷载。

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

结构设计常用数据表格

建筑结构安全等级 2 纵向受力钢筋混凝土保护层最小厚度(mm) 不同根数钢筋计算截面面积(mm2)

板宽1000mm内各种钢筋间距时钢筋截面面积表(mm2) 每米箍筋实配面积 钢筋混凝土结构构件中纵向受力钢筋的最小配筋百分率(%) 框架柱全部纵向受力钢筋最小配筋百分率(%)

框架梁纵向受拉钢筋的最小配筋白分率(%) 柱箍筋加密区的箍筋最小配箍特征值λν(ρν=λνf/f)

受弯构件挠度限值 注:1 表中lo为构件的计算跨度; 2 表中括号内的数值适用于使用上对挠度有较高要求的构件; 3 如果构件制作时预先起拱,且使用上也允许,则在验算挠度时,可将计算所得的挠度值减去起拱值;对预应力混凝土构件,尚可减去预加力所产生的反拱值; 4 计算悬臂构件的挠度限值时,其计算跨度lo按实际悬臂长度的2倍取用。

注: 1 表中的规定适用于采用热轧钢筋的钢筋混凝土构件和采用预应力钢丝、钢绞线及热处理钢筋的预应力混凝土构件;当采用其他类别的钢丝或钢筋时,其裂缝控制要求可按专门标准确定; 2 对处于年平均相对湿度小于60%地区一类环境下的受弯构件,其最大裂缝宽度限值可采用括号内的数值; 3 在一类环境下,对钢筋混凝土屋架、托架及需作疲劳验算的吊车梁,其最大裂缝宽度限值应取为0.2mm;对钢筋混凝土屋面梁和托梁,其最大裂缝宽度限值应取为0.3mm; 4 在一类环境下,对预应力混凝土屋面梁、托梁、屋架、托架、屋面板和楼板,应按二级裂缝控制等级进行验算;在一类和二类环境下,对需作疲劳验算的须应力混凝土吊车梁,应按一级裂缝控制等级进行验算; 5 表中规定的预应力混凝土构件的裂缝控制等级和最大裂缝宽度限值仅适用于正截面的验算;预应力混凝土构件的斜截面裂缝控制验算应符合本规范第8章的要求; 6 对于烟囱、筒仓和处于液体压力下的结构构件,其裂缝控制要求应符合专门标准的有关规定; 7 对于处于四、五类环境下的结构构件,其裂缝控制要求应符合专门标准的有关规定; 8 表中的最大裂缝宽度限值用于验算荷载作用引起的最大裂缝宽度。 梁内钢筋排成一排时的钢筋最多根数

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

常用建筑结构设计软件比较

常用结构软件比较 本人在设计院工作,有机会接触多个结构计算软件,加上自己也喜欢研究软件,故对各种软件的优缺点有一定的了解。现在根据自己的使用体会,从设计人员的角度对各个软件作一个评价,请各位同行指正。本文仅限于混凝土结构计算程序。 目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、 SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。 一、结构计算程序的分析与比较 1、结构主体计算程序的模型与优缺点 从主体计算程序所采用的模型单元来说 TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。 SATWE、TBWE和TBSAP在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。 从计算准确性的角度来说 SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。 BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。但BSCW与其计算程序一起出售,因此有必要提一下。BSCW一直是使用广东省建筑设计研究院的一个框剪结构计算软件,这个程序应属于空间协同分析程序,即结构计算的第二代程序(第一代为平面分析,第二代为空间协同,第三代为空间分析)。GSCAD则可以选择生成SS、TBSA、TAT或是SSW的计算数据。SS和SSW均是广东省建筑设计研究院开发的,其中SS采用空间杆系模型,与TBSA、TAT属于同一类软件;而SSW根据其软件说明来看也具有墙元,但不清楚其墙元的类型,而且此程序目前尚未通过鉴定。 薄壁杆件模型的缺点是: 1、没有考虑剪力墙的剪切变形。 2、变形不协调。 当结构模型中出现拐角刚域时,截面的翘曲自由度(对应的杆端力为双力矩)不连续,造成误差。另外由于此模型假定薄壁杆件的断面保持平截面,实际上忽略了各墙肢的次要变形,增大了结构刚度。同一薄壁杆墙肢数越多,刚度增加越大;薄壁杆越多,刚度增加越大。但另一方面,对于剪力墙上的洞口,空间杆系程序只能作为梁进行分析,将实际结构中连梁对墙肢的一段连续约束简化为点约束,削弱了结构刚度。连梁越高,则削弱越大;连梁越多,则削弱越大。所以计算时对实际结构的刚度是增大还是削弱要看墙肢与连梁的比例。 杆单元点接触传力与变形的特点使TBSA、TAT等计算结构转换层时误差较大。因为从实

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

(完整word版)烟气脱硫设计计算..docx

烟气脱硫设计计算 1130t/h 循环流化床锅炉烟气脱硫方案 主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h 引风机量 1台,压力满足 FGD 系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口 SO2含量200mg/Nm 3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气 经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2→ MgSO3 + H2O MgSO3 + SO2 + H2O→ Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。这个阶段化学反应如下: MgSO3 + 1/2O2→ MgSO4 Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3 H2SO3 + Mg(OH)2→ MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀, 至 pH 达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产 生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底 部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100 多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160 亿吨 ,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

湿法脱硫工艺吸收塔及塔内件的设计选型

湿法脱硫工艺吸收塔及塔内件的设计选型 1 吸收塔塔型的选择 在湿法脱硫工艺中,吸收塔是一个核心部件,一个湿法脱硫工程能否成功,关键看吸收塔、塔内件及与之相匹配的附属设备的设计选型是否合理可靠。在脱硫工程中运行阻力小、操作方便可靠的吸收塔和塔内件的布置形式,将具有较大的发展前景。 目前,在国内的脱硫工程中,应用较多的吸收塔塔型有喷淋吸收空塔、托盘塔、液柱塔、喷射式鼓泡塔等。国内学者曾在实验室里对各种塔型做了实验测试(见图1),从测试情况看,在塔内烟气流速相同的情况下,喷淋吸收空塔的系统阻力最小,液柱塔的阻力次之,托盘塔的阻力相对较大。 由于喷淋吸收空塔塔内件较少,结垢的机率较小,运行维修成本较低,因此喷淋吸收空塔已逐渐成为目前应用最广泛的塔型之一。图2为喷淋吸收空塔(以下简称吸收塔)的结构简图。 2 喷淋吸收空塔主要工艺设计参数 (1)烟气流速

在保证除雾器对烟气中所携带水滴的去除效率及吸收系统压降允许的条件下,适当提高烟气流速,可加剧烟气和浆液液滴之间的湍流强度,从而增加两者之间的接触面积。同时,较高的烟气流速还可持托下落的液滴,延长其在吸收区的停留时间,从而提高脱硫效率。 另外,较高的烟气流速还可适当减少吸收塔和塔内件的几何尺寸,提高吸收塔的性价比。在吸收塔中,烟气流速通常为3~4.5m/s。许多工程实践表明,3.6m/s≤烟气流速(110%过负荷)≤4.2m/s是性价比较高的流速区域。 (2)液气比(L/G) L/G决定了SO2的吸收表面积。在吸收塔中,喷淋雾滴的表面积与浆液的喷淋速率成一定的比例关系。当烟气流速确定以后,L/G成为了影响系统性能的最关键变量,这是因为浆液循环率不仅会影响吸收表面积,还会影响吸收塔的其他设计,如雾滴的尺寸等。L/G的主要影响因素有:吸收区体积、SO2的去除效率、吸收塔空塔速率、原烟气的SO2浓度、吸收塔浆液的氯含量等。 根据吸收塔吸收传质模型及气液平衡数据计算出液气比(L/G),从而确定浆液循环泵的流量。 美国能源部编制的FGD-PRISM程序的优化计算,L/G以15L/m3为宜,此时,SO2的去除效率已接近100%。L/G超过15.5L/m3后,脱硫效率的提高非常缓慢,而且提高L/G将使浆液循环泵的流量增大,增加循环泵的设备费用,同时还会提高吸收塔的压降,加大增压风机的功率及设备费用。 (3)吸收塔浆池尺寸 吸收塔浆池尺寸可通过以下工艺设计参数确定: 1)石膏颗粒(晶种)生长的停留时间 湿法脱硫系统中,亚硫酸钙、硫酸钙的析出是在循环浆液的固体颗粒(晶种)表面上进行的,为了晶体的生长和结晶,循环浆池里的石膏颗粒必须有足够的停留时间,反应时间也必须足够长。停留时间的计算公式为: RT=(V×ρ×SC)/TSP 其中:RT—停留时间(min);TSP—石膏成品产量(干基)(kg/min);V—浆池体积(m3);ρ—浆液密度(kg/m3);SC—浆液含固量(%)。如生产的石膏要在水泥或石膏行业使用,FGD的石膏成品含水量必须<10%,石膏必须结晶成平均直径为35~50μm的立方晶体,停留时间必须>15小时。对于抛弃系统,由于石膏成品要被抛弃,石膏成品含水量可>15%,这样系统的停留时间可缩小到10小时左右。 2)石灰石溶解的停留时间 如要求吸收塔内的石灰石充分溶解,则石灰石在循环浆池内必须有足够长的停留时间。一般来说,石灰石的停留时间须>4.3min。石灰石溶解的停留时间按下式计算: T=V/(N×RF) 其中:T—停留时间(min);V—浆池体积(m3);N—循环泵数;RF—单台循环泵流量(m3 /h)。 3)氧化反应的体积和氧气从空气转移到液体的深度氧气从空气转移到液体的深度,是指吸收塔浆液池内释放氧化空气的曝气管或喷枪的位置。亚硫酸盐或亚硫酸氢盐的氧化分为两部分,一部分是吸收塔内烟气中的氧气进入浆液液滴的自然氧化,另一部分是空气通过曝气管网进入浆液池后的强制氧化。

建筑结构设计试题及标准答案

建筑结构设计 一、选择题(每小题1分,共20分) 1、单层厂房下柱柱间支撑设置在伸缩缝区段的( )。 A 、两端,与上柱柱间支撑相对应的柱间 B 、中间,与屋盖横向支撑对应的柱间 C 、两端,与屋盖支撑横向水平支撑对应的柱间 D、中间,与上柱柱间支撑相对应的柱间 2、在一般单阶柱的厂房中,柱的( )截面为内力组合的控制截面。 A 、上柱底部、下柱的底部与顶部 B 、上柱顶部、下柱的顶部与底部 C 、上柱顶部与底部、下柱的底部 D 、上柱顶部与底部、下柱顶部与底部 3、单层厂房柱牛腿的弯压破坏多发生在( )情况下。 A 、0.75<a /h0≤1 B、0.1<a/h 0≤0.75 C 、a/h 0≤0.1 D、受拉纵筋配筋率和配箍率均 较低 4、( )结构体系既有结构布置灵活、使用方便的优点,又有较大的刚度和较强的抗震能 力,因而广泛的应用与高层办公楼及宾馆建筑。 A、框架 B 、剪力墙 C 、框架-剪力墙 D 、框 架-筒体 5、一般多层框架房屋,侧移主要是由梁柱弯曲变形引起,( )的层间侧移最大。 A 、顶层 B 、底层 C、中间层 D 、顶层和底层 6、砌体结构采用水泥砂浆砌筑,则其抗压强度设计值应乘以调整系数( )。 A 、0.9 B 、0.85 C 、0.75 D 、0.7+A 7、砌体局部受压可能有三种破坏形态,( )表现出明显的脆性,工程设计中必须避免 发生。 A 、竖向裂缝发展导致的破坏——先裂后坏 B 、劈裂破坏——一裂就坏 C 、局压面积处局部破坏——未裂先坏 D 、B 和C 8、( )房屋的静力计算,可按楼盖(屋盖)与墙柱为铰接的考虑空间工作的平面排架或 框架计算。 A 、弹性方案 B 、刚弹性方案 C、刚性方案 D 、B 和C 9、在进行单层厂房结构设计时,若屋面活荷载、雪荷载、积灰活载同时存在,则( ) 同时考虑。 A 、屋面活载与雪荷载,积灰荷载三者 B 、积灰荷载与屋面活载中的较大值,与雪荷载 C 、屋面活载与雪荷载中的较大值,与积灰荷载 D 、只考虑三者中的最大值 10、单层厂房柱进行内力组合时,任何一组最不利内力组合中都必须包括( )引起的内力。 A、风荷载 B、吊车荷载 C、恒载 D 、屋 面活荷载 11.可变荷载的分项系数() A 对结构有利时q γ<1.0 B 无论何时q γ>1.0

相关文档
最新文档