汽车内饰涂层

汽车内饰涂层
汽车内饰涂层

聚氨酯涂料已发展为用于汽车内不同

基底材料的主要表面装饰材料。由于其性能和

加工技术方面的多样性,聚氨酯可满足不同装

置的装饰需求。因此,聚氨酯装饰表面具有视

觉与质地印象完美结合的显著优点。

协调地连接不同材料

在现代客运车辆中,汽车的许多组件

和功能单元都集中在驾驶室内。因此对汽车设

计者而言,其面临的最大挑战就是要将众多需

求冲突在尽可能小的空间内得到解决。做此工

作时所需解决的一个极其困难的任务就是实现不同表面之间的协调拼接。这些表面是通过不同技术方法生产的不同材料的联合体。 由于考虑各个方面来从功能和视觉上

优化整个部件通常是劳动和资金密集型的,因此部件的表面装饰的重要性正不断提高。将部件的各种功能分到各个层面来实现的方式使得我们可用低成本的特定材料来代替“万能”材料。传统涂料在这里起到了重要的作用,特别是多用途的聚氨酯涂料使得配方设计师能随意地进行配方设计。由于原材料配色板方法的引入,这使得涂层系统之间的差异性变得非常小。

表面材料及其加工技术

天然皮革的修饰 (涂装) 是聚氨酯涂层 (型号:Permuthane ,制造商:Stahl Europe bv) 用于表面装饰的最初领域。合成革和由合适覆盖层涂覆的薄膜以使其像皮革而获得了重要的地位并促进了它们的进一步发展。汽车内部不能使人产生晕眩这一特定的高要求也必须得到满足。经典的方法包括使用矿石类消光试剂,但这又会产生不需要的“起霜”效应。Stahl 欧洲公司通过结合所选的聚氨酯组分来开发的软涂层 (型号:Polymatte) 可解决这些问题。

现代化的驱动力、灵巧的轮胎设计及符合空气动力学的车体不仅确保汽车具有较低的资源消耗和强劲动力的特征,也降低了汽车的驱动噪音。这自然就会导致避免驾驶过程中由于部件相对运动而产生刺耳噪音的形成。在这点上Polymatte 系统也提供了解决方案。他们利用接触部件特殊的表面 (图1所示) 来降低部件间的摩擦力,因而减弱了部件的振动。 诸如基于聚氨酯的Permutex 涂层的体系含水,具有明显的低释放的特点。即使常规的涂料也能经常满足需求。无论如何,通过使用交联剂,有可能进一步提高制品本已很高的性能来满足耐热性、抗清洁剂和磨损方面的需求。值得一提的是这样的体系具有卓越的抗水解性能。

在汽车内饰中,通过IMC-PU-RIM 表面涂覆 技术,皮革、薄膜和合成革集于一体

模具生产技术

然而,客运车辆内部装饰的大部分表面既不是由皮革也不是由合成革组成。这些材料是更典型的奢侈品,虽然这对大部分客户变得越来越重要,但只占很少的市场份额。密集成型或者样式复杂的复合塑料部件通常勾勒出机车的内饰。

最简单的解决方案是采用具有流行风格表面(亚光,光面或者木纹效果)的自着色注塑部件。在绝大多数情况下(可见的),塑料部件进行了表面装饰,例如:

◆着色:装饰性涂层、软涂层或者效果涂层;

◆电镀:通常为铬涂层;

◆层压薄膜:未展开的或者展开的PVC或者TPO薄膜;

◆层压纺织品;

◆或者皮革表面。

大部分具有挑战性的设计,两层或者多层复合部件多采用聚氨酯薄膜来作为中间层。除了聚氨酯的“粘合作用”以外,还有补偿小尺寸误差和在系统中起到阻尼作用的功能,典型的例子包括:

◆复杂的多层部件具有诸如粉末脂膏表面、RIM表面和模内或者非模内喷涂表面;

◆ 薄膜或者皮革层压部件含有膨胀发泡材料或者纺织物的中间层(图2所示)。 在以下两种技术中情况可能有所不同,聚氨酯层为表层并与误差补偿层在同一平面:

◆ 具有弹性体表层的双组分注塑件;

◆ 表层组成部件。

聚氨酯涂料作为多用途的涂层试剂

实际上,迄今为止所有的表面技术证明了涂料所起的作用,特别是那些基于聚氨酯的涂料。它们起到了保护层的功能,防止机械和化学作用对表面的破坏。同样重要的是其满足汽车内部件在视觉上的效果和日益增加的触觉上的需求。但最为重要的是,涂料也必须保护部件抵抗环境的影响以使部件具有长的寿命。

原材料的广效性以及功能性和化学嵌段的分子链长度 (分子量) 提供了大量的可变性。

车内大量组件和表面的协调连接对作为客户调解者的设计师、技师和负责组件和工艺开发的化学家之间的沟通提出了挑战。这不仅涉及制件的颜色,也包括质地、触感和气味。在这种情况下,将这些需求集中到一起由能开发和生产用于所有基底涂层系统的供应商来完成就具有很大的优势。这样,大部分的表面匹配工作就能由涂料供应商来完成。

条件配色是另一个所面临的挑战,

它在当前色彩发展趋势的情况下正变得更为重要

(条件配色是指两种基底在一种类型的光照下具有同样的颜色,而在不同类型的光照下有不同的颜色)。这是由于所用颜料和染料的性质所致。在这种情况下,当不同的涂层试剂都由同一开发商提供时,从一开始就需要的费时的校正过程就可以跳过了。在经常会面临增加时间和成本压力的情况下,这也更易于考虑不同的应用范围、加工条件以及部件的需求情况等。

欧洲Stahl公司在这方面已经具备更强竞争力。除了配方设计和条件等色即涂料系统的随意等色外,该公司在其自己的装置上(图3所示)合成了许多(聚氨酯)用于二元组分的粘结剂和交联试剂(通常也把其归类为硫化剂)。这就开发了用于对诸如皮革、合成革和弹性泡沫必需的弹性体直至高弹性的涂层体系的应用前景。

涂层装饰表面技术

用于涂层到基底上的最为广泛的工业技术是喷涂(喷漆)。为了对片状材料(薄膜和合成革)和皮革的涂层膜进行选择性控制,其它一些技术也已经发展起来了,这包括:

◆通过直接和反向的方法喷漆,在这种方法中,覆盖层被用作临时性的网格状载体。依靠所用的复合物,一层或者更多的涂层被涂覆到部件上,最后一层对实际的基底而言起粘结层的作用。在复合物产生交联后,辅助层就被除去以使表面露出来,然后表面就形成与移除薄膜(隔离纸)的质地相反的图案。

◆依靠印刷技术(例如凹版印刷和逆转辊涂布机),很薄的涂层也能被特别精确地涂覆到部件上。

◆除了逆向技术外,轧花技术也可用于在部件表面形成纹理效果。很长时间以来,只是基本的喷涂技术才用于对模铸制品的涂层。掩体技术也有局部的应用。

与上述方法相反的新开发的方法是知名的模内转移涂饰技术(in-mold coating),也称为模内涂布技术(in-mold painting)。在此方法中,涂层被用到组件要装饰表面的底片上,然后用一个载体层对其进行增强。这就生成了一个具有弹性的模塑的表层(粉末脂膏、喷涂或者RIM表面,图4所示)或者一个抛光部件。在汽车内饰件表面技术领域的最新发展—Skinform、透明涂层注塑成型技术(clean coat molding)和双组分注塑,能被看成是IMC 技术的特殊形式。在这些情况下,自由流动的热塑性聚氨酯或者高反应活性的稠密的PU-RIM 体系是具有高成模性功能的涂料。迄今为止已建立多年的位于比利时Wetteren的Recticel 公司的Colofast工艺归根结底仍是一种IMC工艺。这里所讲的“涂膜”由不含分散剂的具有高反应活性脂肪链双组分聚氨酯体系组成。

复杂表面的模内涂饰技术

模内技术 (图5所示) 对于像汽车引擎这类大体积部件的加工方面有很大的潜力。由于部件表面的图案是由模具表面来印上的,因此其重现性极好。部件表面光泽的表面很大程度上不受涂层及其应用的影响。由于任何可见的部件并非必须要归入涂层配方的范围内,这就依次使得颜色的设置更为简单,因而更为快速并成本更低。同时,为调整产品触觉性能方面的自由度就更广了,因而能设置更为独立的视觉效果。

另一方面,不管怎么说模内技术也有其它一些要求。解决这些问题需要设计师有在这样的涂料体系内的广泛的配方设计经验。聚氨酯漆在许多基底表面都有很强的粘结性能,包括制造 (通过电沉积工艺) 大部分模具表层的镍。因为这个原因,有效的释放试剂就成为了必需,以便能设计出更为可靠的脱模工艺。使用释放剂就使得为了保持制品的表面质量而需要对模具进行清洁。

许多释放剂降低了模具表面的表面张力。为了得到无孔的涂层,IMC涂料的润湿性必须与制件的相匹配。现代涂料系统的VOCs (易挥发有机组分) 含量低,这就提出了一个特别的挑战。十多年以来,水溶性的Permuthane体系已被证明对于大部分生产具有PU-RIM

表层 (通常相对于铸造表层而言) 汽车内饰件的各种德国原始设备制造商都是适用的。PU-RIM涂料也特别适用于整个泡沫部件表层(具有致密外表层的弹性聚氨酯泡沫)的装饰,如方向盘的轮缘、非线性的车座枕头或者变速挡旋钮。

除了表面装饰外,不管如何,这项技术也可用于另一方面。通常其它领域应用的低成本的芳香族聚氨酯体系是不褪色的。设计成不褪色的IMC层可防止光线的进入,因而保护部件防止其变色。因此,其对颜色没有特殊的要求。

IMC工艺引起了人们关于其在多色彩模塑表层这一仍是当前发展趋势的领域应用的兴趣。毕竟这给生产具有这类表层的部件的生产者提供了一种比粉末脂膏或者RIM技术更为灵活的工艺。经典的模内涂饰技术也由于与应用日益广泛的聚氨酯喷涂技术(图6所示)相关联而增加了其重要性。这样,厂商就可能用基于低成本的具有更好的机械性能(弹性和抗撕裂性)、更好触摸感和反应活性的聚氨酯体系来具有这类表层的部件。基于脂肪族的聚氨酯又决定部件的视觉和质地效果并保护基底免受光照的影响。

粉末脂膏表面的装饰又是一个新的挑战。取决于在一系列产品中已用到的材料—聚氯乙烯(例如从2006年12开始使用的宝马X5仪表盘)和热塑性聚氨酯(例如宝马6系列仪表盘),230到250℃的模具温度就是必需的以使聚合物粉末能够熔化。对于漆膜而言,这就意味着其平均峰温约为250℃,并且在200℃以上的受热时间大约是5分钟。然而,解决这个问题已经投入了很多资金,因为与后来的部件上漆相比,IMC上漆方式也能产生诸如高等级皮革颗粒模式(图7所示)的双光泽部件。与未喷涂的聚氯乙烯粉末脂膏表面相比,喷涂额外的优点就是能获得高度耐刮擦、低孔率、无粘性、因而易于清洗的表面,这同时也由于屏蔽效应而大大减少了了部件内气味的散发。

同时,不论如何,涉及“粗糙”的粉末脂膏表面时,IMC技术的使用也需要遵守无限制的设计自由度。由于喷涂技术的采用,这就对部件的几何形状有限制,因为该工艺需要涂料喷涂器能到达部件表面的每一个区域,以便能在模塑部件的整个表面涂上一层厚度近似相等的漆膜。

IMC技术的上色法

依据已述的加工条件,一些典型的要求也被施加于在模内涂饰技术中采用的涂层系统中。在这里,最为严格的要求之一就是涂料要与设计部件的表面颜色相匹配。简单来说,其原因是部件表面颜色(给人的整个视觉感受)不仅只由喷漆过程决定,也受有时能从根本上改变部件颜色深浅的下游加工步骤的影响,最重要的影响因素—在形成喷涂表面图像的模具表面颗粒和精细结构(反相的)也已被进行了描述。从这点可推断出,当与制得部件等效的表面对涂料开发者而言是可行的话,其对于有效的色彩匹配过程具有高度的优势。然而,这并非是决定纯漆膜和最终部件颜色差异的唯一变量。涂料和基底之间的相互化学作用也与老化过程,特别是热致老化过程一样对漆膜的颜色有同样的影响方式。在高温过程,如粉末脂膏加工过程中,老化起到了主要的作用。然而,漆膜和基底之间的相互作用在这里起到的影响更大一些,因为所有的化学过程受温度的指数的影响 (经验规则:温度每增加10 K,化学反应速率就增加一倍)。

因为这些原因,荷兰Waalwijk的Stahl配色实验室在喷漆试验工厂进行越来越多地开发。从由机器人 (图8所示) 控制的涂料涂层开始,由IMC技术喷涂来获得表层所需的后续加工都可以得以执行。这样做最大的好处就是可进行处理聚氨酯部件的数十个试验。

用于IMC技术的涂料

由于IMC所需要求范围复杂,涂料的物理干燥系统只起到了次重要的作用。只有选择性的化学交联才可能满足抗化学试剂(清洁剂,也包括工作液体和辅助试剂)、耐老化、耐磨损和抗刮擦这些要求。由于考虑到这些要求具有无比的可变形,聚氨酯体系在这里就占有了具有支配性的地位。

经典的基于溶剂的体系提供了最大的可变性和简单的工艺过程。这类体系对整个范围内的基底有一套平衡的能力并且材料成本很低。然而,低散发性和环境限制方面不断提高的要求使这类体系越来越被置于次要的地位。此外,低溶剂含量 (高固体性或者水稀释性) 涂料在汽车内饰件领域已使用多年。

由于严格的安全限制 (爆炸保护涂层;实际上用于聚氨酯的所有组分都是可燃的并且形成具有爆炸性的蒸汽/空气混合物),它们的重要性仅与我们用无溶剂 (低溶剂含量) 体系所能达到的同等性能部件的相当。特别是在采用IMC工艺的情况下,水溶性体系会带来了新的挑战。由于水的蒸发热更高,为了进行物理干燥,水的分散比溶剂体系所需的能量更多

(水的蒸发热:2.224 kJ/g;乙酸丁酯:

0.404 kJ/g)。另一个难点就是分散涂料以形成表层时会妨碍内部水分的蒸发。

在进行水溶性体系的配方中,流变学也需要重新进行考虑。虽然传统涂料的粘度实际上是由粘结剂分子量和固态部分的含量所决定的,但这种情况在多相水溶性分散体系中是非常不同的。这类体系的粘度很大程度上不受以液滴形式分散的粘结剂的影响。粘度与固相之间的依存关系是非线性的,并且主要受液滴分散程度的影响。因为这个原因,其流变学通过添加剂,也就是总所周知的增稠剂的加入而得以优化,这与流变学复杂的需求相一致。

水基聚氨酯涂料的碳二亚胺交联

水分散的聚氨酯在其分子链上需要有亲水中心。这通过具有酸性基团的二醇—如2,2-二羟甲基丙酸到聚氨酯的分子链上来实现。碳二亚胺对酸性基团有很大的亲和力,这就是为了提高聚氨酯弹性体对水解的稳定性而用它们来去除酸的原因。

Stahl的研究者已利用这个反应来开发了一个在交联领域全新的方法。他们不用之前所知的预聚物,而从连接涂料中的聚氨酯链来生产聚碳二亚胺,聚碳二亚胺 (黑色分子链) 也在其分子链内发生反应 (绿色球体;图9所示)。

这为水溶性双组分聚氨酯体系带来一些技术上的优势。聚氨酯的分散只有在高pH 值的情况下才是稳定的。这就意味着包含碳二亚胺交联剂的涂料系统的反应能力被终止并且其粘度几乎不随时间而改变。这就使得即使有相对长的周期中断,也能保持喷涂稳定和较低的喷洗损失。此外,生产线产生结晶的风险也大大地消除了,这使得加工可靠性得以增加,因而喷漆单元的使用率也就更高。

只有当涂料变干并且控制pH值的胺类蒸发后,交联才会高速进行。在实际情况中,这意味着当干燥时间尽可能短时,获得有利的长储存期就可实现。

结论

在采用各种不同的喷漆技术和大量不同的基底来进行表面装饰时,聚氨酯满足为得到那些复杂目标物所需的多样性范围。最新的喷漆技术之一—模内转移涂饰由于不受表面颜色和质地 (颗粒度和光洁度) 的影响而扩大了部件可能的多样性。与随后的模塑部件喷涂技术相比,该工艺具有明显的成本优势。对当前和将来的机车设计而言,以低成本、不断增加的多样性和更短的开发时间来满足美学和功能性的要求是特别重要的。这个方向上重要的一步在于即使在适宜的模具能被提供之前 (标题图),在他们的实验室内也能进行与开发相关的匹配内饰件 (例如塑料、皮革、合成革和薄膜)的大表面的实际知识和策略。

汽车制动系统 1 概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已停驶的汽车保值不动,这些作用统称为汽车制动。 制动系至少有行车制动装置和驻车制动装置。前者用来保证第一项功能和在不长的坡道上行驶时保证第二项功能,而后者则用来保证第三项功能。除此之外,有些汽车还设有应急制动和辅助制动装置。 应急制动装置利用机械力源(如强力压缩弹簧)进行制动。在某些采用动力制动或伺服制动的汽车上,一旦发生蓄压装置压力过低等故障时,可用应急制动装置实现汽车制动。同时,在人力控制下它还能兼作驻车制动用。 辅助制动装置可实现汽车下长坡时持续地减速或保持稳定的车速,并减轻或者解除行车制动装置的负荷。 行车制动装置和驻车制动装置,都由制动器和制动驱动机构两部分组成。为防止制动时车轮被抱死,提高制动过程中的方向稳定性和转向操纵能力,缩短制动距离,所以近年来防抱死系统(ABS)在汽车上得到很快的发展和应用。 1.1汽车制动系统的分类 1) 按制动系统的作用 (1)行车制动系统——使行驶中的汽车降低速度甚至停车的一套专门装置。(2)驻车制动系统——使已停驶的汽车驻留原地不动的一套装置。 (3)第二制动系统——在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的一套装置。 (4)辅助制动系统——在汽车下长坡是用以稳定车速的一套装置。 上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。 2)按制动操纵能源 (1)人力制动系统——以驾驶员的肌体作为唯一制动能源的制动系统。 (2)动力制动系统——完全靠由发动机的动力转化而成的气压或液压形式的势能

图1 制动系统的组成示意图 1-前轮盘制动器;2-制动总泵;3-真空助力器;4-制动踏板机构;5-后轮鼓式制动;6-制动组合阀;7-制动警示灯 进行制动的系统称。 (3)伺服制动系统——兼用人力和发动机动力进行制动的制动系统称。 按制动能量的传输方式,制动系统又可分为机械式、液压式、气压式和电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。 1.2汽车制动系的组成 右图1给出了一种轿车典型制动 系统的组成示意图,可以看出,制动 系统一般由制动操纵机构和制动器两 个主要部分组成。 1.2.1制动操作机构 产生制动动作、控制制动效果并将 制动能量传输到制动器的各个部件,如图 中的2、3、4、6,以及制动主缸和制动轮 缸。 (1)制动主缸 制动主缸分单腔和双腔两种,分别用于单回路和双回路液压制动系统。 (2)制动轮缸 制动轮缸的功用是将液体压力转变为制动蹄张开的机械推力。制动轮缸有单活塞和双活塞式两种。单活塞式制动轮缸主要用于双领蹄式和双从领蹄式制动器,而双活塞式制动轮缸应用较广,即可用于领从蹄式制动器,又可用于双向领从蹄式制动器及自增力式制动器。 1.2.2制动器 一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。 旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器。旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器。

汽车内饰结构设计流程分析 提纲: 1、造型设计数据输入、输出 2、安装结构初步分析 3、结构设计细化. 4、最终数模整体后期分析 5、模具件试装分析、调整! 国内汽车设计起步比较晚,真正的自主设计(也只是在逆向阶段)也是最近这几年的事,而内外饰的设计相对来说又更晚,原因可能是主要是因为以前设计大家主要是把精力集中在白车身的设计上,认为只要把白车身设计出来了,这车也就出来。另一个原因也可能是用户也不大注重车的外形要求吧。直到最近这几年,能买得起车的用户越来越多,而对车的要求也越来越高,不光是性能,对外形的要求也有较高的要求。这样一来,使得在设计汽车的过程中,对汽车内外饰在设计过程中所占的份量也越来越多。外饰是第一眼就看到的,其重要度自然不用说,而汽车内饰,对于用户来说,是要与自己亲密接触所占时间最长的,是可以直接影响到自己部分。它的外形美观与否、舒适的好与坏、各部件的操作方便与否等等,都直接影响了用户心情。而组成这些部分的完整,需要合理的安装结构来保证。以下是我个人对内饰设计的一些看法和观点,有些看法可能比较肤浅,甚至是错误的,我想这些应该是可以原谅的,毕竟个人的能力和经验都非常的有限。 接下来按几步来分析: 一、配合造型设计提供数据: 内饰设计从造型到A面,最后结构设计,看似是一个先后顺序关系,其实这几方面都是要相互配合、相互协调的。在内饰造型初始时,需要有一些以下内饰相关的输入条件: 1、主断面:在汽车设计之初,通常会在一些重要部位作一些主断面,作为以后要重点控制参数,不管是结构还是造型都需要考虑此参数。 2、硬点:硬点参数也是一个很重要的数据,硬点对控制整车布置有着很重要的作用,在造型之初就提供与内饰布置有关的硬点参数,使造型能正确表达整车的设计参数。比如侧围护板在设计时,就要考虑车身直口边及门框密封条的硬点参数,使侧围各护板内表面位置是正确的。 3、拔模方向:内饰的内表面一般都有皮纹,而皮纹也都有拔模角度,不同的皮纹拔模角度也是不一样的,因此,在内饰造型的同时确定拔模方向,使在此就能初步控制内表面拔模角度,减少给结构设计带来不方便,甚至是因错误而返工带来的损失。皮纹拔模角度一般是:细皮纹在3度拔模角左右,粗皮纹在5度拔模角左右,当然,这得因不同的皮纹来定。 内饰拔模方向确定原则:一般为整车坐标某坐标轴方向,或是此拔模方向在某坐标平面内(即与某坐标轴垂直); 4、内饰整体外观参数确定:内饰整体外观参数主要是各护板间的间隙、段差、分型线等,这些参数的好坏直接影响到内饰整体外观的品质;而这些参数都是需要合理的安装结构、生产工艺水平来决定的,因此使在造型之初,需配合造型合理确定此参数,既能使整体外观协调,又能合理设计安装结构。 二、安装结构初步分析确定: 在内饰造型的同时,可也进行内饰安装结构的初步分析确定,也就是进行安装断面的设计.此过程大致有以下几个方面需要考虑、确定: 1、与车身的安装方式:对于内饰件与车身的安装方式,主要要求能达到安装简单、快捷、牢固、可靠等。一般安装都是选用卡扣连接安装,对每个部位工作环境、性能要求、安装要求等进行分析,以选择或设计合理的卡扣,达到最佳的性能。在安装方式设计过程中,有一点比较重要,就是要求各护板或总成在坐标Z方向有一硬安装方式,可以是金属卡片安装,也可以是护板上一些加强筋安装,或是某一零件支撑护板等,其作用主要使护板在Z轴方向有一支撑力,避免卡扣损坏,影响护板安装。 2、内饰件间的安装方式:内饰件外观品质有两个主要因素是间隙和段差,而这两因素主要是由内饰件间的安装方式来控制的,这除了合理安装方式(包括结构、位置等),还要有合理的定位方式(尽量用点、线定位,避免用面定位,特别是大面定位)。

汽车内外饰(塑料)产品结 构设计的一般原则及精度 一形状和结构的简化 制品的形状和结构的复杂显然增加了模具结构的复杂性,加大了模具制造的难度,最终将影响产品性能的不稳定性和经济成本。而从工艺角度考虑,形状和结构设计得越简单,熔体充模也就越容易,质量就越有保证。 理想的产品简洁化设计应当是:①有利于成型加工;②有利于降低成本,节约原材料;③有利于体现简洁、美观的审美价值;④符合绿色设计的原则。 以下是简化设计的一些建议和提示。 (1) 结构简单,形状对称,避免不规则的几何图形; (2) 避免制件侧孔 和侧壁内表面的凹凸 形状设计,制件侧壁孔 洞和侧壁内表面的凹 凸形状对某些成型工 艺来说是困难的,需要 在制品成型后进行二 次加工。

例如对于注塑件 来说,模具结构 上就要采用比较 复杂的脱模机构 才能对制件进行 脱模。通常,侧向孔要用侧向的分型和 抽芯机构来实现,这无疑会使模具结构 变得复杂。为了避免在模具结构设计上 增加复杂性,可以对这类制品进行设计 上的改进,图5-16所示是避免侧向抽芯 的设计。 (3) 尺寸设计要考虑成型的可能性, 不同的成型工艺对制件的尺寸设计,包 括尺寸大小,尺寸变化会有一定的限制。 二、壁厚均一的设计原则 在确定壁厚尺寸时,壁厚均一是一 个重要原则。该原则主要是从工艺角度以及由工艺导致的质量方面的问题而提出来的。均匀的壁厚可使制件在成型过程中,熔体流动性均衡,冷却均衡。壁薄部位在冷却收缩上的差异,会产生一定的收缩应力,内应力会导致制件在短期之内或经过一个较长时期之后发生翘曲变形。图5-17是由壁厚不均匀造成制件翘曲变形的一个例子,图5-18是在不均

制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。

在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。 通风制动盘

制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。为了进一步提升制动效能,通风制动盘应运而生。通风刹车盘内部是中空的或在制动盘打很多小孔,冷空气可以从中间穿过进行降温。 从外表看,它在圆周上有许多通向圆心的洞空,它利用汽车在行驶当中产生的离心力能使空气对流,达到散热的目的,因此比普通实心盘式散热效果要好许多。 陶瓷制动盘 陶瓷制动盘相对于一般的刹车盘具有重量轻、耐高温耐磨等特性。普通的刹车盘在全力制动下容易高热而产生热衰退,制动性能会大打折扣,而陶瓷刹车盘有很好的抗热衰退性能,其耐热性能要比普通制动盘高出许多倍。 陶瓷制动盘在制动最初阶段就能产生最大的制动力,整体制动要比传统制动系统更快,制动距离更短。当然,它的价格也是非常昂贵的,多用于高性能跑车上。 紧急制动辅助系统(EBA) 紧急制动辅助系统,其作用是当行车电脑ECU发现驾驶员进行紧急制动时,可在瞬间自动加大制动力,以防止因为司机制动力不足而发生险情。

汽车制动系统结构解析 大家都知道,汽车的制动系统对我们的行车安全非常重要,行车中如出现制动失灵等故障,后果都将不堪设想。那么汽车的制动系统是如何制动的?为什么会失灵?ABS、ESP系统又是什么?对我们驾驶安全有什么帮助?

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器 和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。

在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。

●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。

与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。 ●通风制动盘 制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。为了进一步提升制动效能,通风制动盘应运而生。

汽车内饰结构设计心得 提纲: 1、造型设计数据输入、输出 2、安装结构初步分析 3、结构设计细化 4、最终数模整体后期分析 5、模具件试装分析、调整 国内汽车设计起步比较晚,真正的自主设计(也只是在逆向阶段)也是最近这几年的事,而内外饰的设计相对来说又更晚,原因可能是主要是因为以前设计大家主要是把精力集中在白车身的设计上,认为只要把白车身设计出来了,这车也就出来。另一个原因也可能是用户也不大注重车的外形要求吧。直到最近这几年,能买得起车的用户越来越多,而对车的要求也越来越高,不光是性能,对外形的要求也有较高的要求。这样一来,使得在设计汽车的过程中,对汽车内外饰在设计过程中所占的份量也越来越多。外饰是第一眼就看到的,其重要度自然不用说,而汽车内饰,对于用户来说,是要与自己亲密接触所占时间最长的,是可以直接影响到自己部分。它的外形美观与否、舒适的好与坏、各部件的操作方便与否等等,都直接影响了用户心情。而组成这些部分的完整,需要合理的安装结构来保证。以下是我个人对内饰设计的一些看法和观点,有些看法可能比较肤浅,甚至是错误的,我想这些应该是可以原谅的,毕竟个人的能力和经验都非常的有限。 接下来按几步来分析: 一、配合造型设计提供数据: 内饰设计从造型到A面,最后结构设计,看似是一个先后顺序关系,其实这几方面都是要相互配合、相互协调的。在内饰造型初始时,需要有一些以下内饰相关的输入条件: 1、主断面:在汽车设计之初,通常会在一些重要部位作一些主断面,作为以后要重点控制参数,不管是结构还是造型都需要考虑此参数。 2、硬点:硬点参数也是一个很重要的数据,硬点对控制整车布置有着很重要的作用,在造型之初就提供与内饰布置有关的硬点参数,使造型能正确表达整车的设计参数。比如侧围护板在设计时,就要考虑车身直口边及门框密封条的硬点参数,使侧围各护板内表面位置是正确的。 3、拔模方向:内饰的内表面一般都有皮纹,而皮纹也都有拔模角度,不同的皮纹拔模角度也是不一样的,因此,在内饰造型的同时确定拔模方向,使在此就能

CATIA知识工程技术在汽车内饰结构设计中的应用 目前汽车行业的竞争愈来愈激烈,汽车的研发周期也随之需要越来越短。在整个汽车的研发过程中,汽车内饰件大部分是中长周期件,如何降低内饰件的开发时间,提高内饰件的设计效率,影响着整个车型的上市时间。本文使用CATIA V5 知识工程技术,以用于固定自攻螺钉的螺钉柱为例,介绍使用POWERCOPY及CATALOG等知识工程技术建立典型结构目录文件的方法。 一、CATALOG文件的创建 1.建立设计基准 首先创建设计基准,通常将自攻螺钉配合孔的中心设为基准点,Z 轴设为自攻螺钉的安装方向,基准面定义为垂直于Z 轴并过原点的平面。为方便定义定位草图,还需要定义一条基准线,通常将过原点在基准平面内作直线作为基准线。如果典型结构比较复杂,需要多个基准面和基准线,最好以前面创建的平面和直线为基准,这样可以最大限度减少基准的个数,方便典型结构的调用。图1是创建设计基准。 创建设计基准 2.应用定位草图 在建模过程中,尽量使用定位草图进行绘制,目的是为了使每个草图有充分的定位,避免在调用CATALOG时由于定位不明确而导致错误发生。点击“定位草图”图标,即弹出如图2 所示的对话框,然后选择需要定位的平面、原始点、草图方向等基准参数。在创建定位草图时,一定要使用前面创建的基准,目的是为了减少调用CATALOG时的基准参数个数。

创建定位草图 3.参数化建模 本文创建的螺钉柱用来固定ST4.2规格的自攻螺钉,将螺钉柱内径设定为3.8mm,与螺钉配合过盈0.2mm,料厚1.5mm,柱高20mm,加强筋高19mm,加强筋的拔模角为15°。在参数化建模过程中,一定要使用前面创建的基准,以避免产生过多的调用基准参数。 4.创建POWERCOPY文件 螺钉柱的数模创建完后,就可以创建POWERCOPY了。点击“POWERCOPY创建”图标,如图所示,选择螺钉柱的实体零件作为POWERCOPY的定义内容后,CATIA会自动生成输入基准参数作为在参数化建模中使用的基准。

汽车内饰表面装饰工艺介绍

————————————————————————————————作者:————————————————————————————————日期: ?

本文将针对汽车内饰表面装饰的几种主流工艺从技术、成本、环保性能等方面进行分析比较。(文中“IMD”=IMR “INS”=IML/IMF) 第一部分:水转印、IMD、INS工艺比较 一、工艺描述 1、水转印:将已成型的塑料基材压印浮在水面上的水溶性薄膜,转印薄膜上的花纹,再以透明面漆保护其花纹及对表面做光泽调节。流程为转印-薄膜清除-烘干-喷面漆,如下图所示: 2、INS(FilmInsert Molding):将带有外观效果的INS薄膜预先吸塑/高压成型,把多余的膜边冲切,再把冲切好的薄膜壳片放置在注塑模具内进行注塑。流程为薄膜加热-高压空气成型(或者吸塑成型)-刀模裁切-已成型薄膜壳片放入模腔-合模,注塑成型-开模,完成总成件,如下图所示: 3、IMD(In-Mold Decoration):带有外观效果的IMD薄膜(圈材)被安装在输膜机上,而输膜机则固定在注塑机上,在注塑开模时让薄膜输进模具中间,合模后让胶料注射,让薄膜贴覆在模具上同时与胶料成型。流程为薄膜输送-薄膜定位,取模件-注塑成型-后处理,清理飞边,如下图所示:

二、技术对比 1、花纹包覆可行性方面 水转印?翻边高度(H)可让花纹包覆在300mm范围内?不需要考虑R角(R)的锐度?可以完全包覆圆柱形基材(如整体注塑方向盘) 通过电铸模后加工工艺可对花纹拉伸严重部分加饰,修饰效果较佳 可以对大型零件包覆(例如:SGM老别克新世纪IP 1.3m长,内侧深度超过200mm;德国戴母勒奔驰Smart Car门板外饰整体通过水转印加饰) 可以通过面漆工艺及底漆调节去控制最终产品表面光泽度、饱满度、花纹色泽及花纹层次的深度(而不需要重新开发薄膜,重新制版印刷) 遇到零件形状变化大而花纹选择偏向有规则性的所谓技术性花纹,虽然包覆不受限制,但部分边角位置可能会出现花纹拉伸而导致外观上有花纹的规则性变弱的情况;但天然花纹(如木纹)的外观表现较佳 INS(Film Insert Molding)?翻边(H)极限约40mm,但同时R角(R)必须设计在10mm以上;而如果R角(R)在1mm以下,其翻边(H)只可以在5mm以下(而且要取决如零件的整体三维形状)?R角考虑要很充分,与花纹包覆的翻边深度要经常做出让步及妥协?三维形状变化大的零件,加工难度高,或不能把薄膜包覆完整?花纹包覆不到地方(开口部分)可通过刀切露出基材原色,但如果基材上存在注塑缺陷或颜色无法满足外观设计(如金属效果),必须通过单模多片薄膜的insert工艺或电铸模后加工工艺完成(工艺难度增加)?对大型零件包覆难度较高或质量难以控制?在翻边及R角配合情况下(包覆可行性高),对包覆技术性花纹薄膜的最终外观效果较佳(但可能仍存在轻度花纹拉伸变形) IMD(In-mold Decoration)?翻边(H)极限为5mm左右,同时其R角(R)也不能少于10mm?由于IMD薄膜比INS薄膜更薄,翻边与R角的考虑与妥协要求更高?一般只考虑对平面产品、翻边不大于1mm产品上用这工艺?基本上很难做到产品上留下开口部分(如开关板) 对大型零件包覆难度较高或质量难以控制 对包覆技术性花纹(以上条件容许下)外观效果较佳,但由于薄膜很薄,天然花纹(如木纹)的外观效果则很差 有关INS及IMD的定义解释: R角(R)和翻边(H)的关系(只作参考*) INS: IMD:

汽车制动系统简介 简介 制动系统是汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置。制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。 功用 为了保证汽车安全行驶,提高汽车的平均行驶车速,以提高运输生产率,在各种汽车上都设有专用制动机构。这样的一系列专门装置即称为制动系统。 汽车制动系功用:1)保证汽车行驶中能按驾驶员要求减速停车;2)保证车辆可靠停放制动系统 汽车制动系统组成和原理 组成 (1)供能装置:包括供给、调节制动所需能量以及改善传动介质状态的各种部件 (2)控制装置:产生制动动作和控制制动效果各种部件,如制动踏板

(3)传动装置:包括将制动能量传输到制动器的各个部件如制动主缸、轮缸 (4)制动器:产生阻碍车辆运动或运动趋势的部件 制动系统一般由制动操纵机构和制动器两个主要部分组成。 (1)制动操纵机构 产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件。 (2)制动器 产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。 养护 检查制动片是否仍有余量,若出现磨损的迹象,应提早换掉接近寿命底限制动摩擦片,而不要只相信警示灯。 若制动液液量不足会使空气进入,制动会变得不灵敏。我们建议国内的车主 每个月都检查一次制动液,注意制动液面是否有明显下降,品质是否变差,如果是就应及时添加或更换。另外长途行驶或在越野之后,路上的石子或其它障碍物可能击伤制动液管线造成泄露,因此每次长途行驶后也应及时检查制动液状况,尤其还要观察底盘是否有制动液遗漏的现象。

一形状和结构的简化 制品的形状和结构的复杂显然增加了模具结构的复杂性,加大了模具制造的难度,最终将影响产品性能的不稳定性和经济成本。而从工艺角度考虑,形状和结构设计得越简单,熔体充模也就越容易,质量就越有保证。 理想的产品简洁化设计应当是:①有利于成型加工;②有利于降低成本,节约原材料;③有利于体现简洁、美观的审美价值;④符合绿色设计的原则。 以下是简化设计的一些建议和提示。 (1) 结构简单,形状对称,避免不规则的几何图形; (2) 避免制件侧孔和侧壁内表面的凹凸形状设计,制件侧壁孔洞和侧壁内表面的凹凸形状对某些成型工艺来说是困难的,需要在制品成型后进行二次加工。 汽车内外饰(塑料件)产品 结构设计原则

例如对于注塑件 来说,模具结构 上就要采用比较 复杂的脱模机构 才能对制件进行 脱模。通常,侧向孔要用侧向的分型和 抽芯机构来实现,这无疑会使模具结构 变得复杂。为了避免在模具结构设计上 增加复杂性,可以对这类制品进行设计 上的改进,图5-16所示是避免侧向抽芯 的设计。 (3) 尺寸设计要考虑成型的可能性, 不同的成型工艺对制件的尺寸设计,包 括尺寸大小,尺寸变化会有一定的限制。 二、壁厚均一的设计原则 在确定壁厚尺寸时,壁厚均一是一 个重要原则。该原则主要是从工艺角度以及由工艺导致的质量方面的问题而提出来的。均匀的壁厚可使制件在成型过程中,熔体流动性均衡,冷却均衡。壁薄部位在冷却收缩上的差异,会产生一定的收缩应力,内应力会导致制件在短期之内或经过一个较长时期之后发生翘曲变形。图5-17是由壁厚不均匀造成制件翘曲变形的一个例子,图5-18是在不均

匀壁厚部位设置圆孔,由于收缩不均匀,难以称为正圆。 以下是壁后不均匀时常用的三种处置办法: (1)厚薄交接处的平稳过渡,当制件厚度不可避免需设计成不一致时,在厚薄交接处应逐渐过渡,避免突变,厚度比例变化在一合适的范围(一般不超过3:1)。某些成型工艺可以是例外,例如结构发泡注射成型和气辅注射成型。 壁厚过渡形式如图5-19所示,图中(a)为阶梯式过渡,应尽力避免;(b)为锥形过渡,比较好;(c)是圆弧过渡,应是最好的。 (2)将尖角改为圆角处理,两个壁厚相同的壁面成直角的连接,破坏了壁厚均一的原则。如图5-20所示,转角处的最大厚度是壁厚的1.4倍,如果将内角处理成圆角而外角仍是直角,则在转角处的最大厚度(W)可增加到壁 厚的1.6-1.7倍。正 确的设计应是内外 角均进行圆角处

《汽车内外装饰》教案 一体化课程教案 专业汽车装饰与美容学习任务 项目一 车内地胶铺装 教材校本教材《汽车内外装饰》授课时数4课时课型理实一体人数20人 教学目的【知识目标】1.了解汽车地胶的作用、类型。 2.了解汽车地胶的使用条件以及铺设标准等。 【能力目标】1. 能够熟练使用撬板、螺丝刀、套管头等工具。 2. 能够根据具体的标准流程,完成汽车地胶铺设的基础作业项目。 3. 能够根据环保要求,正确处理对环境和人体有害的废料和损坏的零部件。 【情感目标】1.能进行团队成员的有效沟通与协作。 2.能在完成操作项目的过程中感受学习的乐趣,增强自信心。 学情分析 教学对象——汽车装饰与美容3年制中职的学生 1.优势:学习兴趣高,注重团队合作分工,重视实际操作。 2.劣势:对理论知识的学习兴趣小,无法将所学习的全部理论知识运用到实操中,在解决实际问题时显得技能生疏、无从下手。 教材处理 充分利用校本教材实践性强的优势,紧紧贴近教材教学内容,并结合一些汽车4S店的工作模式,设计一些典型的案例教学,引起学生的兴趣,调动他们的积极性,让他们自己观察、分析、总结决策并且完成任务,教师只在过程中起到引导的作用,对学生操作提出建议,有助于提高学生学习的主动性,锻炼学生团队的沟通与协作能力。

内容突破措施 教学重点地胶的铺装方法教师引导、鱼刺图分析教学难点地胶的铺装方法动手实际操作 教学方法任务驱动法、项目教学法、信息化教学法、案例法、角色扮演法、大脑风暴法、小组讨论法 教学媒体教学课件、仿真教学环境(软件)、网络 试验设计1、多媒体教学平台学习地胶作用、类型、鉴别方法。 2、完成汽车车内地胶铺装操作项目。 教学条件1、教学设备:多媒体设备、黑板、教具车 2、教学工具:1. 地胶、美工刀 2. 扳手、旋具、各种钳子、撬板、组合工具 3、学习资料:1.学习手册 2.教材 3.仿真教学平台 4、教学场地:理实一体化教室 考核与评价1、考核内容包括工作过程(占35℅)、仪容仪表(占15℅)、工作安全(占25 ℅)和职业素养(占25%)。四方面考核内容都由教师评价、小组评价和学生自评完成,三者权重为5:3:2,评价成绩采用百分制。 2、工作过程考核:主要考核学生能否熟练掌握操作要领规范、设计工作计划是 否科学合理、是否高效完成任务、是否注重质量;学生在整个学习与工作过程中的学习态度、纪律、出勤、吃苦耐劳、团结协作等表现,从学生的工作任务完成情况获得考核结果。 课后小结圆满完成教学任务,教学效果良好。 授课教师 孙宝光、 杨乐 2014年 9月15日审签李勇2015年 9月15 日

汽车内饰设计流程概述 随着我国汽车工业的发展,汽车制造商们越来越重视汽车车型的开发,其中汽车内饰的开发是仅次于车身的一项重要的开发内容,它除了是反映汽车内部空间的功能之外,还要让乘客感到舒适,视觉的美观,操纵的方便等等要求。 汽车内饰包括仪表板、车门内饰、车顶内饰、柱内饰、侧围内饰等内部覆盖件,广义的还包括方向盘、汽车座椅、地板垫等内部功能件。汽车内饰通过多种材料和多种生产工艺而达到不同的效果,一般内饰的材料多用塑料ABS和改性PP等,还有其他的如皮革,植绒布,泡沫、玻璃钢等多种复合材料。生产工艺更是多样化,除了一般的注塑以外,还有如吸塑、吹塑、挤出、PU发泡、热压、蒙皮、喷涂、电镀、焊接等几乎所有的塑料加工工艺,还有如仪表板先进的搪塑工艺等。 一个整车的内饰设计项目,首要的是设计效果图。效果图除了要美观,风格要和车身相衬,还必须满足各种功能要求,选配的附件尽量采用现有的或尽量不要改变尺寸,各种功能件的位置要符合整车布置和人机工程的要求。一般要设计三到五个效果图提供选择,从中间选择一个或综合几个效果图重新制作一个。 接下来根据平面效果图制作油泥模型和数据模型,数据模型是运用逆向技术在油泥模型的基础上建立的。有时也可以直接在三维设计软件中构建数据模型,以减少设计成本。在制作模型过程中必须进行人机工程校核,满足各项法规要求和其他功能的要求,满足各个选配附件的大小和位置要求,除此之外,还要进行结构分块,考虑各部件制造工艺和材料。满足这些条件后,还得考察模型的表面光顺性,一般外表面都必须达到A级曲面。完成数据模型后,可以渲染多个角度的效果图与平面效果图对比,并进行修改,达到最佳的视觉效果。 以上只是一个没有结构的外表面模型,接下来的任务就是各个部件的结构设计。而为了更为直观的检验安装效果,我们通常需要在完成简易安装结构后制作手板样件。手板样件制作和试安装除了检验安装效果和误差外,还能优化结构设计和检验部件的制造工艺。 结构设计是一个比较繁杂的工作,需要的周期也是最长的。一般需要注意的问题有:部件的制造工艺性,结构的强度,安装工艺性,部件之间的装配间隙、干涉检查,运动校核和装配顺序等。这项工作是持续改进,逐步优化的过程。为了进行各项工艺检查,我们除了检验数据模型,也对一些结构比较复杂的部件做第二次手板样件,确保安装效果和制造工艺。 在模具制造过程中,设计人员还应该及时发现问题和优化数据模型,只有到试制样件装车,状态达到预期的效果后,并做项目总结,这样一个成功的内饰项目才告结束。

本文将针对汽车内饰表面装饰的几种主流工艺从技术、成本、环保性能等方面进行分析比较。(文中“IMD”=IMR “INS”=IML/IMF)第一部分:水转印、IMD、INS工艺比较 一、工艺描述 1、水转印:将已成型的塑料基材压印浮在水面上的水溶性薄膜,转印薄膜上的花纹,再以透明面漆保护其花纹及对表面做光泽调节。流程为转印-薄膜清除-烘干-喷面漆,如下图所示: 2、INS(Film Insert Molding):将带有外观效果的INS薄膜预先吸塑/高压成型,把多余的膜边冲切,再把冲切好的薄膜壳片放置在注塑模具内进行注塑。流程为薄膜加热-高压空气成型(或者吸塑成型)-刀模裁切-已成型薄膜壳片放入模腔-合模,注塑成型-开模,完成总成件,如下图所示: 3、IMD(In-Mold Decoration):带有外观效果的IMD薄膜(圈材)被安装在输膜机上,而输膜机则固定在注塑机上,在注塑开模时让薄膜输进模具中间,合模后让胶料注射,让薄膜贴覆在模具上同时与胶料成型。流程为薄膜输送-薄膜定位,取模件-注塑成型-后处理,清理飞边,如下图所示:

二、技术对比 1、花纹包覆可行性方面 水转印 翻边高度(H)可让花纹包覆在300mm范围内 不需要考虑R角(R)的锐度 可以完全包覆圆柱形基材(如整体注塑方向盘) 通过电铸模后加工工艺可对花纹拉伸严重部分加饰,修饰效果较佳 可以对大型零件包覆(例如:SGM老别克新世纪IP 1.3m长,内侧深度超过200mm;德国戴母勒奔驰Smart Car门板外饰整体通过水转印加饰) 可以通过面漆工艺及底漆调节去控制最终产品表面光泽度、饱满度、花纹色泽及花纹层次的深度(而不需要重新开发薄膜,重新制版印刷) 遇到零件形状变化大而花纹选择偏向有规则性的所谓技术性花纹,虽然包覆不受限制,但部分边角位置可能会出现花纹拉伸而导致外观上有花纹的规则性变弱的情况;但天然花纹(如木纹)的外观表现较佳 INS(Film Insert Molding) 翻边(H)极限约40mm,但同时R角(R)必须设计在10mm以上;而如果R角(R)在1mm以下,其翻边(H)只可以在5mm以下(而且要取决如零件的整体三维形状) R角考虑要很充分,与花纹包覆的翻边深度要经常做出让步及妥协 三维形状变化大的零件,加工难度高,或不能把薄膜包覆完整 花纹包覆不到地方(开口部分)可通过刀切露出基材原色,但如果基材上存在注塑缺陷或颜色无法满足外观设计(如金属效果),必须通过单模多片薄膜的insert工艺或电铸模后加工工艺完成(工艺难度增加) 对大型零件包覆难度较高或质量难以控制 在翻边及R角配合情况下(包覆可行性高),对包覆技术性花纹薄膜的最终外观效果较佳(但可能仍存在轻度花纹拉伸变形) IMD(In-mold Decoration) 翻边(H)极限为5mm左右,同时其R角(R)也不能少于10mm 由于IMD薄膜比INS薄膜更薄,翻边与R角的考虑与妥协要求更高 一般只考虑对平面产品、翻边不大于1mm产品上用这工艺 基本上很难做到产品上留下开口部分(如开关板) 对大型零件包覆难度较高或质量难以控制 对包覆技术性花纹(以上条件容许下)外观效果较佳,但由于薄膜很薄,天然花纹(如木纹)的外观效果则很差 有关INS及IMD的定义解释: R角(R)和翻边(H) 的关系(只作参考*) INS:

汽车制动系统论文

贵州航天职业技术学院毕业论文(设计)题目汽车制动系统故障分析 系别:汽车工程系 专业:汽车检测与维修技术 班级: 2015级汽检一班 学生姓名: 学号: A153GZ0311001008 指导教师: 冉煜

摘要 摘要正文:汽车制动系统是汽车的一个重要组成部分,直接影响汽车的安全性。据相关资料介绍,在由于汽车本身造成的交通事故中,制动故障引起的事故占45%。可见,制动系统是保证行车安全的重要系统。制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。汽车制动系统是指为了在技术上保证汽车的安全行驶,提高汽车的平均速度等,而在汽车上安装制动装置专门的制动机构。一般来说汽车制动系统包括行车制动装置和停车制动装置两套独立的装置。其中行车制动装置是由驾驶员用脚来操纵的,故又称脚制动装置。停车制动装置是由驾驶员用手操纵的,故又称手制动装置。 关键词:制动系统、故障分析 1

目录 1 制动系统的历史 (1) 2 制动系统的组成、工作原理 (2) 3 制动器的分类 (3) 4 液压制动系统的故障诊断分析 (4) 5 气压制动系统的故障诊断分析 (5) 6 汽车液压制动系统与气压制动系统对比 (6) 总结 (7) 1

1 制动系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想,且成本高。1979年,默本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装置。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装置。随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,ABS以成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。1992年ABS的世界年产量已超过1000万辆份,世界汽车ABS的装用率已超过20%。一些国家和地区(如欧洲、日本、美国等)已制定法规,使ABS成为汽车的标准设备。 1

图解汽车(12)汽车制动系统结构 解析 1制动系统的组成及分类 【太平洋汽车网技术频道】大家都知道,汽车的制动系统对我们的行车安全非常重要,行车中如出现制动失灵等故障,后果都将不堪设想。那么汽车的制动系统是如何制动的?为什么会失灵?ABS、ESP系统又是什么?对我们驾驶安全有什么帮助?好吧,下面我们一起来了解一下。 阅读提示:

PCauto技术频道图解类文章都可以使用全新的高清图解形式进行阅读。大家可以通过点击上面图片链接跳转到图解模式。高清大图面积提升3倍,看着更清晰更爽,赶紧来体验吧! ● 制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ● 鼓式制动器

鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。

从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。

摘要:本文阐述了汽车顶棚内饰种类、几种安装方式,着重介绍了几种用于制造顶棚内饰的隔热、吸声、防震新材料。 1 概述 顶棚内饰是汽车整车内饰的重要组成部分,它的主要作用是提高车内的装饰性,同时顶棚内饰还可提高与车外的隔热、绝热效果;降低车内噪声,提高吸音效果;提高乘员乘坐的舒适性和安全性。由于太阳直射车顶,汽车顶部温度较高,因此顶棚内饰的耐热性和耐候性指标要求较严。 对不同档次的顶棚内饰在材料上、结构上有所不同,为提高隔音、隔热、降低噪声等效果,多采用各种纤维毡、聚氨酯泡沫、聚乙烯泡沫等与其他材质粘合在一起的结构作为衬垫,并与蒙皮材料(如无纺布、针织物等)通过一定的方式粘合形成一体。汽车顶棚内饰主要有两种:软顶和硬顶。汽车顶棚内饰材料的发展趋势是高强度模塑基材。 2 汽车软顶 软顶一般由面料和泡沫层用层压法或火焰法复合在一起。面料多数为无纺布机织布或PVC 膜等材料制造。泡沫层用聚氨酯或交联聚乙烯泡沫制造。面料起装饰作用,其颜色及质地要与车身内饰颜色和质地相协调。泡沫层起隔热、隔音、吸音、减振作用。 软顶的安装一般分两种:粘贴型和吊装型,用于货车、面包车和低档轿车上。 软顶的粘接有滚涂法和预涂法两种。用于滚涂法的粘接剂是氯丁橡胶,在施工现场工人手持蘸满胶的胶滚或胶刷,将胶均匀涂在顶盖的内表面上,晾置几分钟后,将软顶粘贴在指定位置上(见图1)。用于预涂法的压敏粘接剂是在生产软顶时,预涂在软顶的背衬上,用隔离纸将胶膜覆盖,以便包装和运输。在施工现场工人揭去隔离纸即可将软顶粘贴在指定位置上(见图2)。哈飞6373 车软顶是采用滚涂法粘接的,哈飞6330E 车软顶是采用预涂法粘接的。其优点是操作简单,成本低。

汽车内装饰 摘要:一辆好的车,不仅是外形的设计要有新意、美观,内饰所用的材质也同样重 要,做工更要精益求精。因为大部分的时间还是要在车里度过,外观再漂亮,在酷,更多的时候是给路人看的。只有精致的内装才是经常要用到的。细腻的手感,舒适的使用体验才是一部好车锁必须具备的要素。纵览世界各国的豪华车型,无论是尊崇的商务座驾,还是集科技与豪华于一身的超级跑车,都对内饰的用料非常讲究。 关键词:汽车音响汽车内饰桃木真皮座椅 引言:世界各大汽车公司一直都在想尽各种办法提高产品质量,增强竞争力,取悦 消费者。在这种种的努力中,有一个重要的环节就是内饰质量的提升。 一、汽车内装饰的原则 协调:饰品颜色必须和汽车的颜色相协调,不可盲目追求高品位、高价位,以免弄巧成拙,如深色车的内部应配以浅色的座套及棕色的地毯,浅色车的内部应配以深色的座套及红色的地毯等。 实用:根据车内空间的大小,尽可能地选用一些能充分体现车主个性的小巧、美观、实用的饰物,如茶杯架、香水瓶、资料盒、报时器、座垫、背垫、鸡毛掸等。 整洁:要求车内饰品做到干净、卫生、摆放有序,给人—种轻松、舒适的感觉。安全:车内饰品不得有碍驾驶员的安全行车或乘员的安全,如车内顶部吊物不宜吊挂过长、过大、过重,后挡风玻璃上的饰物不要影响倒车视线等。 舒适:车内饰品的色彩和质感要符合车主的审美观,香水要清新,不宜太浓等。因为只有舒适的环境才会为车主和乘员带来舒畅的心情、轻松的感受,安全行车才会有良好保障。二、汽车内饰之音响装饰 车上如果有一套好的音响系统,无论是城市出行,还是长途旅游,都会让驾驶与乘坐变成一件非常惬意的事情。很多豪华品牌为了能让自己的客户享受到一流的音乐品质,把车厢化身为音乐厅,不惜重金请专业厂商为不同的车型量身打造音响系统。 实际上,在车内安装一套完美的音响系统要大大超过在家里的安装的难度。除了最基本的设备的质量要过硬,还有极端温度下的工作状况,车身的震动以及周边噪音干扰等因素也要考虑,所以,这也从一个侧面考验了音响制造商的水平和工艺。

制动十问解析汽车制动系统基础结构 理解制动系统的基础结构有什么好处?很多人对此嗤之以鼻,觉得张口闭口蹦出的都是ABS、ESP之类的名词才叫酷,你还别小看这些基础的理论知识,它可以用来提高自己在防忽悠方面的抵抗力,比如,文中会提到的制动片磨损问题,当有奸商对你狠下毒手的时候,你便可以给他好好的上一课,另外,这在买车时也能派上用场,为了促成一单生意,销售顾问有可能会适当的将某些功能进行夸大,例如,他家的车所装配的行车稳定系统(ESP、DSC......)可以依据制动片的磨损程度来额外施加制动力以提高驾驶员的驾驭感受,此时,你便可笑着对他说:“别逗了”。 接手这个选题是需要一定勇气的,因为,围绕汽车制动这个话题在此前已经制作过太多的内容,等到我来做这方面内容时,无论从选题立意还是文章的切入点来看,都不太容易带动大家的阅读热情。在斟酌之后,我打算换个方式聊聊汽车制动,以让大家对这一部分能有更深刻的认识,当然,在文章中同样会收纳一些较为实用的内容,话不多说,大家各取所需吧。 ●为什么你踩下制动踏板时,车速会慢下来?

一张图可以很清楚的把这个问题交代清楚,为了减轻大家的阅读压力,我不打算用过多文字来描述这部分,还是把精力放在后面的内容吧。 ●在制动结束后,制动片和制动盘是怎么被分开的? 这又牵扯出一个问题,在完成制动后,制动片和制动盘是如何被分开的?其实很简单,松开制动踏板后,制动系统内的制动压力随即下降,因此,制动卡钳的活塞处于松弛的状态(在橡胶密封圈的变形作用下回位),滚动的车轮带着制动盘一起旋转,依靠旋转时细微的摆动,制动盘便可顺利挣脱制动片的束缚,推动制动片跟着活塞回位。 ●制动踏板的背后是什么? 脚下的每一块踏板分别具备何种作用是个关键,这在学车时,教练会反复强调,因为它不仅是起步的关键,最为主要的则是与安全息息相关,但你知道在这些踏板的背后是什么样的构造吗?顺应本文主旨,今日所谈仅限制动。 『制动踏板背后到底是个什么结构?』

相关文档
最新文档