齿轮传动

齿轮传动
齿轮传动

齿轮 - 传动

轮缘上有齿能连续啮合传递运动和动力的机械元件。齿轮是能互相啮合的有齿的机械零件,齿轮在传动中的应用很早就出现了。19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,随着生产的发展,齿轮运转的平稳性受到重视。

目录

1发展起源

2用途应用

3注意问题

4相关计算

折叠编辑本段发展起源

折叠历史

在西方,公元前300年古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸

铁齿轮传递旋转运动的问题。希出土的古希腊齿轮装置

出土的古希腊齿轮装置

腊著名学者亚里士多德和阿基米德都研究过齿轮,希腊有名的发明家古蒂西比奥斯在圆板

工作台边缘上均匀地插上销子,使它与销轮啮合,他把这种机构应用到刻漏上。这约是公

元前150年的事。在公元前100年,亚历山人的发明家赫伦发明了里程计,在里程计中使

用了齿轮。公元1世纪时,罗马的建筑家毕多毕斯制作的水车式制粉机上也使用了齿轮传

动装置。到14世纪,开始在钟表上使用齿轮。

东汉初年(公元 1世纪)已有人字齿轮。三国时期出现的指南车和记里鼓车已采用齿轮传动系统。晋代杜预发明的水转连磨就是通过齿轮将水轮的动力传递给石磨的。史书中关于齿

轮传动系统的最早记载,是对唐代一行、梁令瓒于 725年制造的水运浑仪的描述。北宋时制造的水运仪象台(见中国古代计时器)运用了复杂的齿轮系统。明代茅元仪著《武备志》(成书于1621年)记载了一种齿轮齿条传动装置战国末期铁质青铜齿轮

战国末期铁质青铜齿轮

。1956年发掘的河北安午汲古城遗址中,发现了铁制棘齿轮,轮直径约80毫米,虽已残缺,但铁质较好,经研究,确认为是战国末期(公元前3世纪)到西汉(公元前206~公元24年)期间的制品。1954年在山西省永济县蘖家崖出土了青铜棘齿轮。参考同坑出土器物,

可断定为秦代(公元前221~前206)或西汉初年遗物,轮40齿,直径约25毫米。关于棘齿

轮的用途,迄今未发现文字记载,推测可能用于制动,以防止轮轴倒转。1953年陕西省长安县红庆村出土了一对青铜人字齿轮。根据墓结构和墓葬物品情况分析,可认定这对齿轮

出于东汉初年。两轮都为24齿,直径约15毫米。衡阳等地也发现过同样的人字齿轮。

早在1694年,法国学者PHILIPPE DE LA HIRE首先提出渐开线可作为齿形曲线。1733年,法国人M.CAMUS提出轮齿接触点的公法线必须通过中心连线上的节点。一条辅助瞬心线分

别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上

所包络形成的两齿廓曲线是彼此共轭的,这就是CAMUS定理。它考虑了两齿《武备志》中

齿轮传动结构图

《武备志》中齿轮传动结构图

面的啮合状态;明确建立了现代关于接触点轨迹的概念。1765年,瑞士的L.EULER提出渐

开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率

中心位置的关系。后来,SAVARY进一步完成这一方法,成为EU-LET-SAVARY方程。对渐开线齿形应用作出贡献的是ROTEFT WULLS,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。1873年,德国工程师HOPPE提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。

19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具备较完备的手段后,渐开线齿形更显示出巨大的优越性。切齿时只要将切齿工具从正

常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变位齿轮。1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对齿轮变位提出了多种计算方法。

为了提高动力传动齿轮的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的齿轮获得了发展。1907年,英国人FRANK HUMPHRIS最早发表了圆弧齿形。1926年,瑞土人ERUEST 汉初青铜人字齿轮

汉初青铜人字齿轮

WILDHABER取得法面圆弧齿形斜齿轮的专利权。1955年,苏联的M.L.NOVIKOV完成了圆弧

齿形齿轮的实用研究并获得列宁勋章。1970年,英国ROLH-ROYCE公司工程师R.M.STUDER

取得了双圆弧齿轮的美国专利。这种齿轮现已日益为人们所重视,在生产中发挥了显著效益。

齿轮是能互相啮合的有齿的机械零件,它在机械传动及整个机械领域中的应用极其广泛。现代齿轮技术已达到:齿轮模数0.004~100毫米;齿轮直径由1毫米~150米;传递功率可达上十万千瓦;转速可达几十万转/分;最高的圆周速度达300米/秒。

随着生产的发展,齿轮运转的平稳性受到重视。1674年丹麦天文学家罗默首次提出用外摆线作齿廓曲线,以得到运转平稳的齿轮。

18世纪工业革命时期,齿轮技术得到高速发展,人们对齿轮进行了大量的研究。1733年法国数学家卡米发表了齿廓啮合基本定律;1765年瑞士数学家欧拉建议采用渐开线作齿廓曲线。

19世纪出现的滚齿机和插齿机,解决了大量生产高精度齿轮的问题。1900年,普福特为滚齿机装上差动装

置,能在滚齿机上加工出斜齿轮,从此滚齿机滚切齿轮得到普及,展成法加工齿轮占了压倒优势,渐开线齿轮成为应用最广的齿轮。

1899年,拉舍最先实施了变位齿轮的方案。变位齿轮不仅能避免轮齿根切,还可以凑配中心距和提高齿轮的承载能力。1923年美国怀尔德哈伯最先提出圆弧齿廓的齿轮,1955年苏诺维科夫对圆弧齿轮进行了深入的研究,圆弧齿轮遂得以应用于生产。这种齿轮的承载能力和效率都较高,但尚不及渐开线齿轮那样易于制造,还有待进一步改进。

折叠现状

中国齿轮行业快速发展,行业规模不断扩大。在"十一五"期间,根据国家统计局公布的数据,2005~2010年中国齿轮行业的工业总产值逐年增加,且同比增幅均在18.00%以上,2009年实现工业总产值781.85亿元,2010年实现工业总产值946.35亿万元。齿轮行业已成为中国机械基础件中规模最大的行业。

折叠中国行业发展

状况

中国齿轮工业在"十五"期间得到了快速发展:2005年齿轮行业的年产值由2000年的240亿元增加到683亿元,年复合增长率23.27%,已成为中国机械基础件中规模最大的行业。就市场需求与生产规模而言,中国齿轮行业在全球排名已超过意大利,居世界第四位。

2006年,中国全部齿轮、传动和驱动部件制造企业实现累计工业总产值102628183千元,比上年同期增长24.15%;实现累计产品销售收入98238240千元,比上年同期增长24.37%;

实现累计利润总额5665210千元,比上年同期增长26.85%。

2007年1-12月,中国全部齿轮、传动和驱动部件制造企业实现累计工业总产值136542841千元,比上年同期增长30.96%;2008年1-10月,中国全部齿轮、传动和驱动部件制造企业实现累计工业总产值144529138千元,比上年同期增长32.92%。

中国齿轮制造业与发达国家相比还存在自主创新能力不足、新品开发慢、市场竞争无序、

企业管理薄弱、信息化程度低、从业人员综合素质有待提高等问题。现阶段齿轮行业应通

过市场竞争与整合,提高行业集中度,形成一批拥有几十亿元、5亿元、1亿元资产的大、中、小规模企业;通过自主知识产权产品设计开发,形成一批车辆传动系(变速箱、驱动桥

总成)牵头企业,用牵头企业的配套能力整合齿轮行业的能力与资源;实现专业化、网络化

配套,形成大批有特色的工艺、有特色的产品和有快速反应能力的名牌企业;通过技改,

实现现代化齿轮制造企业转型。

"十一五"末期,中国齿轮制造业年销售额可达到1300亿元,人均销售额上升到65万元/年,在世界行业排名中达到世界第二。2006-2010年将新增设备10万台,即每年用于新增设备投资约60亿元,新购机床2万台,每台平均单价30万元。到2010年,中国齿轮制

造业应有各类机床总数约40万台,其中数控机床10万台,数控化率25%(高于机械制造全行业平均值17%)。

发展

中低档的齿轮模具在国内大多都能生产,高端的齿轮模具多依靠进口。国内专门做齿轮模具的工厂不多,大都由齿轮厂自己做齿轮模具,齿轮厂往往设一个工段或一个车间来承担这项工作。这就致使国内的齿轮模具产业发展难上加难。相关专家表示,要想促使我国齿轮模具产业更好更快的发展,就必须从根本上解决依赖问题,努力提高专业技术,以便更好的服务于国内齿轮模具产业。

随着齿轮行业竞争的不断加剧,大型齿轮企业间并购整合与资本运作日趋频繁,国内优秀的齿轮生产企业愈来愈重视对行业市场的研究,特别是对企业发展环境和客户需求趋势变化的深入研究。正因为如此,一大批国内优秀的齿轮品牌迅速崛起,逐渐成为齿轮行业中的翘楚!

2011年,齿轮行业总体销售额达到1780亿元人民币,同比增长23%;进口额虽还远远高于出口额,但出口增速则明显强于进口。

2012年齿轮行业发展可能呈现"前低后高、中速增长"的态势。2012年四季度出现的行业增长放缓的趋势将延续到今年。下半年,随着国家扩大内需政策的逐步到位,战略性新兴产业的发展以及国家"三基规划"的开始实施,必将提升现代装备制造业,从而带动整个齿轮行业新一轮的上升。预计齿轮行业销售收入将增长10%以上,出口增幅或将达15%。

投资

齿轮及其齿轮产品是机械装备的重要基础件,绝大部分机械成套设备的主要传动部件都是齿轮传动。随着国民经济的高速发展,全行业年销售总额已突破千亿元,形成了企业多元并存、共同发展的行业格局。其中,龙头企业、骨干企业已成为推动行业管理水平、产品技术质量水平和自主创新能力提升的重要力量,为把我国从齿轮制造大国建设成为齿轮制造强国做出了突出贡献。

根据( 中国齿轮行业产销需求预测与转型升级分析报告)显示中国齿轮传动行业在"十一五"期间得到了快速发展,2005-2010年中国齿轮行业的工业总产值逐年增加,且同比增幅均

在20%以上。2010年整个齿轮产业实现工业总产值946.35亿元,齿轮全行业市场需求超过1400亿元,世界排名第二。从规模和销售额等各方面因素来看,齿轮产业已然成为中国机械通用零部件基础件领域的"领军"级行业。中国已经成为名副其实的世界齿轮制造大国。

2011年末,我国轴承、齿轮、传动和驱动部件的制造工业企业达2319家,行业总资产达2483.16亿元,同比增长20.59 %。2011年,我国规模以上轴承、齿轮、传动和驱动部件的制造工业企业实现主营业务收入达3144亿元,同比增长28.00 %;实现利润总额达230.4亿元,同比增长22.08 %。

2012年上半年,全国齿轮的产量达97.69万吨,同比增长 47.14%。2012年6月份,我国生产齿轮18万吨,同比增长50.18%。

中国处于工业化、市场化和城镇化加快发展的时期,也处在消费扩大和结构升级的时期,装备制造业将迎来难得发展机遇,为齿轮的发展提供巨大市场空间。"十二五"是我国齿轮行业发展的黄金期,行业应加快朝"由大变强"的目标迈进。

折叠发展格局

简介

十二五时期是中国齿轮行业发展的黄金期,未来十年,齿轮行业应加快朝由大变强的目标迈进,调结构、上水平是重要任务,也是行业亟待扭转的关键问题。十二五是我国经济社会发展极其关键而特殊的时期,也是全球政治经济格局必将发生重大变化的时期,在新的历史起点上的齿轮行业必须要把握四个变革。

博弈

特别值得注意的是,少数国家挑起的贸易保护主义,有可能引发全球范围内的贸易保护。经济全球化和贸易保护主义正处于博弈阶段,但总体趋势是经济全球化。同时,后金融危机时代,人民币面临着升值的巨大压力。这意味着进出口格局将产生新的变化,更多的国际产品将进入中国与国产品牌直接竞争。我国齿轮企业必须要在竞争中走向成熟。未来的竞争格局将是集团化趋势明显,行业集中度提高;国际大企业重心转移,纷纷加大对中国等新兴市场的投入,国内竞争国际化加剧;国外企业越来越重视中国元素,未来将专门研发针对中国市场的产品。

技术变革

应采取有效措施,用信息技术改造提升齿轮行业,改变我国齿轮产品档次低和经济效益不高的状况。如使用自动化、智能化设备,降低成本和能源消耗;推动计算机集成制造系统等在齿轮行业的应用,形成强大的先进装备制造体系等。

大势所趋

截止到2012年底,齿轮行业年销售收入约1600亿元,生产企业1000余家,规模以上企业约400余家,从业人员约30万人,是基础零部件行业规模最大的分行业。经过20多年的不懈努力,我国已经成为齿轮强国。

"十二五"期间我国齿轮行业面临调整振兴、由大变强的历史发展机遇,国内外市场竞争加剧,国内深层次矛盾不可避免地会影响行业前进步伐,但推动行业技术进步创新发展的基本力量不可逆转,全行业在转型升级的进程中将以年均30%左右的增速实现稳定发展。

预计至"十二五"期末,行业收入有望突破2600亿元。报告通过齿轮行业下游需求潜力,进一步说明行业发展前景看好。

随着全球一体化的到来,关联度越来越高的产业需要面对越来越多的共同课题,需要建立广泛的合作。而这种合作已不再仅是提供产品这么简单。将从源头上打破产业之间壁垒,以行业需求为导向成为产业之间融合发展的新趋势。为达成通过产业融合推动技术创新的目的,行业间应从技术、标准和法规、信息服务与软科学研究、品牌推广等方面全方位合

作,合理利用双方的资源,进行前瞻性产品的设计与开发,确保我国自主创新技术的适用

性和领先性。

变革

低碳化已成为制造业发展的主题。随着越来越多的国家做出低碳化承诺,节能减排将是企

业下一步技术发展的方向。行业也应抓住低碳经济的机遇,提前介入混合动力、燃料电池、电机电子等新能源技术的研究;进一步挖掘传统能源的潜力,大力发展再制造等技术,推

动产业实现绿色发展、循环发展。

折叠术语

轮齿(齿)──齿轮上的每一个用于啮合的凸起部分。一般说来,这些凸起部分呈辐射状排列。配对齿轮上轮齿互相接触,导致齿轮的持续啮合运转。

齿槽──齿轮上两相邻轮齿之间的空间。

齿轮

齿轮

端面──在圆柱齿轮或圆柱蜗杆上垂直于齿轮或蜗杆轴线的平面。

法面──在齿轮上,法面指的是垂直于轮齿齿线的平面。

齿顶圆──齿顶端所在的圆。

齿根圆──槽底所在的圆。

基圆──形成渐开线的发生线在其上作纯滚动的圆。

分度圆──在端面内计算齿轮几何尺寸的基准圆,对于直齿轮,在分度圆上模数和压力角均为标准值。

齿面──轮齿上位于齿顶圆柱面和齿根圆柱面之间的侧表面。

齿廓──齿面被一指定曲面(对圆柱齿轮是平面)所截的截线。

齿线──齿面与分度圆柱面的交线。

端面齿距pt──相邻两齿同侧端面齿廓之间的分度圆弧长。

模数m──齿距除以圆周率π所得到的商,以毫米计。

径节p──模数的倒数,以英寸计。

齿厚s──在端面上一个轮齿两侧齿廓之间的分度圆弧长。

槽宽e──在端面上一个齿槽的两侧齿廓之间的分度圆弧长。

齿顶高hɑ──齿顶圆与分度圆之间的径向距离。

齿根高hf──分度圆与齿根圆之间的径向距离。

全齿高h──齿顶圆与齿根圆之间的径向距离。

齿宽b──轮齿沿轴向的尺寸。

端面压力角ɑt── 过端面齿廓与分度圆的交点的径向线与过该点的齿廓切线所夹的锐角。

基准齿条(Standard Rack):只基圆之尺寸,齿形,全齿高,齿冠高及齿厚等尺寸均合乎标准正齿轮规格之齿条,依其标准齿轮规格所切削出来之齿条称为基准齿条.

基准节圆(Standard Pitch Circle):用来决定齿轮各部尺寸基准圆.为齿数x模数

基准节线(Standard Pitch Line):齿条上一条特定节线或沿此线测定之齿厚,为节距二分之一. 作用节圆(Action Pitch Circle):一对正齿轮咬合作用时,各有一相切做滚动圆.

基准节距(Standard Pitch):以选定标准节距做基准者,与基准齿条节距相等.

节圆(Pitch Circle):两齿轮连心线上咬合接触点各齿轮上留下轨迹称为节圆.

节径(Pitch Diameter):节圆直径.

有效齿高(Working Depth):一对正齿轮齿冠高和.又称工作齿高.

齿冠高(Addendum):齿顶圆与节圆半径差.

齿隙(Backlash):两齿咬合时,齿面与齿面间隙.

齿顶隙(Clearance):两齿咬合时,一齿轮齿顶圆与另一齿轮底间空隙. 节点(Pitch Point):一对齿轮咬合与节圆相切点.

节距(Pitch):相邻两齿间相对应点弧线距离.

法向节距(Normal Pitch):渐开线齿轮沿特定断面同一垂线所测节距. 折叠现行标准

GB/T 14229-1993 齿轮接触疲劳强度试验方法

GB/T 14230-1993 齿轮弯曲疲劳强度试验方法

GB/T 14231-1993 齿轮装置效率测定方法

GB/T 1840-1989 圆弧圆柱齿轮模数

GB/T 15752-1995 圆弧圆柱齿轮基本术语

GB/T 15753-1995 圆弧圆柱齿轮精度

GB/T 3481-1997 齿轮轮齿磨损和损伤术语

GB/T 2362-1990 小模数渐开线圆柱齿轮基本齿廓

GB/T 2363-1990 小模数渐开线圆柱齿轮精度

GB/T 3480-1997 渐开线圆柱齿轮承载能力计算方法

GB/T 6083-2001 齿轮滚刀基本型式和尺寸

GB/T 6084-2001 齿轮滚刀通用技术条件

GB/T 1356-2001 通用机械和重型机械用圆柱齿轮标准基本齿条齿廓

GB/T 4459.2-2003 机械制图齿轮表示法

GB/T 2821-2003 齿轮几何要素代号

GB/T 10062.1-2003 锥齿轮承载能力计算方法第1部分:概述和通用影响系数

GB/T 10062.2-2003 锥齿轮承载能力计算方法第2部分:齿面接触疲劳(点蚀)强度计算GB/T 10062.3-2003 锥齿轮承载能力计算方法第3部分:齿根弯曲强度计算

GB/Z 6413.1-2003 圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第1部分:闪温法

GB/Z 6413.2-2003 圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第2部分:积分温度法

GB/T 17879-1999 齿轮磨削后表面回火的浸蚀检验

GB/T 3374-1992 齿轮基本术语

GB/T 19321-2003 小艇操舵装置齿轮传动连接系统

GB/T 19406-2003 渐开线直齿和斜齿圆柱齿轮承载能力计算方法工业齿轮应用

GB/Z 19414-2003 工业用闭式齿轮传动装置

GB/T 9205-2005 镶片齿轮滚刀

GB/T 19936.1-2005 齿轮FZG 试验程序第1部分:油品的相对胶合承载能力FZG 试验方法

A/8.3/90

GB/T 6404.1-2005 齿轮装置的验收规范第1部分:空气传播噪声的试验规范

GB/T 6404.2-2005 齿轮装置的验收规范第2部分:验收试验中齿轮装置机械振动的测定

GB/T 14348-2007 双圆弧齿轮滚刀

GB/Z 18620.4-2008 圆柱齿轮检验实施规范第4部分:表面结构和轮齿接触斑点的检验

GB/T 10095.2-2008 圆柱齿轮精度制第2部分:径向综合偏差与径向跳动的定义和允许值

GB/Z 18620.2-2008 圆柱齿轮检验实施规范第2部分: 径向综合偏差、径向跳动、齿厚和侧隙的检验

GB/T 6320-2008 杠杆齿轮比较仪

GB/Z 18620.1-2008 圆柱齿轮检验实施规范第1部分: 轮齿同侧齿面的检验

GB/Z 18620.3-2008 圆柱齿轮检验实施规范第3部分: 齿轮坯、轴中心距和轴线平行度的检验

GB/T 10095.1-2008 圆柱齿轮精度制第1部分:轮齿同侧齿面偏差的定义和允许值

GB/T 13924-2008 渐开线圆柱齿轮精度检验细则

GB/T 19073-2008 风力发电机组齿轮箱

GB/T 21945-2008 数控扇形齿轮插齿机精度检验

GB/T 22161-2008 35mm电影放映机间歇输片齿轮尺寸

GB/T 22097-2008 齿轮测量中心

GB/Z 22559.2-2008 齿轮热功率第2部分:热承载能力计算

GB/T 1357-2008 通用机械和重型机械用圆柱齿轮模数

GB/T 3480.5-2008 直齿轮和斜齿轮承载能力计算第5部分:材料的强度和质量

GB/Z 22559.1-2008 齿轮热功率第1部分:油池温度在95℃时齿轮装置的热平衡计算GB/T 22775-2008 计时仪器用齿轮端面齿轮

GB/T 6443-1986 渐开线圆柱齿轮图样上应注明的尺寸数据

GB/T 11281-2009 微电机用齿轮减速器通用技术条件

GB/T 7631.7-1995 润滑剂和有关产品(L类)的分类第7部分:C组(齿轮)

GB/T 3374.1-2010 齿轮术语和定义第1部分:几何学定义

GB/T 25509-2010 机械系统和通用件齿轮参考字典

GB/T 25662-2010 数控弧齿锥齿轮铣齿机精度检验

GB/T 26090-2010 齿轮齿距测量仪

GB/T 26091-2010 齿轮单面啮合整体误差测量仪

GB/T 6467-2010 齿轮渐开线样板

GB/T 26092-2010 齿轮螺旋线测量仪

GB/T 6468-2010 齿轮螺旋线样板

GB/T 26093-2010 齿轮双面啮合综合测量仪

GB/T 8542-1987 透平齿轮传动装置技术条件

GB 5903-2011 工业闭式齿轮油

GB/T 3374.2-2011 齿轮术语和定义第2部分:蜗轮几何学定义

GB/T 28252-2012 磨前齿轮滚刀

GB/T 28247-2012 盘形齿轮铣刀

GB/T 10063-1988 通用机械渐开线圆柱齿轮承载能力简化计算方法GB/T 10098-1988 船用中速柴油机齿轮箱技术条件

GB/T 10224-1988 小模数锥齿轮基本齿廓

GB/T 10225-1988 小模数锥齿轮精度

GB/T 11365-1989 锥齿轮和准双曲面齿轮精度

GB/T 11572-1989 船用齿轮箱台架试验方法

GB/T 12368-1990 锥齿轮模数

GB/T 12369-1990 直齿及斜齿锥齿轮基本齿廓

GB/T 12370-1990 锥齿轮和准双曲面齿轮术语

GB/T 12371-1990 锥齿轮图样上应注明的尺寸数据GB/T 12601-1990 谐波齿轮传动基本术语

GB/T 12759-1991 双圆弧圆柱齿轮基本齿廓

GB/T 13672-1992 齿轮胶合承载能力试验方法

GB/T 13799-1992 双圆弧圆柱齿轮承载能力计算方法GB 13895-1992 重负荷车辆齿轮油(GL-5)

折叠结构分类

一般有轮齿、齿槽、端面、法面、齿顶圆、齿根圆、基圆、分度圆。

轮齿

简称齿,是齿轮上每一个用于啮合的凸起部分,这些凸起部分一般呈辐射状排列,配对齿轮上的轮齿互相接触,可使齿轮持续啮合运转。

齿槽

是齿轮上两相邻轮齿之间的空间;端面是圆柱齿轮或圆柱蜗杆上,垂直于齿轮或蜗杆轴线的平面。

端面

是齿轮两端的平面。

法面

指的是垂直于轮齿齿线的平面。

齿顶圆

是指齿顶端所在的圆。

齿根圆

是指槽底所在的圆。

基圆

形成渐开线的发生线作纯滚动的圆。

分度圆

是在端面内计算齿轮几何尺寸的基准圆。

折叠主要参数

齿数Z

闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振螺旋伞齿轮

螺旋伞齿轮

动,以齿数多一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不宜选用过多的齿数,一般可取

z1=17~20。

螺旋角

β > 0为左旋;

β < 0为右旋

齿距

pn=ptcosβ(下标n和t分别表示法向和端面的标记)

模数

模数是指相邻两轮齿同侧齿廓间的齿距p与圆周率π的比值(m=p/π),以毫米为单位。模数是模数制轮齿的一个最基本参数,直齿、斜齿和圆锥齿齿轮的模数皆可参考标准模数系列表(GB/T 1357-1987)。

mn=mtcosβ

m=p/ π

齿轮的分度圆是设计、计算齿轮各部分尺寸的基准,而齿轮分度圆的周长=πd=z p

模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。

压力角

α rb=rcosα=1/2mzcosα

在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20"。在某些场合也有采用α=14.5° 、15°、22.50°及25°等情况。

齿轮和传动装置

外文资料译文 齿轮和齿轮传动装置 外部直齿圆柱齿轮是直齿圆柱齿轮沿轴线切割。齿轮传动在平行轴之间传输。牙齿加载无轴向推力。在中等速度时表现优良,但在高速运动下往往会有很大的噪声。轴旋转方向相反。内啮合圆柱齿轮为传输运动之间的平行轴提供紧凑的驱动安排使其旋转方向相同。 螺旋齿轮是圆柱齿轮的齿和轴线成一定角度切割。在轴旋转方向相反之间提供河,与直齿圆柱相比具有优越的负荷承载能力和安静性。牙齿负载产生轴向推力。 交错轴斜齿轮是非平行的轴线啮合在一起的螺旋齿轮。 直齿锥齿轮的牙是径向朝着顶点,并且是锥形的形式。由于设计为在交叉的轴上操作,锥齿轮常用于连接两轴上相交的轴。所述轴之间的角度等于啮合齿的两个轴之间的角度。轴向推力负荷下开发趋于分离齿轮。 螺旋伞齿轮具有弯曲斜齿彼此接触平滑并逐渐从一个齿的一端到另一端。齿间啮合类似于直齿锥齿轮,但是使用过程中更顺畅,更安静。左手螺旋牙倾斜远离轴反时针方向找小齿轮的小端或齿轮的面,右边的牙齿倾斜远离轴顺时针方向。小齿轮的螺旋的手总是相反的齿轮并常用于用于识别所述齿轮对的手。用于连接两轴相交上轴与直齿锥齿轮。螺旋角不仅不影响平滑性和操作的静音性或效率,而且不影响产生的推力负荷的方向。从所述小齿轮的大端观察时左手螺旋齿轮驱动顺时针创建一个轴向推力趋向于移动小齿轮脱离啮合。 零度锥齿轮具有弯曲的齿位于在大致相同的方向为直伞齿,但应被认为是螺旋伞齿轮与零螺旋角。 准双曲面锥齿轮是螺旋锥齿轮和蜗轮之间的交叉。双曲线锥齿轮的轴是不相交也不平行的。轴线之间的距离被称为偏移。偏移允许减持比例较高的比与其它锥齿轮相比是可行的。准双曲面锥齿轮具有弯曲斜齿在其上的接触开始逐渐并连续从齿的一端到另一端。 蜗轮用于在轴之间成直角传输,即不位于一个共同的平面,有时以连接轴在其它角度之间的运动。蜗轮具有线的齿面接触,并且用于电力传输,但比值越高效率越低。 齿轮术语的定义————以下术语通常适用于各类齿轮: 有源面宽度为使与配合齿轮接触的齿面宽度的尺寸。 补遗是节圆和齿的顶部之间的径向或垂直距离。 动作的弧是通过从与配合齿到接触终止点的第一个接触点的齿行进的节圆的圆弧。动作弧做法是弧通过从与配合齿的间距点的第一个接触点的齿行进的节圆的圆弧。 衰退弧是通过从它与配合齿在节点,直到接触停止接触的齿行进的节圆的圆弧。 轴向间距是平行于相邻的齿的对应边之间的轴线的距离。。

数控机床主传动齿轮变速机构及工作原理

数控机床主传动齿轮变速机构及工作原理 为简化数控机床齿轮变速机构,现以沈阳机床股份有限公司沈一车床厂的电磁离合器变速机构为例,说明其结构设计及工作原理。 标签:电磁离合器;变速机构;传动比;扭矩;装配与调整 现有数控机床的齿轮变速操纵机构基本有以下三种形式: (1)手动操纵机构。 (2)液压变速机构。 (3)电磁离合器变速机构。 其中第三种电磁离合器变速机构是属于我厂的发明专利,跟原始的手动操作机构和复杂的液压变速机构相比较,其结构简单、制造成本低、使用方便、灵活性好,具有很好的市场竞争力和广泛的应用前景。 1 电磁离合器变速机构的结构设计及工作原理 CAK6150主轴电磁离合器变速机构 上图为CAK6150主轴电磁离合器变速机构简易图,其基本结构是由: (1)螺母(2)螺杆(3)电磁离合器(4)主轴(5)平衡杆(6)拨叉(7、8)双联组合齿轮(9)花键轴等组成。 它的基本工作原理是当给数控系统输入代码换档指令,系统通过对输入指令的处理后,给变频器输出一个较小的模拟电压而带动主电机正转或者反转,主电机通过皮带轮把动力传给主轴(4),此时只要离合器(3)吸合,便可把主轴(4)的动力传给螺杆(2),螺杆(2)的正反转可以带动与其配合的螺母(1)来回移动,镶嵌在螺母(1)上的拨叉(6)就可以带动双联齿轮(7、8)在花键轴(9)上来回移动,双联齿轮与其它轴上的齿轮相啮合,形成不同的传动比,以达到主轴变档变速的目的,在主轴变速过程中,我们可以利用平衡杆(5)上装有的接近开关检测双联齿轮(7、8)是否到达我们所需要的正确位置,换挡完成后,双联齿轮和拨叉之间不能粘连在一起,应有一定的间隙,装配时需要满足工艺要求。 2 实现主轴电磁离合器变速(换挡)应具备的条件 (1)电磁离合器在吸合时其吸盘转矩需大于阻力矩(阻力矩是由螺杆与螺母和拨叉以及双联齿轮在花键移上移动时相加后力矩之和),否则主轴无法实现变速(变档),下面用扭矩与时间的关系来说明这一重要原理。

锥齿轮的参数创建

3.3锥齿轮的创建 锥齿轮在机械工业中有着广泛的应用,它用来实现两相交轴之间的传动,两轴的相交角一般采用90度。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,本节将介绍参数化设计锥齿轮的过程。 3.3.1锥齿轮的建模分析 与本章先前介绍的齿轮的建模过程相比较,锥齿轮的建模更为复杂。参数化设计锥齿轮的过程中应用了大量的参数与关系式。 锥齿轮建模分析(如图3-122所示): (1)输入关系式、绘制创建锥齿轮所需的基本曲线 (2)创建渐开线 (3)创建齿根圆锥 (4)创建第一个轮齿 (5)阵列轮齿 图3-122锥齿轮建模分析 3.3.2锥齿轮的建模过程 1.输入基本参数和关系式

(1)单击,在新建对话框中输入文件名conic_gear,然后单击; (2)在主菜单上单击“工具”→“参数”,系统弹出“参数”对话框,如图3-123所示; 图3-123 “参数”对话框 (3)在“参数”对话框内单击按钮,可以看到“参数”对话框增加了一行,依次输入新参数的名称、值、和说明等。需要输入的参数如表3-3所示; 名称值说明名称值说明 M 2.5 模数DELTA___分锥角 Z24齿数DELTA_A___顶锥角 Z_D45大齿轮齿数DELTA_B___基锥角 ALPHA20压力角DELTA_F___根锥角B20齿宽HB___齿基高 HAX1齿顶高系数RX___锥距 CX0.25顶隙系数THETA_A___齿顶角 HA___齿顶高THETA_B___齿基角 HF___齿根高THETA_F___齿根角 H___全齿高BA___齿顶宽 D___分度圆直径BB___齿基宽 DB___基圆直径BF___齿根宽

机床主传动系统设计

机床主传动系统设计 多轴箱是组合机床的重要专用部件。它是根据加工示意图所确定的工件加工孔的数量和位置、切削用量和主轴类型设计的传递各主轴运动的动力部件。其动力来自通用的动力箱,与动力箱一起安装于进给滑台,可完成钻扩铰镗孔等加工工序。 通用主轴箱采用标准主轴,借助导向套引导刀具来保证被加工孔的位置精度。 5.1大型主轴箱的组成 大型通用主轴箱由通用零件如箱体、主轴、传动轴、齿轮和附加机构等 组成。有箱体、前盖、后盖、上盖、侧盖等为箱体类零件;主轴、传动 轴、手柄轴、传动齿轮、动力箱或电动机齿轮等为传动类零件;叶片泵、 分油器、注油标、排油塞、油盘和防油套等为润滑及防油元件。 5.2多轴箱通用零件 1.通用箱体类零件箱体材料为HT200,前、后、侧盖等材料为HT150。 多轴箱的标准厚度为180mm,前盖厚度为55mm,后盖厚度为90mm。 2.通用主轴 1)滚锥轴承主轴 2)滚针轴承主轴 3)滚珠轴承主轴:前支承为推力球轴承、后支承为向心球轴承或圆锥滚子 轴承。因推力球轴承设置在前端,能承受单方向的轴向力,适用于钻孔 主轴。 3.通用传动轴 通用传动轴一般用45#钢,调质T235;滚针轴承传动轴用20Cr钢, 热处理S0.5~C59。 4.通用齿轮和套 多轴箱用通用齿轮有:传动齿轮、动力箱齿轮和电机齿轮。 5.3通用多轴箱设计 1.多轴箱设计原始依据图

1) 多轴箱设计原始依据图 图5-1.原始依据图 2) 主轴外伸及切削用量 表5-1.主轴参数表 3) 被加工零件:箱体类零件,材料及硬度,HT200,HB20~400 2. 主轴、齿轮的确定及动力的计算 1) 主轴型式和直径、齿轮模数的确定 主轴的型式和直径,主要取决于工艺方法、刀具主轴联结结构、刀具的进给抗力和切削转矩。钻孔采用滚珠轴承主轴。主轴直径按加工示意图所示主轴类型及外伸尺寸可初步确定。传动轴的直径也可参考主轴直径大小初步选定。 齿轮模数m (单位为mm )按下列公式估算: (30~m ≥=≈1.9(《组合机床设计简明手册》p62)

齿轮的装配技术

齿轮的装配技术 摘要:齿轮传动是各种机械中最常用的传动方式之一,可用来传递运动和动力,改变速度的大小或方向,还可把传动变为移动。齿轮传动在机床、汽车、拖拉机和其他机械中应用很广泛,其原因是具有以下特点:能保证一定的瞬时传动比,传动准确可靠,传递的功率和速度变化范围大,传动效率高,使用寿命长以及结构紧凑,体积小等,但也有一定缺点,如噪音大,传动不如带传动平稳,齿轮装配和制造要求高等。齿轮传动质量的好坏,与齿轮的制造和装配精度有着密切关系。研究齿轮的装配技术具有重要意义。 目录 一、引言 (2) 二、齿轮的种类 (2) (一)平行轴之齿轮 (2) (二)直交轴之齿轮 (2) (三)错交轴之齿轮 (2) 三、齿轮传动的基本要求 (2) (一)传递运动的准确性 (2) (二)传动的平稳性 (2) (三)载荷分布的均匀性 (2) (四)传动侧隙的合理性 (2) 四、齿轮传动机构的精度要求 (3) (一)齿轮的加工精度 (3) (二)齿轮的精度等级 (4) (三)齿轮副的接触精度 (4) (四)齿轮副的侧隙 (4) 五、齿轮的装配与检查 (5) (一)圆柱齿轮传动机构的装配 (5) (二)锥齿轮传动机构的装配 (5) (三)蜗杆传动机构的装配和差速器的装配 (5) 六、齿轮传动的失效形式及措施 (6) (一)齿轮折断 (6) (二)齿面点蚀 (7) (三)齿面磨粒磨损 (7) (四)齿面胶合 (7) (五)齿面塑性变形 (7) 七、影响齿轮传动效率因素 (7) 八、结论 (7)

一、引言 齿轮是现代机械传动中的重要组成部分。从国防机械到民用机械,从重工业机械到轻工业机械,无不广泛的采用齿轮传动。随着我国工农业生产和科学技术的飞跃发展,对于齿轮的需要显著增加。因此,齿轮的配合技术,便成为发展机械工业的一个重要环节。二、齿轮的种类 (一)平行轴之齿轮 1、正齿轮(直齿轮):齿筋平行于轴心之直线圆筒齿轮。 2、齿条:与正齿轮咬合之直线条状齿轮,可以说是齿轮之节距在大小变成无限大时之特殊情形。 3、内齿轮:与正齿轮咬合之直线圆筒内侧齿轮。 4、螺旋齿轮:齿筋成螺旋线之圆筒齿轮。 5、斜齿齿条:与螺旋齿轮咬合之直线状齿轮。 6、双螺旋齿轮:左右旋齿筋所形成之螺旋齿轮。 (二)直交轴之齿轮 1、直齿伞形齿轮:齿筋与节圆锥之母线(直线)一致之伞形齿轮。 2、弯齿伞形齿轮:齿筋为具有螺旋角之弯曲线的伞形齿轮。 3、零螺旋弯齿伞形齿轮:螺旋角为零之弯齿伞形齿轮。 (三)错交轴之齿轮 1、圆筒蜗轮齿轮:圆筒蜗轮齿轮为蜗杆及齿轮之总称。 2、错交螺旋齿轮:此为圆筒形螺旋齿轮,利用要错交轴(又称歪斜轴)间传动时称之。3、其它之特殊齿轮: 面齿轮:为能与正齿轮或与螺旋齿轮咬合之圆盘形的面齿轮。鼓形蜗轮齿轮:凹鼓形蜗杆及与此咬合之齿轮的总称。 戟齿轮:传达错交轴之圆锥状齿轮。形状类似弯齿伞形齿轮。 三、齿轮传动的基本要求 (一)传递运动的准确性 由齿轮啮合原理可知,在一对理论的渐开线齿轮传动过程中,两齿轮之间的传动比 是确定的,这时传递运动是准确的。但由于不可避免地存在着齿轮的加工误差和齿轮副的装配误差,使两轮的传动比发生变化。从而影响了传递运动的准确性,具体情况是,在从动轮转动360°的过程中,两轮之间的传动比成一个周期性的变化,其转角往往不同于理论转角,即发生了转角误差,而导致传动运动的不准确,这种转角误差会影响产品的使用性能,必须加以限制。 (二)传动的平稳性 齿轮传动过程中发生冲击、噪音和振动等现象,影响齿轮传动的平稳性,关系到机器的工作性能、能量消耗和使用寿命以及工作环境等。因此,根据机器不同的使用情况,提出相应的齿轮传动平稳性要求,产生齿轮传动不平稳的原因,主要是由于传动过程中传动比发生高频地瞬时突变的结果。在从动齿轮转一转的过程中,引起传递不准确的传动比变化只有一个周期,而引起传动不平稳的传动比变化有许多周期,两者是不同的,实际上在齿轮传动过程中,

圆锥齿轮传动

§8-12 圆锥齿轮传动

§8-12 圆锥齿轮传动 ◆用来传递两相交轴之间的运动和动力的。 一、圆锥齿轮(Bevel gear)传动的应用和特点 1. 应用及分类 曲齿斜齿直齿◆曲齿圆锥齿轮常用于高速重载的传动中,如:汽车、飞机和拖拉机等的传动机构中。

2. 特点 齿廓特点:球面渐开线。 啮合时,两齿轮的锥顶重合(分度圆锥共顶)。 ◆轮齿分布在截圆锥体上,齿形从大端到小端逐渐减小; ◆取大端参数为标准值; ◆圆锥齿轮两轴之间的夹角可根据传动的需要任选,多 取 =90o。 ◆正确啮合条件: 大端模数和压力角分别 相等,分度圆锥共顶。

二、背锥与当量齿数 1. 背锥(Back cone 辅助圆锥): 过锥齿轮大端,母线与锥齿轮分度圆锥母线垂直的圆锥体。

2. 当量齿轮和当量齿数 以背锥的锥距r v 为分度圆半 径,以圆锥齿轮大端的模数为 模数,以圆锥齿轮压力角为压 力角的圆柱齿轮。 当量齿轮: 当量齿数z v :指当量齿轮的齿数。 z v 一般不是整数,也不需圆整●可将直齿圆柱齿轮的某些原理 近似应用于圆锥齿轮 ?计算重合度 cos cos v v r mz mz r δδ===22 cos v z z δ?=v z z ?>min min cos v z z δ =?最少齿数:

2. 分度圆直径: 3. 传动比∑=???→090三、直齿圆锥齿轮传动的基本参数和几何尺寸的计算 1. 基本参数: m<1mm , h a *=1, c *=0.25 m>1mm , h a *=1, c *=0.2 α=20? 正常齿 h a *=0.8, c *=0.2 短齿11 sin d R δ=222 2sin d R δ=1222122111 sin =sin z d i z d ωδωδ===1212 ctg tg i δδ==

机械手表齿轮主传动系统的分析

机械手表齿轮主传动系统的分析 机械手表机芯完全是由几十个甚至上百个机械零件装配组合而成,经过后期的调校达到设计要求的计时精度方能成为合格的产品。机芯的结构基本由五个部分组成:能源装置、主传动系统、擒纵调速系统、上条拨针机构以及指针机构。文章我们主要举例分析机械手表机芯结构中主传动系统的工作原理、在机芯中起到的作用及中心二轮式和偏二轮式结构的差异。 标签:机械手表;轮系;传动系统;精密机械 主传动系统在机芯中充当什么角色?又是如何在机芯中起到怎样的“协调”作用?国内外机械手表中传动系统根据传动系统中二轮的位置是否在机芯中央分为中心二轮式和偏二轮式两种类型,中心二轮式和偏二轮式结构中主传动系统之间有什么区别呢? 机械手表传动系统一般采用齿轮传动。齿轮除了把能源装置的力矩输送给擒纵调速器,维持振动系统作不衰减的振动外,还把擒纵轮的转角按一定比例关系传递到秒轮、分轮及时轮,使指针机构指示出正确的时刻、日期或星期。 1 机械手表中主传动系统的结构、工作原理及其作用分析 1.1 机械手表中主传动系统的结构 主传动是指:把发条所产生的力矩由条盒轮传递到擒纵轮的齿轮传动,主传动系统包括条盒轮、二齿轴、二轮片、三齿轴、三轮片、秒(四)齿轴、秒(四)轮片和擒纵齿轴。不同的传动形式其主传动系统所包括的轮片和齿轴有所不同。 1.2 机械手表中主传动系统的工作原理 如图1所示:摆轮游丝系统的能量是由擒纵擒纵机构供给的,擒纵机构的能量来自于主传动系统,如果主传动系统传递给擒纵轮的力矩不稳定,那么,擒纵轮补充给摆轮游丝系统的能量就会发生变化,导致摆轮的振幅不稳定,可能使摆轮游丝系统产生非等时性。所以主传动系统的质量直接影响到手表的走时精度。 1.3 主传动系统在机械手表中的作用 作用一:主传动系统将能源装置输出的能量传递给擒纵机构以维持摆轮游丝系统不衰减的振动,同时在不增加发条圈数的条件下,延长手表一次上弦的持续工作时间(约40小时以上)。 作用二:把擒纵轮反馈回来的转角传递到秒轮和分轮,使秒轮每分钟转一圈分轮每小时转一圈,并带动表盘面的时间类附加机构1做出相应的指示。

齿轮技术的发展趋势

齿轮技术的发展趋势 近年来,一些新技术的运用和交叉学科的渗透,推动了齿轮设计和制造技术的发展。齿轮传动技术发展表现在:①高速重载齿轮向高参数、高寿命方向发展; ②汽车齿轮采用现代化制造工艺,使精度提高,噪声减小;③通用齿轮向成套化方向发展,各种型式齿轮箱得到广泛应用;④齿轮传动和其他类型传动相结合。 目前,国际齿轮产品的发展趋势主要有以下几方面,而我国齿轮生产企业的产品在疲劳寿命与噪声指标上与国外先进水平表现出来很大的差距,主要与材料和热处理水平有很大关系。 ●动力传动齿轮装置正沿着小型化、高速化、标准化方向发展,于是特殊齿轮的应用、行星齿轮装置的发展、低振动、低噪声齿轮装置的研制成了齿轮设计方面的一些特点; ●由于机械设备向大型化发展,齿轮的工作参数提高了,如高速齿轮的传递功率为1000-30000kw; ●由于硬齿面齿轮广泛应用,以及高速、高性能要求的齿轮日益增多,因此要求磨齿加工,在效率和质量上都要提高; ●关于齿轮材料与热处理随着硬齿面齿轮的发展,也逐渐受到人们的重视。 1 齿轮装置小型化、高速化、标准化 齿轮装置正沿着小型化、高速化、标准化方向发展。为达到齿轮装置小型化目的,提高了现有渐开线齿轮的承载推力。各国普遍采用硬齿面技术,提高硬度以缩小装置的尺寸;也可应用以圆弧齿轮为代表的非凡齿形。英法合作研制的舰载直升飞机主传动系统采用圆弧齿轮后,使减速器高度大为降低。随着船舶动力由中速柴油机代替的趋势,在大型船上采用大功率行星齿轮装置确有成效;现在冶金、矿山、水泥一轧机等大型传动装置中,行星齿轮以其体积小、同轴性好、效率高的优点而应用愈来愈多。 1)齿轮箱的小型化 齿轮箱小型化是指在传递能力和转速比相同的情况下,尽可能减小其尺寸与重量,并具有一定的经济性。汉斯(HURTH)齿轮箱是齿轮箱小型化设计的一个成功范例:HBW220-3型汉斯齿轮箱的重量约为国内同类产品2Cl6型齿轮箱的l/5,而体积约为2Cl6型齿轮箱的1/3。箱体材料选用强重比高的铝合金,用压铸

齿轮传动计算题

第四章齿轮传动计算题专项训练(答案);1、已知一标准直齿圆柱齿轮的齿数z=36,顶圆d;2、已知一标准直齿圆柱齿轮副,其传动比i=3,主;3、有一对标准直齿圆柱齿轮,m=2mm,α=20;4、某传动装置中有一对渐开线;5、已知一对正确安装的标准渐开线正常齿轮的ɑ=2;解:144=4/2(Z1+iZ1)Z1=18Z2;d 1=4*18=72d2=4*54=216 第四章齿轮传动计算题专项训练(答案) 1、已知一标准直齿圆柱齿轮的齿数z=36,顶圆da=304mm。试计算其分度圆直径d、根圆直径df、齿距p以及齿高h。 2、已知一标准直齿圆柱齿轮副,其传动比i=3,主动齿轮转速n1=750r/mi n,中心距a=240mm,模数m=5mm。试求从动轮转速n2,以及两齿轮齿数z1和z 2。 3、有一对标准直齿圆柱齿轮,m=2mm,α=200, Z1=25,Z2=50,求(1)如果n1=960r/min,n2=?(2)中心距a=?(3)齿距p=?答案: n2=480 a=7 5 p= 4、某传动装置中有一对渐开线。标准直齿圆柱齿轮(正常齿),大齿轮已 损坏,小齿轮的齿数z1=24,齿顶圆直径da1=78mm, 中心距a=135mm, 试计算大齿轮的主要几何尺寸及这对齿轮的传动比。解: 78=m(24+2) m=3 a=m/2(z1 +z2) 135=3/2(24+z2) z2 =66 da2=3*66+2*3=204 df2=3*66-2**3= i=66/24= 5、已知一对正确安装的标准渐开线正常齿轮的ɑ=200,m=4mm,传动比i12 =3,中心距a=144mm。试求两齿轮的齿数、分度圆半径、齿顶圆半径、齿根圆半径。

二级圆锥圆柱齿轮减速器(带式输送机传动系统)

一、机械设计课程设计任务书 设计带式运输机传动装置(两级锥齿轮—斜齿圆柱齿轮减速器)一、总体布置简图 二、工作条件: 1.连续单向运转。 2.载荷平稳。 3.两班制。 4.结构紧凑。 5.工作寿命5年。 三、工作机输入功率:2.85 KW工作机输入转速:80 rpm 四、设计内容: 1、电动机选择与运动参数的计算; 2、齿轮传动设计计算; 3、轴的设计; 4、滚动轴承的选择; 5、键和联轴器的选择与校核; 6、装配图、零件图的绘制; 7、设计计算说明书的编写; 五、设计任务 1、绘制减速器装配图1张。 2、绘制减速器零件图1-2张。 3、编写设计说明书一份。

计算与说明 主要结果 二、电动机的选择 1、电动机转速的确定 工作机转速:80rpm 锥齿轮圆柱齿轮减速器传动比范围一般为i=10~25最大值为:40 故电动机转速应在in n d =范围内即:800~2000 rpm 最大值:3600rpm 根据电动机的选择原则应选择:Y 系列三相笼型异步电动机 2、电动机功率的确定 查《机械设计课程设计》表12-8 名称 数量 效率 代号 斜齿圆柱齿轮 1 0.94~0.99 1 锥齿轮 1 0.92~0.98 N 2 联轴器 2 0.95~0.995 N 3 轴承 4 0.98 N4 卷筒 1 0.94~0.97 N5 计算得传动的装置的总效率:52 42321n n n n n n ????=∑ 8949936.06494977 .0max min ==∑∑ηη 工作机输入功率:kw P w 85.2= 所需电动机输出功率为a w d P P η=算得:1843803.33880063.4max max ==d d P P 即:电动机转速:800~2000rpm 最大值:36000rpm 电动机功率:3.1843803~403880063 查《机械设计课程设计》表12-1(机械设计课程设计手册P173) 最后确定电机Y 系列三相异步电动机,型号为Y112M-4,额定功率4kW ,满载转速=m n 1440r/min 。 三、传动系统的运动和动力参数计算 1、分配各级传动比 电动机满载转速=m n 1440r/min 。工作机主动轴转速:rmp n w 80= 总传动比1880 1440 == =w z n n i m 查书得推荐值:z i i 25.01≈,且31≤i , 同步转速为 1440r/min 确定电机Y 系列 三相异步电动机,型号为Y112M-4,额定功率4kW ,满载转 速 =m n 1440r/min 。 31=i ,62=i

冶金机械齿轮传动装置的制造技术与发展趋势

100122 电子机械论文 冶金机械齿轮传动装置的制造技术与发 展趋势 自上世纪70年代起,我国就已经建设了包括宝钢以及武钢在内的多个不同的现代化冶金企业,令我国冶金设备的整体水平提升到了一个比较先进的高度上,齿轮传动装置更是精品层出,例如:宝钢一期到三期所用到的各种齿轮传动装置当中就包括德国产FLAND以及比利时HANSEN、日本产三井三池等比较知名的品牌减速器,同时还有包括德国产德马克、日本产三菱等大型传动装置,它们对我国的齿轮装备水平形成了积极的影响。 1 在冶金设备中运用机械齿轮传动设备的技术 1.1 常用场合 首先,需要调节转速以及力矩,以期能够满足设备使用上的需求;其次,需要对传动路线进行分配,并且调节空间动力传递具体方向以及实际位置;第三,将动力进行合成或者是分流处理,也就是可以凭借一个单独的动力

源,将动力分配到几个需要使用动力的动力源当中,并合成,整体供给工作机构。 1.2 现状 就当前来说,冶金设备当中利用的机械齿轮转动装置当中的齿轮,大多使用渗碳、磨削以及淬火的硬齿面的齿轮,通常在轧钢齿轮的传动装置当中很少会使用HB300之下的齿轮。 制造齿轮通常需要使用的是喷砂处理手段、齿根处理手段、压力淬火以及无损探伤四种,对大齿轮结构进行设计通常使用的是焊接齿轮。因为齿轮的制造进度以及承载能力在最近这些年以来有明显的提升,并且大面积地利用硬齿面齿轮,因此在进行齿轮结构的设计过程当中会常用单斜齿,例如宝钢冷轧机主传动的双齿轮座即该结构齿轮,并不会安装人字齿轮。假如受到结构或者尺寸上的限制的时候,还可以借助两个单向斜齿轮进行组合拼装成人字齿轮。尽可能使用多流式传动装置,能够在较小的环境体积当中传送较大的力矩。在实际生产过程当中,为了能够实现最大化的齿轮承载力,采用的大多都是变为齿轮以及延齿端修整等手段,通常轧机的传动装置齿轮副进行制造的过程当中,行业内对其的要求也相对较高,齿轮的接触精度需要实现80%甚至更高。

齿轮传动的种类和应用

第四章齿轮传动(10课时) 教学目标 1、了解齿轮传动的分类、特点 2、理解渐开线的形成及性质,了解齿廓的啮合的特点 3、掌握渐开线标准直齿圆柱齿轮基本参数、几何尺寸计算 4、了解渐开线齿廓的啮合的特点 5、掌握标准直齿圆柱齿轮、斜齿圆柱齿轮、直齿圆锥齿轮的正确啮合条件 6、了解斜齿圆柱齿轮、直齿圆锥齿轮的应用特点 7、了解齿轮轮齿失效的形式 教学重点难点 上述3、5两点 【复习】1、链传动的组成及特点、类型和应用 2、链传动的传动比 3、滚子链的组成、标记和特点 第一节齿轮传动的类型及应用 一、概念 齿轮机构是由齿轮副组成的传递运动和动力的装置。 二、齿轮传动的类型

齿轮的种类很多,可以按不同方法进行分类。 (1)根据轴的相对位置,分为两大类,即平面齿轮传动(两轴平行)与空间齿轮传动(两 轴不平行) (2)按工作时圆周速度的不同,分低速、中速、高速三种; (3)按工作条件不同,分闭式齿轮传动(封闭在箱体内,并能保证良好润滑的齿轮传动)、 半开式齿轮传动(齿轮浸入油池,有护罩,但不封闭)和开式齿轮传动(齿轮暴露在外, 不能保证良好润滑)三种; (4)按齿宽方向齿与轴的歪斜形式,分直齿、斜齿和曲齿三种; (5)按齿轮的齿廓曲线不同,分为渐开线齿轮、摆线齿轮和圆弧齿轮等几种; (6)按齿轮的啮合方式,分为外啮合齿轮传动、内啮合齿轮传动和齿条传动。 三、齿轮传动的应用 1、传动比 式中 n1、n2表示主从动轮的转速 z1、z2表示主从动轮的齿数 2、应用特点: 优点:能保证瞬时传动比恒定,工作可靠性高,传递运动准确。 传递功率和圆周速度范围较宽,传递功率可达50000kw ,圆周速度300m/s 结构紧凑,可实现较大传动比 两轴平行 两轴不平行 按轮齿方向 按啮合情况 直齿圆柱齿轮传动 斜齿圆柱齿轮传动 人字齿圆柱齿轮传动 外啮合齿轮传动 内啮合齿轮传动 齿轮齿条传动 相交轴齿轮传动 交错轴齿轮传动 锥齿轮传动 交错轴斜齿轮传动 蜗轮蜗杆传动 1212 21n z i n z ==

单级锥齿轮减速器设计

单级锥齿轮减速器设计

机械课程设计 说明书 设计题目:带式运输机传动装置 的设计 专业班级: 学生姓名: 学生学号: 指导教师: 时间:2013-1-17

(1)引 言………………………………………………… ………………………………… (2)设计题目………………………………………………… …………………………… (3)电动机的选择……………………………………………… ………………………… (4)传动零件的设计和计算………………………………………………… …………

(5)减速箱结构的设计………………………………………………… ……………… (6)轴的计算与校核……………………………………………… ……………………… (7)键连接的选择和计算………………………………………………… …………… (8)联轴器的选择………………………………………………… …………………… (9)设计小

结………………………………………………… ………………………… (10)参考文献………………………………………………… …………………………

一、引言 课程设计是考察学生全面在掌握基本理论知识的主要环节。本次是设计一个锥齿 轮减速器,减速器是用于电动机和工作机之间的独立的闭式传动装置。课程设计 内容包括:设计题目,电机选择,运动学动力学计算,传动零件的设计及计算, 减速器结构设计,轴的设计计算与校核。 锥齿轮减速器的计算机辅助机械设计,计算机辅助设计及计算机辅助制造 (CAM/CAD)技术是当今设计以及制造领域广泛采用的先进技术,通过本课题的 研究,将进一步深入的对这一技术进行深入的了解和学习。 减速器的设计基本上符合生产设计的要求,限于作者水平有限,错误之处在所难 免,望老师予以批评改正。

齿轮传动

六、齿轮传动 1、主要失效形式 (1)轮齿折断:①主要是齿根弯曲疲劳强度折断,在轮齿受载时,齿根处产生的弯曲应力最大,加上齿根 部分的截面突变及加工刀痕等引起的应力集中,当轮齿重复受载后,齿根处会产生疲劳裂纹,并逐步 扩展,致使轮齿疲劳折断。②在轮齿受到突然过载时,可能出现过载折断或剪断。③轮齿经过严重磨 损后齿厚过分减薄时,也会在正常载荷作用下发生折断。防止措施:增大齿根过渡圆角半径和消除加 工刀痕减少齿根应力集中。增大轴及支承的刚性,使轮齿接触线上受载较为均匀。采用合适的热处理 方法,使齿芯材料具有足够的韧性。采用喷丸、滚压等工艺对齿根表面进行强化处理。 (2)齿面磨损:啮合齿面间落入磨料性物质时,齿面即被磨损而至报废—磨粒磨损(开式齿轮)。 防止措施:改用闭式齿轮 (3)齿面点蚀:齿面材料在变化着的接触应力作用下,由于疲劳而产生的麻点状损伤现象。会首先出现在 靠近节线的齿根面上。防止措施:提高齿轮材料的硬度、在啮合的轮齿间加润滑油。 (4)齿面胶合:相啮合的两齿面在高温时会粘在一起,在两轮的相对滑动下,相粘结的部位会被撕破,于 是在齿面上相对滑动的方向形成伤痕。防止措施:采用抗胶合能力强的润滑油。 (5)塑性变形:在过大的应力作用下,轮齿材料处于屈服状态而产生齿面或齿体流动。一般发生在硬度低 的齿轮上。防止措施:提高轮齿齿面硬度、采用高粘度润滑油。 2、设计准则 闭式:保证齿面接触疲劳强度;对齿面硬度很高、齿芯强度低的齿轮或材质较脆的齿轮,保证齿根弯曲 疲劳强度。 开式(半开式):保证齿根弯曲疲劳强度。 3、齿轮材料的选取 基本要求:齿面要硬,齿芯要韧 4、载荷系数βαK K K K K v A = (1)使用系数A K :主要考虑齿轮啮合时外部因素引起的附加载荷影响的系数,附加载荷取决于原从动件 的机械特性、质量比、联轴器类型及运行状态等。 (2)动载荷系数v K :考虑的是齿轮传动的制造及装配误差和轮齿受载后产生的弹性变形。 减小动载荷的措施:提高制造精度、减小齿轮直径以降低圆周速度、对齿轮进行齿顶修缘。 (3)齿间载荷分配系数αK :由于齿距误差及弹性变形等原因,啮合区有多对齿同时工作时,载荷没有按 比例分配在这多对齿上,因此引入齿间载荷分配系数。 (4)齿向载荷分配系数βK :当轴承相对于齿轮做不对称配置时,受载后,轴会产生弯曲变形,在轴上的 齿轮也会随之偏斜,作用在齿面上的载荷沿接触线分布不均匀,用 表示齿面上载荷分布不均匀的程 度对齿轮强度的影响。 改善措施:增大轴、轴承及支座的刚度;对称地配置轴承;适当限制轮齿的宽度;避免齿轮悬臂布置 5、齿轮传动受力分析方法(标准直齿圆柱齿轮) 主动轮:将法线载荷n F 分解为圆周力t F 和径向力r F 1 1 2d T F t = αtan t r F F = αcos t r F F = α:啮合角 从动轮:各力大小与主动轮相等,方向相反

锥齿轮设计

摘要 锥齿换向器广泛应用于现代机械产品之中,如航空、航天和工程机械传动系统,具有传动平稳,承载能力强等优点,有着非常可观的发展前景。利用锥齿换向器传动机构的特点实现在电渣炉执行机构的换向,通过对电渣炉执行机构的结构设计和对其分析,是本课题主要学习和研究的内容。该机构的原理主要是由一对轴交角为90°的锥齿轮通过相互啮合,实现传动角度的改变以及进给换向的目的。 为了满足该机构所体现出来的直观性,深入学习UG软件CAD/CAE,实现对锥齿换向器传动部件的三维参数化建模。本课题的主要研究工作与成果:首先,从建立平面渐开线入手,建模锥齿轮,实现参数化造型。再将轴、轴承以及箱体等部件依次建模,同时进行结构和强度设计计算; 其次,在CAD装配模块中,将换向器各零部件自下而上完成装配; 最后,利用CAE模块进行对该机构的分析。 关键词:换向器;锥齿轮;CAD参数化建模;CAE分析

目录 摘要 ............................................................错误!未定义书签。目录 ............................................................错误!未定义书签。第一章绪论 .......................................................错误!未定义书签。 UG/CAD .......................................................错误!未定义书签。 锥齿轮传动及应用...............................................错误!未定义书签。第二章标准直齿锥齿轮及轴的相关计算................................错误!未定义书签。 标准直齿锥齿轮的几何参数相关计算..............................错误!未定义书签。 选定齿轮精度等级,材料及齿数...............................错误!未定义书签。 锥齿轮的初步设计..........................................错误!未定义书签。 锥齿轮传动的强度校核..........................................错误!未定义书签。 齿面接触疲劳强度校核[6]....................................错误!未定义书签。 齿根抗弯疲劳强度校核.....................................错误!未定义书签。第三章直齿锥齿轮数学模型的建立与参数化建模........................错误!未定义书签。 齿轮常用的齿形曲线—渐开线...................................错误!未定义书签。 渐开线的形成及其特性.....................................错误!未定义书签。 建模思路 ....................................................错误!未定义书签。 建模过程 ....................................................错误!未定义书签。 建立渐开线齿廓曲线.......................................错误!未定义书签。 直齿锥齿轮的建立.........................................错误!未定义书签。第四章总结 .....................................................错误!未定义书签。参考文献 ..........................................................错误!未定义书签。

机械设计齿轮传动设计答案解析

题10-6 图示为二级斜齿圆柱齿轮减速器,第一级斜齿轮的螺旋角1β的旋向已给出。 (1)为使Ⅱ轴轴承所受轴向力较小,试确定第二级斜齿轮螺旋角β的旋向,并画出各轮轴向力 、径向力及圆周力的方向。 (2) 若已知第一级齿轮的参数为:Z 1=19,Z 2=85,m n =5mm,020=n α,a=265mm, 轮1的传动功率P=6.25kW,n 1=275 r/min 。试求轮1上所受各力的大小。 解答: 1.各力方向:见题解10-6图。 2.各力的大小:m N 045.217m N 27525.695509550111?=??=?=n P T 148.11,9811.0265 2) 8519(52)(cos 211==?+?=+=ββa z z n m ; mm 83.96cos 1 1==βz n m d ; N 883tan ,N 1663cos tan ,N 448320********* 1 1====== ββαt a t r t F F n F F d T F ; 题10-7 图示为直齿圆锥齿轮-斜齿圆柱齿轮减速器,为使Ⅱ轴上的轴向力抵消一部分,试确定一对斜齿圆柱齿轮螺旋线的方向;并画出各齿轮轴向力、径向力及圆周力的方向。 解答:齿轮3为右旋,齿轮4为左旋; 力的方向见题解10-7图。 题解10-6图 题10-6图

题10-9 设计一冶金机械上用的电动机驱动的闭式斜齿圆柱齿轮传动, 已知:P = 15 kW,n 1 =730 r/min,n 2 =130 r/min,齿轮按8级精度加工,载荷有严重冲击,工作时间t =10000h,齿轮相对于轴承为非对称布置,但轴的刚度较大,设备可靠度要求较高,体积要求较小。(建议两轮材料都选用硬齿面) 解题分析:选材料→确定许用应力→硬齿面,按轮齿的弯曲疲劳强度确定齿轮的模数→确定齿轮的参数和几何尺寸→校核齿轮的接触疲劳强度→校核齿轮的圆周速度 解答:根据题意,该对齿轮应该选用硬齿面,其失效形式以轮齿弯曲疲劳折断为主。 1. 选材料 大、小齿轮均选用20CrMnTi 钢渗碳淬火([1]表11-2),硬度为56~62HRC ,由[1]图 11-12 和[1]图11-13查得:MPa 1500,MPa 430lim lim ==H F σσ 题解10-7图 题10-7图

汽车主减速器的调整经典课件(帕萨特)

汽车主减速器的调整经典课件(帕萨特)主减速器的调整总图如图4-191所示。 图4-191 主减速器调整总图 1-冠状齿轮的调整垫片S1 2-差速器的锥形滚柱轴承3-冠状齿轮的调整垫片S2 4-传动小齿轮5-传动小齿轮的调整垫片S3 6-传动小齿轮的大锥形滚柱轴承7-输入齿轮8-输入齿轮的锥形滚柱轴承9-输入齿轮调整垫片10-传动小齿轮的小锥形滚柱轴承11-传动小齿轮的调整垫片S4 12-输出齿轮13-冠状齿轮14-差速器的锥形滚柱轴承 在修理变速箱时,只有更换了那些直接影响主减速器性能和零件时,才需要进行调整。为了避免进行不必要的调整,可参照表4-13进行。

表4-13 变速箱零件更换后主减速器的调整 *:如果重新调整了输入齿轮,也应重新调整行星齿轮架和K1与K2之间的离合器 (三)输入齿轮的调整 (1)确定调整垫片的厚度 装入带内锥形滚柱轴承内圈的传动轴,拧紧不带碟形垫圈和调整垫片的内六角紧固件至100N·m,拆下内六角紧固件。装上千分表,施加3mm的预紧量,测量齿轮B和锥形滚柱轴承内圈A之间的距离并记录测量值,如图4-192所示。碟形垫片的厚度(1.5mm)必须加到测量值上,例如测量值为1.0mm,则实际的数值为2.5mm。

图4-192 测量齿轮和锥形滚柱轴承间距离 如果从测量得出的数值(测量值+碟形垫片厚度)中减去轴承的预紧量0.18mm,就可以得出高速垫片的厚度。即可计算出调整垫片的厚度=(测量值+碟形垫片厚度 1.5mm)-轴承预紧量0.18mm 根据输入齿轮调整垫片尺寸表4-14即可确定安装垫片的厚度。 表4-14 输入齿轮调整垫片尺寸表

齿轮的常见种类及传动效率

齿轮的常见种类及传动效率 齿轮的常见种类及传动效率 1.平行轴之齿轮(圆柱齿轮) (1)正齿轮(直齿轮)(Spur gear ):齿筋平行于轴心之直线圆筒齿轮。 (2)齿条( Rack ):与正齿轮咬合之直线条状齿轮,可以说是齿轮之节距在大小变成无限大时之特殊情形。 (3)内齿轮(Internal gear):与正齿轮咬合之直线圆筒内侧齿轮。 (4)螺旋齿轮(Helical gear):齿筋成螺旋线(helicoid)之圆筒齿轮。 (5)斜齿齿条(Helical rack):与螺旋齿轮咬合之直线状齿轮。 (6)双螺旋齿轮(Double helical gear):左右旋齿筋所形成之螺旋齿轮。 2.直交轴之齿轮(圆锥齿轮) (1)直齿伞形齿轮(Straight bevel gear):齿筋与节圆锥之母线(直线)一致之伞形齿轮。(2)弯齿伞形齿轮(Spiral bevel gear):齿筋为具有螺旋角之弯曲线的伞形齿轮。 (3)零螺旋弯齿伞形齿轮(Zerol bevel gear):螺旋角为零之弯齿伞形齿轮。 3.错交轴之齿轮(蜗轮和蜗杆) (1)圆筒蜗轮齿轮(Worm gear):圆筒蜗轮齿轮为蜗杆(Worm)及齿轮(Wheel)之总称。(2)错交螺旋齿轮(screw gear):此为圆筒形螺旋齿轮,利用要错交轴(又称歪斜轴)间传动时称之。 (3)其它之特殊齿轮: 面齿轮(Face gear):为能与正齿轮或与螺旋齿轮咬合之圆盘形的面齿轮。 鼓形蜗轮齿轮(Concave worm gear):凹鼓形蜗杆及与此咬合之齿轮的总称。 戟齿轮(Hypoid gear):传达错交轴之圆锥状齿轮。形状类似弯齿伞形齿轮。

内平动齿轮传动

内平动齿轮传动 1、内平动齿轮传动原理 图1所示为内平动齿轮减速器工作原理图。该机构的平动发生器为平行四边形机构ABCD ,外平动固定在平行四边形机构的连杆BC 的中心线上。当曲柄AB 转动时它随同连杆做平面运动,并驱动内齿轮2做减速转动输出。 2、传动比的计算 由图2可知,做平动的构件上各点的绝对速度处处相等。所以平动构件上的P 点和B 点的绝对速度相等。P 点是两啮合齿轮的速度瞬心,也是两啮合齿轮的绝对速度的重合点。在齿轮1点上做P 点的绝对速度为V P 1,由于齿轮1随同连杆BC 一起做平动,故有, V P 1=V B =)(1211R R w l w AB -= 齿轮2绕圆心O 2转动,故齿轮2上的P 点速度为:

R w V P 222= P 点为两速度的瞬心,故有 V P 1V p 2= ?R w R R w 22121)(=- 即 Z Z Z R R R w w i 1 2 2 1 2 2 2 1 12 -=-== ; 当Z 2与Z 1之差较小时,可获得 很大的传动比, 99~1712 =i 3、齿廓间的相对滑动率 齿面的滑动率是指两齿廓相对滑过的弧长与齿面滑过的全弧长之比的极限值。因而齿廓间存在滑动,从而导致齿面的磨损或胶合破坏。齿轮副相对滑动率是低速传动时决定齿廓磨损程度的关键因素之一,也决定这齿轮件摩擦力矩大小和方向,还影响着齿轮弹流润滑的非稳态效应。在其它条件相同情况下,滑动率的绝对值大,齿面的磨损就大,所以它是衡量齿轮传动质量的一个重要指标。 滑动率也称滑动系数。通常滑动系数表示齿面间相对滑动程度。滑动系数就是轮齿接触点K 处两齿面间的相对切向速度(即滑动速度)与该点切向速度的比值。 设内啮合中的外齿轮与内齿轮在任一点K 接触。外齿轮为主动,内齿轮从动,V k 1 、V 2k 分别为外齿轮、内齿轮在K 点的圆周速度,V t k 1 、V t k 2分别为其在K 点沿齿面的切向速度,则滑动率由以下两式表示: 外齿轮 V V V t k t t k 12k 11 -=η 内齿轮 V V V t k t k t k 2122-=η 在过接触点R 处之公切线上的速度分量为

相关文档
最新文档