火灾爆炸指数表

火灾爆炸指数表

火灾、爆炸指数(F&EI)表

地区/国家:部门:场所:日期:位置:生产单元;工艺单元:

评价人:审定人(负责人):建筑物:

检查人(管理部):检查人(技术中心):检查人(安全和损

失预防):

工艺设备中的物料:

操作状态

□设计□开车□正常作业□停车

确定MF的位置

物质系数注意单元温度为60℃以上者

1.一般危险性修正系数实际修正系数基本系数 1.00 1.00

(1)放热反应0.3~1.25

(2)吸热反应0.2~0.4

(3)物质的处理和输送0.25~1.05

(4)封闭式结构的单元0.25~0.9

(5)通道0.20~0.35

(6)排放和泄露控制0.25~0.5

一般工艺危险性系数F

1

2.特殊工艺危险性

基本系数 1.00

(1)毒性物质0.2~0.8

(2)负压(<66.5KPa)0.50

(3)易燃范围内及接近易燃范围内的操作

惰性化——

未惰性化——

○1罐装可燃性液体0.5

○2过程失常或吹扫故障0.30

○3一直在燃烧范围内0.8

化学品的火灾与爆炸危害参考文本

化学品的火灾与爆炸危害 参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

化学品的火灾与爆炸危害参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近几年来,我国化工系统所发生的各类事故中,由于 火灾爆炸导致的人员死亡为各类事故之首,由此导致的直 接经济损失也相当可观。如1997年北京东方化工厂油品罐 区发生特大火灾爆炸事故,在较短的时间内,整个罐区一 片火海,死亡9人,伤37人,直接经济损失高达亿元以 上。1993年深圳清水河化学危险品仓库发生特大火灾爆炸 事故,死亡15人,200多人受伤,其中重伤25人,直接 经济损失超过2.5亿元。这些事故都是由于化学品自身的火 灾爆炸危险性造成的。因此了解化学品的火灾与爆炸危 害,正确进行危险性评价,及时采取防范措施,对搞好安 全生产,防止事故发生具有重要意义。 1、化学品的燃烧与爆炸危险性

化学品的燃烧与爆炸危险性,根据其状态不同有不同的评价方法。 1.1可燃气体、可燃液体蒸气、可燃粉尘的燃爆危险性 (1)爆炸极限 可燃气体、可燃液体蒸气或可燃粉尘与空气组成的混合物,并非任何混合比例下都可以爆炸,而是固定浓度范围的,不同可燃物有不同的固定浓度范围。这一固定范围通常叫该物质的爆炸范围或爆炸极限,通常用可燃气体、可燃液体蒸气、可燃物粉尘在空气中的体积百分数表示。能够产生爆炸的最低浓度称为爆炸下限,最高浓度为爆炸上限。例如:乙醇爆炸范围为4.3%~19.O%。4.3%称为爆炸下限,19.0%称为爆炸上限。汽油的爆炸极限是 1.0%~6.0%;天然气的爆炸极限是4.8%~13.46%;氢气的爆炸极限是4.0%~75%;一氧化碳的极限是1 2.5%~74.2%;氨气的爆炸极限是15.5%~27%等等。爆炸极限

储罐池火灾计算法

可燃性液体泄漏后流到地面形成液池,或流到水面并覆盖水面,遇到引火源燃烧形成池火。 该厂储罐区的10000m 3乙二醇、1000m 3甲醇储罐为重大危险源,本章假设储罐发生泄漏起火事故,利用池火灾计算模型对事故的后果进行计算分析。 5.3.1燃烧速度的确定 当液池的可燃物的沸点高于周围环境温度时,液池表面上单位面积燃烧速 度 dt dm 为: H T T C H dt dm b p c +-=)(001.00――――――――① 式中: dt dm ——单位表面积燃烧速度,kg/m 2?s ; c H ——液体燃烧热,J/kg ; p C ——液体的比定压热容,J/kg ·K ; b T ——液体沸点,K ; 0T ——环境温度,K ; H ——液体蒸发热,J/kg 。 当液池中液体的沸点低于环境温度时,如加压液化或冷冻液化气,液池表面 上单位面积的燃烧速度dt dm 为 H H dt dm c 001.0= ―――――――――② 式中符号意义同前。 乙二醇液池的沸点高于周围环境温度,故使用式①进行计算。 查得各个数据c H =281.9 kJ/mol =4.54×106 J/kg p C =2.35×103J/kg ·K b T =470.65K 0T =279.15K H =799.14×103 J/kg

燃烧速度可算得 dt dm =0.00363kg ·m 2 /s 同时,燃烧速度也可手册查得,下表5-8列出了一些可燃液体的燃烧速度。 表5-8 查表1-1可知甲醇的燃烧速度 dt =0.0576kg ·m 2/s 5.3.2火焰高度的计算 设池火为一半径为r 的圆池子,其火焰高度可按下式计算: 6 .02/10)2(/84? ? ????=gr dt dm r h ρ―――――――③ 式中:h ——火焰高度,m ; r ——液池半径,m ; 0ρ——周围空气密度,0ρ=2.93 kg/m 3; g ——重力加速度,g =9.8m/s 2 ; dt dm ——燃烧速度,kg/m 2 .s 。 乙二醇池面积=4850 m 2,折算半径=39.3 m 甲醇池面积=2150 m 2,折算半径=26.2 m 将已知数据代入公式得: 乙二醇火焰高度h =8.0879m 甲醇火焰高度 h =32.029m 。 5.3.3热辐射通量 当液池燃烧时放出得总热辐射通量为: ]172 [)2(61 .02 ++=dt dm H dt dm rh r Q c ηππ――――④ Q ——总热辐射通量。W ; η——效率因子,可取0.13~0.35。其它符号意义同前。 η取决于物质的饱和蒸汽压,

预防火灾和爆炸事故的基本安全措施

编号:SM-ZD-19656 预防火灾和爆炸事故的基 本安全措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

预防火灾和爆炸事故的基本安全措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 建筑施工需要一定数量的可燃板材,这些材料如果处理不妥,防火措施不力极易发生火灾,在施工阶段,也需要用大量的乙炔和氧气,对钢筋进行焊割,如盛装乙炔和氧气体的钢瓶储存方法不当,使用不规范,也容易发生因气体泄露而产生的气瓶爆炸事故。因此,加强对可燃物的易燃物易爆物品的管理是有效防止火灾和爆炸事故的发生,保护员工生命安全,企业利益和国家财产不受损失的有限措施。 1、预防火灾和爆炸事故的基本安全措施 1.1 组织措施 1.1.1 要建立、健全消防机构。公司、项目部要成立义务消防对,并明确公司、项目的消防安全责任人和消防安全管理人,负责管理本单位的消防安全工作。 1.1.2 公司、项目部要加强对员工、外来工进行消防知

储油罐火灾爆炸的原因辨识(正式版)

文件编号:TP-AR-L3952 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 储油罐火灾爆炸的原因 辨识(正式版)

储油罐火灾爆炸的原因辨识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 储油罐是油库的重要设备,储存着大量易燃烧、易爆炸、易挥发、易流失的油品,一旦发生爆炸所造成的损失难以估计,如何辨识储油罐爆炸火灾的危险性,安全有效地加强管理,提高储油罐的安全可靠性,是安全管理工作所面临的一个重大课题。 1 明火 由明火引起的油罐火灾居第1位,其主要原因是在使用电气、焊修储油设备时,动火管理不善或措施不力而引起。例如,检修管线不加盲板;罐内有油时,补焊保温钉不加措施;焊接管线时,事先没清扫管线,管线没加盲板隔断;油罐周围的杂草、可燃物

未清除干净等。另一个重要原因是在油库禁区及油蒸气易积聚的场所携带和使用火柴、打火机、灯火等违禁品或在上述场合吸烟等。 2 静电 所谓静电火灾是指静电放电火花引燃可燃气体、可燃液体、蒸汽等易燃易爆物而造成的火灾或爆炸事故。 静电的实质是存在剩余电荷。当两种不同物体接触或摩擦时,物体之间就发生电子得失,在一定条件下,物体所带电荷不能流失而发生积聚,这就会产生很高的静电压,当带有不同电荷的两个物体分离或接触时,物体之间就会出现火花,产生静电放电(ESD) 静电放电的能量和带电体的性质及放电形式有关。静电放电的形式有电晕放电、刷形放电、火花放电等。其中火花放电能量较大,危险性最大。

火灾爆炸热辐射后果影响预测(池火灾计算)

火灾热辐射后果预测(池火灾计算) 燃烧速度/火焰高度/热辐射强度及后果 对航空煤油(以下简称航煤)进行池火模拟,模拟热灼烧后果。 (1)液池直径 本项目隔堤围成的面积为2677m 2,则液池半径r=29.2m 。 (2)燃烧速度 液体表面单位面积的燃烧速度dm/dt 为: H T T c Hc dt dm O b p +-= )(001.0/ 式中: dm/dt ——单位表面积燃烧速度,)/(2 s m kg ?; c H ——液体燃烧热;航煤为43070000 kg J /; p c ——液体的定压比热容;航煤为2000)/(K kg J ?; b T ——液体的沸点;取航煤的最小沸点为473K ; o T ——环境温度;取25℃即298K ; H ——液体的汽化热;航煤为280000kg J /。 通过计算可知航煤的燃烧速度为)/(068.02s m kg ? (3)火焰高度 火焰高度计算公式为: 6 .02 1 0])2(/[ 84gr dt dm r h ρ= 式中,h ——火焰高度;m ; r ——液池半径;29.2m ; 0ρ——周围空气密度,ρ0=1.293kg/m 3 ;(标准状态); g ——重力加速度,2 /8.9s m ; m h 66.58])2.298.92(293.10.068[2.29846 .02 1 =???= 因此,航煤储罐发生池火事故时火焰高度为58.66m 。

(4)热辐射通量 当液池燃烧时放出的总热辐射通量为: ()()[ ] 172/261 .02+??+=dt dm c dt dm H rh r Q ηππ 式中,Q ——总热辐射通量;W ; η——效率因子;可取0.13~0.35,取其平均值0.24; 其余符号意义同前。 计算得热辐射通量Q=6.3x108瓦。 (5)目标入射热辐射强度及后果 假设全部辐射热量由液池中心点的小球面辐射出来,则在距离池中心某一距离(X )处的入射热辐射强度为: 2 4X Qt I c π= 式中,I ——入射通量;2/m W ; Q ——总热辐射通量;W ; c t ——热传导系数,在无相对理想的数据时,可取值为1; X ——目标点到液池中心距离;m 。 当入射通量一定时,可以求出目标点到液池中心距离X : 当2 /5.37m kW I =时,m I Qt X c 57.36105.3714.341 106.343 8=?????==π 当2/25m kW I =时,X=44.79m 当2/5.12m kW I =时,X=63.35m 当2/0.4m kW I =时,x=111.98m 当2/6.1m kW I =时,X=177.06m 火灾通过热辐射的方式影响周围环境,当火灾产生的热辐射强度足够大时,可造成周围设施受损甚至人员伤亡。不同入射通量造成的损失如下表:

蒸汽云爆炸池火灾计算方法

附件4定量分析危险、有害程度的过程 附件4.1固有危险程度定量分析 1、具有爆炸性的化学品的质量及相当于梯恩梯(TNT)的摩尔量 附表4.7.1 相关数据 1、爆炸空间物质量计算 W f=VLmρ 式中:V-爆炸空间的体积大小m3, Lm-最易爆炸浓度 ρ-可燃气体的密度 1)二硫化碳 IS90车间的晾晒厂房24*15*8=2880m3 二硫化碳的密度为3.17kg/m3 最易发生爆炸的总量W f=VLmρ=2880*7.5%*3.17=685kg 上限发生爆炸的总量W f=VLmρ=2880*44%*3.17=4020kg 2)氨

制冷车间厂房20*15*8=2400m3 氨的密度为0.71kg/m3 最易发生爆炸的总量W f=VLmρ=2400*17%*0.71=290kg 上限发生爆炸的总量W f=VLmρ=2400*25%*0.71=426kg 3)硫磺粉尘 IS60车间的粉碎厂房24*15*8=2880m3 硫磺的最易爆炸浓度为70g/m3=0.07kg/m3 W f=VLm=2880*0.07=202kg 硫磺的发生爆炸的上限浓度为1400g/m3=1.4kg/m3 W f=VLm=2880*1.4=4032kg 2、TNT当量计算 蒸汽云爆炸的TNT当量计算公式:W TNT=AW f Q f/Q TNT 式中 A-蒸汽云的TNT当量系数,取4%; W TNT-蒸汽云的TNT当量,Kg; W f-蒸汽云中燃料总质量,Kg; Q f-燃料的燃烧热,MJ/Kg; Q TNT-TNT的爆热, Q TNT=4520 kJ/kg; 1)二硫化碳蒸汽云爆炸的TNT当量计算: W TNT1=AW f Q f/Q TNT=0.04×685×1000/76.14×1030.8/4520=82.1kg W TNT2=AW f Q f/Q TNT=0.04×4020×1000/76.14×1030.8/4520=482kg

火灾和爆炸的类型及特点(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 火灾和爆炸的类型及特点(标准 版) Safety management is an important part of production management. Safety and production are in the implementation process

火灾和爆炸的类型及特点(标准版) 备注说明:安全管理是生产管理的重要组成部分,安全与生产在实施过程,两者存在着密切的联系,存在着进行共同管理的基础。 生产加工和储存运输过程中发生的火灾和爆炸灾害是多种多样的,为了便于探讨防火和灭火的有效对策,需要对火灾和爆炸灾害进行分类。在此火灾是指那些火焰传播速度(或燃烧速度)较慢的燃烧型火灾,爆炸则包括火焰传播速度很快的化学性爆炸和某些物理性爆炸。在火场上,火灾有时会引起爆炸,爆炸有时会引起火灾。火灾和爆炸可大致分成由点火源直接点燃而引起的和不需要点火源直接点燃而引起的两种情况。火灾和爆炸类型划分见表(略)。 火源型、蓄热型火灾和爆炸的特点是发生了燃烧、分解等反应的化学变化过程,而潜热型蒸气爆炸特点是发生了液相向气相急剧相变而急剧升高压力的物理变化过程,亦即发生了物理性爆炸。发生潜热型蒸气爆炸的物质若为不燃气体,爆炸后则可能造成设备损坏或人员伤亡,一般不会进一步造成火灾;若为可燃气体,爆炸后则可能被点火源点燃,从而发生化学性爆炸或造成大范围的火灾。

爆炸评价模型及伤害半径计算

爆炸评价模型及伤害半径计算 1、蒸气云爆炸(VCE )模型分析计算 (1)蒸气云爆炸(VCE )模型 当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。用TNT 当量法来预测其爆炸严重度。其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。其公式如下: W TNT = 式中W TNT ——蒸气云的TNT 当量,kg ; β——地面爆炸系数,取β=1.8; A ——蒸气云的TNT 当量系数,取值范围为0.02%~14.9%; W f ——蒸气云中燃料的总质量:kg ; Q f ——燃料的燃烧热,kJ/kg ; Q TNT ——TNT 的爆热,QTNT=4120~4690kJ/kg 。 (2)水煤气储罐蒸气云爆炸(VCE )分析计算 由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。 若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE ),设其贮量为70%时,则为2.81吨,则其TNT 当量计算为: 取地面爆炸系数:β=1.8; 蒸气云爆炸TNT 当量系数,A=4%; 蒸气云爆炸燃烧时燃烧掉的总质量, Wf=2.81×1000=2810(kg ); 水煤气的爆热,以CO 30%、H 2 43%计(氢为1427700kJ/kg,一氧化碳为10193

kJ/kg):取Q f =616970kJ/kg; TNT的爆热,取Q TNT =4500kJ/kg。 将以上数据代入公式,得 W TNT 死亡半径R1=13.6(W TNT/1000) =13.6×27.740.37 =13.6×3.42=46.5(m) 重伤半径R 2 ,由下列方程式求解: △P2=0.137Z2-3+0.119 Z2-2+0.269 Z2-1-0.019 Z2=R2/(E/P0)1/3 △P2=△P S/P0 式中: △P S ——引起人员重伤冲击波峰值,取44000Pa; P ——环境压力(101300Pa); E——爆炸总能量(J),E=W TNT ×Q TNT 。 将以上数据代入方程式,解得: △P2=0.4344 Z2=1.07 R2=1.07×(27739×4500×1000/101300)1/3 =1.07×107=115(m) 轻伤半径R 3 ,由下列方程式求解: △P3=0.137Z3-3+0.119 Z3-2+0.269 Z3-1-0.019 Z3=R3/(E/P0)1/3

火灾、爆炸事故事故应急处置示范文本

火灾、爆炸事故事故应急处置示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

火灾、爆炸事故事故应急处置示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 火灾、爆炸事故应急流程应遵循的原则 (1)紧急事故发生后,发现人应立即报警。一旦启动 本预案,相关责任人要以处置重大紧急情况为压倒一切的 首要任务,绝不能以任何理由推诿拖延。各部门之间、各 单位之间必须服从指挥、协调配和,共同做好工作。因工 作不到位或玩忽职守造成严重后果的,要追求有关人员的 责任。 (2)项目在接到报警后,应立即组织自救队伍,按事 先制定的应急方案立即进行自救;若事态情况严重,难以 控制和处理,应立即在自救的同时向专业队伍救援,并密 切配合救援队伍。 (3)疏通事发现场道路,保证救援工作顺利进行;疏

散人群至安全地带。 (4)在急救过程中,遇有威胁人身安全情况时,应首先确保人身安全,迅速组织脱离危险区域或场所后,再采取急救措施。 (5)切断电源、可燃气体(液体)的输送,防止事态扩大。 (6)安全总监为紧急事务联络员,负责紧急事物的联络工作。 (7)紧急事故处理结束后,安全总监应填写记录,并召集相关人员研究防止事故再次发生的对策。 2 火灾、爆炸事故的应急措施 (1)对施工人员进行防火安全教育 目的是帮助施工人员学习防火、灭火、避难、危险品转移等各种安全疏散知识和应对方法,提高施工人员对火灾、爆炸发生时的心理承受能和应变力。一旦发生突发事

火灾爆炸危险性与防护(标准版)

火灾爆炸危险性与防护(标准 版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0618

火灾爆炸危险性与防护(标准版) 国家安全生产监督管理总局在安监总管一字[2008]7号文件《关于印发陆上石油天然气建设项目安全设施设计专篇编写指导书的通知》中,明确规定了天然气处理厂建设项目初步设计《安全设施设计专篇》的编写内容。其中,包括危险有害因素分析、初步设计中采取的主要防护技术措施、安全设施设计后的风险状况分析等。 天然气及其处理过程产品都是易燃、易爆物质,故主要危险有害因素是火灾、爆炸事故,同时也存在毒性、噪声、高温或低温、机械伤害和高空坠落等职业危害。本节仅重点介绍生产过程火灾、爆炸和噪声等危险有害因素与防护。 1.天然气火灾爆炸因素 天然气及其处理过程产品均为易燃、易爆物质,只要存在空气(或氧气)等助燃物及火源,就可燃烧甚至爆炸。

天然气处理过程一旦发生火灾爆炸事故,不仅直接损失巨大,而且对周围环境和公共安全构成严重威胁,危害程度极大。设计不合理、施工质量、外力破坏、违章作业、设备和设施质量、腐蚀等原因,都可能引起设备、机械、管线、阀门、仪器仪表等出现泄漏。泄漏的天然气及其凝液等遇雷击火、电气或静电火花、机动车排烟喷火、明火或其他散发火时,将会引发火灾事故。如果气体浓度达到爆炸极限,还将发生爆炸事故。 天然气处理过程中存在的导致火灾爆炸的因素主要如下; (1)管线和压力容器破裂、泄漏引发火灾爆炸。 天然气处理过程中的管线和压力容器,在运行时可能因窜气、超压、腐蚀、选材不当和制造缺陷等导致破裂和泄漏,如遇火源即可发生火灾爆炸。 (2)静电火花引起火灾爆炸。 火灾爆炸是静电火花引发的最为严重的危害。静电电量虽然不大,但因其电压很高而容易发生火花放电。如果所在场所存在天然气与空气形成的爆炸性混合物,即可由静电火花引起火灾爆炸。当

火灾爆炸危险指数评价法

火灾、爆炸危险指数评价法 (一)概述 美国道(DOW化学公司的火灾、爆炸危险指数评价法(第七 版)是对工艺装置及所含物料的潜在火灾、爆炸和反应性危险利用逐步推算的方法进行客观的评价。评价过程中定量的依据是以往事故的统计资料、物质的潜在能量和现行安全防灾措施的状况。该法通过计算火灾、爆炸危险指数,提出操作过程的危险度,考虑应采取的措施;然后通过补偿火灾、爆炸危险指数计算,从而达到预防控制的目的。 该法的评价目的是:客观地量化潜在火灾、爆炸和反应性事故的预期损失;确定可能引起事故发生或使事故扩大的设备;向管理部门通报潜在的火灾、爆炸危险性;使工程师了解工艺部分可能造成的损失,并帮助其确定减少潜在事故的严重性和总损失的有效而又经济的途径。 火灾、爆炸危险指数评价一般经过以下几个步骤: 1.确定评价单元; 2.求取单元内的物质系数; 3.按照单元的工艺条件,选用适当的危险系数,分别记入火 灾、爆炸危险指数表的“一般工艺危险系数F i”和“特殊工艺危 险系数F2”栏目内; 4.用一般工艺危险系数F1 和特殊工艺危险系数F2 相乘,求取工艺单元危 险系数F3; 5.将工艺单元危险系数F3 与物质系数相乘,求出火灾、爆炸危险指数(F&EI),根据火灾、爆炸危险指数及危险等级表确定 单元的危险程度,完成单元危险度的初期评价;

6.根据单元内配备的安全设施,选取各项系数,求出安全补偿系数; 7.利用安全补偿系数,求取补偿火灾、爆炸危险指数 (F&E I ) 8.按照补偿火灾、爆炸危险指数(F&E I )',确定补偿后的单元危险程度,计算单元的暴露区域半径和暴露面积。 火灾、爆炸危险指数分析计算程序如图4-3-2 。

预防火灾和气体爆炸的注意事项通用版

管理制度编号:YTO-FS-PD821 预防火灾和气体爆炸的注意事项通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

预防火灾和气体爆炸的注意事项通 用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 为了预防一旦发生火灾爆炸事故而造成设备和厂房的破坏、物资的损失及人员的伤亡,必须研究发生火灾爆炸后,阻止火势蔓延、泄放爆炸压力以及阻挡爆炸冲击波和热辐射作用对周围的危害等预防火灾爆炸危害扩大化的基本对策。 (一)检测报警 1、检测报警控制 在工业生产尤其是石油化工等有火灾爆炸危险的生产过程中,为了预防火灾爆炸危害扩大化,就应尽早检测出发生燃烧和爆炸的征兆和现象。遇到温度上升、压力上升、产生气体、产生碳化物、冒烟、发光、异常臭味及异常声音等异常现象,应及时采取相应的控制措施消除火险隐患。 检测发生燃烧和爆炸的征兆和现象,除了依靠操作人员到现场观察之外,还要大量借用控制工艺参数的有关检测仪器和仪表。常见的检测仪器和仪表有压力计、真空

储罐区火灾爆炸-事故树(分析方法与重要度计算)

灌区火灾爆炸――事故树(分析方法与重要度计算) 图-1 贮罐的事故火灾爆炸事故树 将贮罐的事故火灾爆炸事故树转化为成功树如图-2

图-2 贮罐的事故火灾爆炸事故树转化为成功树 贮罐火灾爆炸事故树的分析评价 1 、结构函数式 Tˊ=AˊBˊa=a(Aˊ+Bˊ)=a(X1ˊX2ˊX3ˊX4ˊCˊ+DˊEˊ)=a(X1ˊX2ˊX3ˊX4ˊFˊX5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ)=a{X1ˊX2ˊX3ˊX4ˊ(X6ˊ+X7ˊ)X5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ}= a(X1ˊX2ˊX3ˊX4ˊX5ˊX6ˊ+X1ˊX2ˊX3ˊX4ˊX5ˊX7ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ) 2、最小径集 通过计算分析该事故树12个基本事件,可以得出下列3个最小径集:

P1={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X6ˊ} P2={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X7ˊ} P3={a,X8ˊ,X9ˊ,X10ˊ,X11ˊ,X12ˊ} 3、结构重要度分析 根据以上结果,运用结构重要度近似判别式,可以计算出12个基本事件和一个条件事件的结构重要度系数。计算结果如下:由于条件事件a存在于每一个径集中,因此其结构重要度系数I Φ(a)最大; 事件X8、X9、X10、X11、X12是3个径集中基本事件最少的一个径集中出现,其结构重要度系数IΦ(8)、IΦ(9)、IΦ(10)、IΦ(11)、I Φ(12)相等; 事件X1、X2、X3、X4、X5是3个径集中出现两次的基本事件,其结构重要度系数IΦ(1)、IΦ(2)、IΦ(3)、IΦ(4)、IΦ(5)相等; 事件X6、X7是3个径集中只出现一次的基本事件,其结构重要度系数IΦ(6)、IΦ(7)相等; 由此得出结构重要度顺序: IΦ(a)>IΦ(8)=IΦ(9)=IΦ(10)=IΦ(11)=IΦ(12)>IΦ(1)=IΦ(2)=IΦ(3)=IΦ(4)=I Φ(5)> IΦ(6)=IΦ(7) 评价结果分析及其对策措施建议 由事故树分析可知,火源与达到爆炸极限的混合物蒸气构成了液化气贮罐燃爆事故发生的要素。条件事件a(达到爆炸极限)结构重要度最大,是液化气贮罐燃爆事故发生的最重要条件,结合事故案例分析,要求采取以下针对性的措施: 1)贮罐罐体设计应采用不易产生蒸气的内浮顶罐或固定的喷淋冷却系统,最大可能地减少液化气蒸气在空气中达到爆炸极限; 2)在罐附近安装气体报警装置,对混合气浓度进行检测,一旦接

爆炸与火灾危险场所的分类与分级

安全管理编号:LX-FS-A21282 爆炸与火灾危险场所的分类与分级 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

爆炸与火灾危险场所的分类与分级 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (一)爆炸危险场所的分类和分级 1.爆炸危险场所的分类 爆炸危险场所按爆炸性物质的物态,分为气体爆炸危险场所和粉尘爆炸危险场所。 2.爆炸危险场所的分级 爆炸危险场所的分级原则是按爆炸性物质出现的频度、持续时间和危险程度而划分为不同危险等级的区域。 (1)气体爆炸危险场所的区域等级 爆炸性气体、易燃或可燃液体的蒸汽与空气混合形成爆炸性气体混合物的场所,按其危险程度的大小

道化学火灾爆炸危险指数评价法

道化学火灾、爆炸指数评价法 1 目的 美国道化学公司自1964年开发“火灾、爆炸危险指数评价法”(第一版)以来,历经29年,不断修改完善;在1993年推出了第七版,以已往的事故统计资料及物质的潜在能量和现行安全措施为依据,定量地对工艺装置及所含物料的实际潜在火灾、爆炸和反应危险性行分析评价,可以说更趋完善、更趋成熟。其目的是: (1)量化潜在火灾、爆炸和反应性事故的预期损失; (2)确定可能引起事故发生或使事故扩大的装置; (3)向有关部门通报潜在的火灾、爆炸危险性; (4)使有关人员及工程技术人员了解到各工艺部门可能造成的损失,以此确定减轻事故严重性和总损失的有效、经济的途径。 2 评价计算程序 评价计算程序如下: 火灾、爆炸危险指数评价法风险分析计算程序如图1所示。 图1 风险分析计算程序 3 火灾、爆炸危险指数及补偿系数

火灾、爆炸危险指数及补偿系数见表1、表2、表3及表4。

表1 火灾、爆炸指数(F&EI)表

4 DOW方法计算说明 4.1 选择工艺单元 确定评价单元:进行危险指数评价的第一步是确定评价单元,单元是装置的一个独立部分,与其他部分保持一定的距离,或用防火墙。 定义: 工艺单元——工艺装置的任一主要单元。 生产单元——包括化学工艺、机械加工、仓库、包装线等在内的整个生产设施。 恰当工艺单元——在计算火灾、爆炸危险指数时,只评价从预防损失角度考虑对工艺有影响的工艺单元,简称工艺单元。 选择恰当工艺单元的重要参数有下列6个。一般,参数值越大,则该工艺单元就越需要评价。

(1)潜在化学能(物质系数); (2)工艺单元中危险物质的数量; (3)资金密度(每平方米美元数); (4)操作压力和操作温度; (5)导致火灾、爆炸事故的历史资料; (6)对装置起关键作用的单元。 选择恰当工艺单元时,还应注意以下几个要点: (1)由于火灾、爆炸危险指数体系是假定工艺单元中所处理的易燃、可燃或化学活性物质的最低量为2268kg或2.27m3,因此,若单元内物料量较少,则评价结果就有可能被夸大。一般,所处理的易燃、可燃或化学活性物质的量至少为454kg或

化学品的火灾与爆炸危害

化学品的火灾与爆炸危害 近几年来,我国化工系统所发生的各类事故中,由于火灾爆炸导致的人员死亡为各类事故之首,由此导致的直接经济损失也相当可观。如1997年北京东方化工厂油品罐区发生特大火灾爆炸事故,在较短的时间内,整个罐区一片火海,死亡9人,伤37人,直接经济损失高达亿元以上。1993年深圳清水河化学危险品仓库发生特大火灾爆炸事故,死亡15人,200多人受伤,其中重伤25人,直接经济损失超过2.5亿元。这些事故都是由于化学品自身的火灾爆炸危险性造成的。因此了解化学品的火灾与爆炸危害,正确进行危险性评价,及时采取防范措施,对搞好安全生产,防止事故发生具有重要意义。 1、化学品的燃烧与爆炸危险性 化学品的燃烧与爆炸危险性,根据其状态不同有不同的评价方法。 1.1可燃气体、可燃液体蒸气、可燃粉尘的燃爆危险性 (1)爆炸极限 可燃气体、可燃液体蒸气或可燃粉尘与空气组成的混合物,并非任何混合比例下都可以爆炸,而是固定浓度范围的,不同可燃物有不同的固定浓度范围。这一固定范围通常叫该物质的爆炸范围或爆炸极限,通常用可燃气体、可燃液体蒸气、可燃物粉尘在空气中的体积百分数表示。能够产生爆炸的最低浓度称为爆炸下限,最高浓度为爆炸上限。例如:乙醇爆炸范围为4.3%~19.O%。4.3%称为爆炸下限,19.0%称为爆炸上限。汽油的爆炸极限是1.0%~6.0%;天然气的爆炸极限是4.8%~13.46%;氢气的爆炸极限是4.0%~75%;一氧化碳的极限是12.5%~74.2%;氨气的爆炸极限是15.5%~27%等等。爆炸极限的数值越宽,爆炸下限越低,爆炸危险性越大。 爆炸极限是在常温、常压等标准条件下测定出来的,这一范围随着温度、压力的变化而有变化。 (2)最小点火能 最小点火能是指能引起爆炸性混合物燃烧爆炸时所需的最小能量。如氢的最小点火能为0.019mJ,甲烷为0.25mJ,乙烷为0.25mJ,环氧乙烷为0.065mJ,乙烯为0.096mJ。 最小点火能数值愈小,说明该物质愈易被引燃。 (3)爆炸压力 可燃气体、可燃液体蒸气或可燃粉尘与空气的混合物、爆炸物品在密闭容器中着火爆炸时所产生的压力称爆炸压力。爆炸压力的最大值称最大爆炸压力。 爆炸压力通常是测量出来的,但也可以根据燃烧反应方程式或气体的内能进行计算。物质不同,爆炸压力也不同,即使是同一种物质因周围环境、原始压力、温度等不同,其爆炸压力也不同。

储罐火灾爆炸事故现场处置方案通用范本

内部编号:AN-QP-HT540 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 储罐火灾爆炸事故现场处置方案通用 范本

储罐火灾爆炸事故现场处置方案通用范 本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 1事故特征 1.1危险性分析和事故类型 根据事故发生的过程、性质和机理,以及可能导致人员伤亡、财产损失、环境破坏的各种危害因素,经危害识别,储罐火灾爆炸事故类型有先爆炸后燃烧、先燃烧后爆炸、局部稳定燃烧三种类型。 1.2事故发生的区域、地点及装置名称 1.2.1区域或地点 储罐 1.2.2装置名称

二硫化碳储罐池火灾安全评价法

行业资料:________ 二硫化碳储罐池火灾安全评价法 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共8 页

二硫化碳储罐池火灾安全评价法 本项目选取一个60m3二硫化碳储罐作为研究对象,贮罐发生泄漏后,二硫化碳液体将会立即扩散到地面,一直流到低洼处或人工边界,被防火堤、防护围堰等阻隔不再扩展,形成液池,若遇到火源将发生池火。本项目中二硫化碳储罐取其充装系数为85%,其池火事故后果的预测过程如下:1)查阅有关手册,二硫化碳的燃烧速度取为dm/dt:132.97Kg㎡/s。 2)池火的火焰燃烧高度计算 为:H= H一火焰高度,m:r—液池半径,根据图纸尺寸,取值1.75m: ρo一周围空气密度,Kg/m3;计算1m3空气的重量为:≈1295(g)式中:1000为1m3空气=1000升,单位(L)29为1摩尔空气质量,单位(g/mol)22.4为标准状况下每升空气的摩尔数,单位(L/mol) 空气密度为1.295Kg/m3。g—重力加速度,9.8m/ s2:dm/dt一燃烧速度,132.97Kgm2/s.计算得到液池火焰燃烧高度为79.43m。3)进一步计算得到热辐射通量为Q:Q=Q 一总辐射通量,Wη一效率因子,取O.26;hc一二硫化碳燃烧热,取13553K.98J/Kg,计算得到池火的总辐射通量为:64.77×105W4)计算火灾辐射强度造成的损失:火灾辐射强度造成的损失参见下表表5.6-1火灾辐射强度造成的损失表 入射通量(kW/㎡)对设备的损害对人的伤害37.5操作设备全部损坏1%死亡10S,100%死亡1min25在无火焰、长时间的辐射下,木材燃烧的最小能量重大损失1~10S100%死亡1min12.5有火焰时,木材燃 第 2 页共 8 页

道化学火灾爆炸危险指数评价法(物质系数表).

道化学火灾爆炸危险指数评价法 序号化学物名称 物质系 数 MF 燃烧热Hc (BUT/1b×103) 毒性系 数 N h 燃烧系 数 N f 化学不 稳定性 N r 闪点 ℉ 沸点 ℉ 1醋酸14 5.632l103244 2酸酐147.1321126282 3丙酮1612.3l30-4133 4丙酮合氰化氢2411.2422165203 5乙腈1612.633O42179 6乙酰氯24 2.533240124 7乙炔2920.7O43气-118 8乙酰基乙醇氨149.4l l1355304-308 9过氧化乙酰40 6.4124-[4] 10乙酰水杨酸[8]168.9l1O-- 11乙酰基柠檬酸三丁脂410.9O10400343[1] 12丙烯醛1911.8433-15127 13丙烯酰胺249.5322-257[1] 14丙烯酸247.6322124286 15丙烯腈2413.743232171 16烯丙醇1613.743172207 17烯丙胺1615.4431-4128 18烯丙基溴16 5.933128160 19烯丙基氯169.733l-20113 20烯丙醚241633220203 21氯化铝24[2]3O2-[3] 22氨48310气-28 23硝酸胺2912.4[7]003-410 24醋酸戊酯1614.613060300 25硝酸戊酯1011.5220118306~315 26苯胺1015.O320158364

27氯酸钡14[2]201--28硬脂酸钡48.90l0--29苯甲醛lO13.7220148354 30苯1617.323O12176 31苯甲酸1411231250482 32醋酸苄酯412.3110195417 33苄醇413.82l0200403 34苄基氯1412.6221162387 35过氧化苯甲酰4012134--36双酚A1414.1211175428 37溴l03O0-138 38溴苯108.122O124313 39邻-溴甲苯108.522O174359 401,3-丁二烯2419.2242-10524 41丁烷2119.714O-7631 421-丁醇1614.3l3084243 431-丁烯2119.514O气21 44醋酸丁酯1612.213072260 45丙烯酸丁酯2414.2222103300 46(正)丁胺1616.333010171 47溴代丁烷167.623O65215 48氯丁烷1611.423015170 492,3-环氧丁烷2414.32325149 50丁基醚1616.323192288 51特丁基过氧化氢4011.9144<80或更 高 [9] 52硝酸丁酯2911.113397277 53过氧化乙酸特丁酯4010.6234<80[4] 54过氧化苯甲酸特丁酯4012.2134>190[4] 55过氧化特丁酯2914.513364176

火灾爆炸

第一章绪论 1.1 火,的定义:火是一种燃烧现象,燃烧是指可燃物与氧化剂之间发生的化学变化,发出大量热,有时伴随一定的光。 火灾指在时间和空间上失去控制的燃烧现象。其损失有直接损失,间接损失,灭火费用及社会影响等。 火灾分级详见课本P2. 按火灾的发生场合划分为:野外火灾(森林,草原),城镇火灾(民用建筑火灾,工厂仓库火灾,交通工具火灾),厂矿火灾(煤矿,电厂) 1.2 爆炸定义:物质由一种状态迅速转变成另一种状态,在瞬间造成大量能量突然释放并对外做功的现象。 爆炸灾害的形式:自然爆炸(火山,雷电,地震),人为爆炸中的失控爆炸(早爆,迟爆),非人为受控爆炸(矿井瓦斯爆炸,车间粉尘爆炸,压力容器爆炸) 爆炸的作用:正面作用,可以完成许多一般方法无法完成的工作,如开山挖石、修建隧道、修筑水库,通过人为控制爆破可加快工程进度;负面作用,若使用错误或操作不当,会对人类的生命财产造成严重的破坏,尤其是失控爆炸,可造成巨大的财产损失和人员伤亡。 火灾与爆炸的关系。两者之间存在紧密联系,经常相伴发生。相同点:某些物质的火灾和爆炸具有相同的本质,都是可燃物与氧化剂的化学反应;不同点:燃烧是稳定和连续进行的,能量的释放比较缓慢,而爆炸则是瞬间完成的,可在瞬间突然释放大量能量。 同一物质在一种条件下可以燃烧,在另一种条件下可以爆炸。存在易燃易爆物品较多场合和某些生产过程中,还可发生火灾爆炸的连锁反应。 2.1 火灾爆炸灾害的基本情况:发生次数和损失都呈上升趋势,特别是发生多起特大和重大的火灾爆炸事故。 2.2 当前火灾爆炸的事故状况的主要特点。(P7)电气火灾是引发火灾的最主要原因,且比例有增长趋势。 2.3 火灾爆炸事故频繁的原因分析:客观原因,可燃物形式与点火源状况发生了巨大改变,对能源的需求,石油化工生产规模、储存设备、应用范围扩大;主观原因,火灾爆炸安全保障体系不完善,安全观念和安全意识不强,缺乏火灾与爆炸的安全知识或常识。 3 火灾与爆炸事故的基本特征:突发性强,发案率高,损失严重,灾害状况复杂,容易形成连锁反应,人为致灾因素多。 4.1 运用系统安全的观点与方法从整体上把握火灾爆炸的预防控制对策。 火灾爆炸的规律及特点:具有随机性和确定性的双重特点。随机性主要指火灾爆炸的发生原因、发生地点、发生时间、发展方向、发展规模等是不确定的,会受多种因素影响。不过遵循一定的统计规律;确定性指如果给定具体的场合、可燃(易爆)物质及环境条件,则所发生的火灾会按基本确定的过程发展,燃烧或爆炸现象等都是遵循确定的流体流动、传热传质与物质守恒等基本定律。

相关文档
最新文档