离散数学(屈婉玲版)第四章部分答案教学文案

离散数学(屈婉玲版)第四章部分答案教学文案
离散数学(屈婉玲版)第四章部分答案教学文案

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。如果R=Is ,则(A );

如果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。

(2)设有序对与有序对<5,2x+y>相等,则 x=(D),y=(E).

供选择的答案

A 、

B 、

C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2;

④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。

D 、

E :⑧ 3;⑨ 2;⑩-2。

答案:

A: ⑤

B: ③

C: ①

D: ⑧

E: ⑩

4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是

?????

???????0001100000011001 则(1)R 的关系表达式是(A )。

(2)domR=(B),ranR=(C).

(3)R ?R 中有(D )个有序对。

(4)R ˉ1的关系图中有(E )个环。

供选择的答案

A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>};

②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>};

B、C:③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。

D、E⑦1;⑧3;⑨6;⑩7。

答案:

A:②

B:③

C:⑤

D:⑩

E:⑦

4.3设R是由方程x+3y=12定义的正整数集Z+上的关系,即

{<x,y>︳x,y∈Z+∧x+3y=12},

则(1)R中有A个有序对。

(2)dom=B。

(3)R↑{2,3,4,6}=D。

(4){3}在R下的像是D。

(5)R。R的集合表达式是E。

供选择的答案

A:①2;②3;③4.

B、C、D、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};

⑦{3,6,9};⑧{3};⑨Ф;⑩3。

答案:A:②。分别是:<3,3><6,2><9,1>

B:⑦。

C:⑤。

D:⑧。

E: ④。

4.4 设S={1,2,3},图4-13给出了S上的5个关系,则它们]只具有以下性质:

R1是A, R2是B, R3是C, R4是D, R5是E。

供选择的答案

A,B,C,D,E:①自反的,对称的,传递的;②反自反的,反对称的;

③反自反的,反对称的,传递的;④自反的;⑤反对称的,传递的;

⑥什么性质也没有;⑦对称的;⑧反对称的;⑨反自反的,对称的;

⑩自反的,对称的,反对称的,传递的

A:④B:⑧

C:⑨ D:⑤

E:⑩

4.5 设Z+={x|x∈Z∧x>0},∏

1, ∏

2

, ∏

3

是Z﹢的3个划分。

1

={{x}|x∈Z﹢},

2={S

1

,S

2

},S为素数集,S

2

=Z-S

1

,

3

={Z+},

则(1)3个划分中分块最多的是A,最少的是B.

(2)划分∏

1

对应的是Z+上的C, ∏2对应的是Z+上的D, ∏3对应的是Z+上的E

供选择的答案

A,B:①∏

1;②∏

2

;③∏

3

.

C,D,E:④整除关系;⑤全域关系;⑥包含关系;⑦小于等于关系;⑧恒等关系;⑨含有两个等价类的等价关系;⑩以上关系都不是。

答案

A ①

B ③

C ⑧

D ⑨

E ⑤

4.6 设S={1,2,…,10},≤是S 上的整除关系,则的哈斯图是(A),其中最

大元是(B),最小元是(C),最小上界是(D),最大下界是(E).

供选择的答案

A: ① 一棵树; ② 一条链; ③ 以上都不对.

B 、

C 、

D 、E: ④ ?;⑤ 1;⑥ 10;⑦ 6,7,8,9,10;⑧ 6;⑨ 0;⑩ 不

存在。

答案:

A: ③(树中无环,所以答案不是①)

B: ⑩

C: ⑤

D: ⑩

E: ⑤

4.7设f :N →N,N 为自然数集,且

()1,2

x f x x x ??=???若为奇数,,若为偶数, 则f (0)=A ,{}(){}()(){}()0,1,2,1,2,0,2,4,6,f

B f

C f

D f

E ===?=. 供选择的答案

A 、

B 、

C 、

D 、

E :①无意义;②1;③{1};④0;⑤{0};⑥

12;∴⑦N ; ⑧{1,3,5,…};⑨{

12,1};⑩ {2,4,6,…}. 解:f (0)=02

=0,∴A=④; {}()0f ={0},∴B=⑤;

{}()1,2f ={1},∴C=③;

()1,2f ①无意义;

{}()0,2,4,6,f ?=N ,∴E=⑦.

4.8 设R 、Z 、N 分别表示实数、整数和自然数集,下面定义函数f1、f2、

f3、f4。试确定它们的性质。

f1: R →R ,f(x)=2x,

f2: Z →N ,f(x)=|x|.

f3: N →N ,f(x)=(x)mod3,x 除以3的余数,

f4: N →N ×N ,f(n)=

则f1是A ,f2是B ,f3是C ,f4是D ,f4({5})=E 。

供选择的答案

A 、

B 、

C 、

D :①、满射不单射;②、单射不满射;③、双射;④、不单射也不

满射;⑤、以上性质都不对。

E :⑥、6;⑦、5;⑧、<5,6>;⑨、{<5,6>};⑩、以上答案都不对。

解:

f1是②、单射不满射;f2是①、满射不单射;f3是④、不单射也不满射;f4

是②、单射不满射;f4({5})=⑨、{<5,6>}。

4.9 设f :R →R ,f(x)= x 2 , x ≥3,

-2 , x<3;

g:R →R ,g(x)=x+2,

则 f 〇g(x)=A,g 〇f(x)=B, g 〇f: R →R 是 C,f-1是 D,g-1是E.

供选答案::

A\B:① (x+2)2 , x ≥3, ② x 2+2 , x ≥3,

-2 , x<3; -2 , x<3; (x+2)2 , x≥1, x2+2 , x≥3, ③④

-2 , x<1; 0 , x<3; C: ⑤单射不满射;⑥满射不单射;⑦不单射也不满射;⑧双射。

D、E:⑨不是反函数; ⑩是反函数。

解:A=③ B=④ C=⑦ D=⑨ E=⑩

4.10 (1)设S={a,b,c},则集合T={a,b}的特征函数是(A),属于§(S上S)的函数是(B)。

(2)在S上定义等价关系R=Is∪{< a,b >,< b, a>},那么该等价关系

对应的划分中有(C)个划分.作自然映射g:S→S/R,那么g的表达式是(D).

g(b)=(E).

供选择的答案

A、B、D:① {,,};② {} ; ③{,,};

④ {,,};⑤ {,,}.

C:⑥ 1;⑦ 2;⑧ 3.

E:⑨ {a,b};⑩ {b}.

答案:

A:③

B: ①

C: ⑦

D: ⑤

E: ⑨

4.11 设S={1,2,……,6},下面各式定义的R都是在S上的关系,分别列出R的元素。

R = { |x, y ∈s ∧ x | y}.

解:由题意可知R是整除关系,

所以答案如下:

R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,2>,<2,4>,<2,6>,<3,3>,<3,6> ,<4,4>,<5,5>,<6,6>}.

( 2 ) R = {< x , y > | x , y ∈ S ∧ x是y的倍数}.

解: 由题意可知:

R={<1,1>,<2,1>,<2,2>,<3,1>,<3,3>,<4,1>,<4,2>,<4,4>,<5,1>,<5,5>,<6,1> ,<6,2>,<6,3>,<6,6>} .

( 3 ) R = {< x, y> | x , y ∈S ∧ ( x - y )2= ∈ S }.

解: 由题意可知:

R={<1,2>,<1,3>,<2,1>,<2,3>,<2,4>,<3,1>,<3,2>,<3,4>,<3,5>,<4,2>,<4,3> ,<4,5>,<4,6>,<5,3>,<5,4>,<5,6>,<6,4>,<6,5>}.

( 4 ) R = {< x , y > | x , y ∈S ∧ x / y是素数 }

解:由题意可知:

R={<1,1>,<2,1>,<2,2>,<3,1>,<3,3>,<4,2>,<4,4>,<5,1>,<5,5>,

<6,1>,<6,2>,<6,3>,<6,6>}.

4.13 S={a,b,c,d},R

1、R

2

为S上的关系,

R

1

={}

R

2

={}

求R

1。R

2

、R

2

。R

1

、R

1

2和R

2

3.

解:设R

1的关系矩阵为M

1

,R

2

的关系矩阵为M

2,

则122121120011000101000000110000010001001100000100R M M R M M ??????????===???

???????

????????????===????????1100110011010001000100000000000011001101000100??????????????????????????????????????=此题答案正确,只是写法不对,应改为:

其余类似

},{...

2112><=?∴=?d c R R M M

4.14R 的关系图如图4-14所示,试给出r (R )、s (R )、t (R )的关系图。

A B C D E 图4-14

解:r (R ):

s(R): a b c d e

t(R): a b c d e

4.16画出下列集合关于整除关系的哈斯图。

(1){1,2,3,4,6,8,12,24}。

(2){1,2, (9)

并指出它的极小元、最小元、极大元、最大元。

解:

(1)

8

12

4

6

2

3

极小元、最小元:1

极大元、最大元:24

(2)

8

4

6

2

5 9

7 3

1

极小元、最小元:1

极大元:5,6,7,8,9

最大元:无

4.19设 f , g , h∈N , 且有

0 n为偶数

f (n)=n+1 , g(n)=2n ,h(n)=

1 n为奇数

求 fof , gof ,fog , hog , goh , 和 fogoh 。

由题意可知所求的复合函数都是从N到N的函数,且满足 fo f(n)=f(f(n))= f(n+1)= (n+1)+1=n+2

gof(n)=g(f(n))= g(n+1)= 2(n+1)=2n+2

fog(n)=f(g(n))= f(2n)=2n+1

hog(n)=h(g(n))= h(2n)=0

goh(n)=g(h(n))=

0 n 为偶数 2 n 为奇数

1 n 为偶数

fogoh=f(g(h(n)))=

3 n 为奇数

4.20 设f : R ×R →R ×R , f ()=< x+y , x-y >, 求f 的反函数。

解:设:>=<><-v u y x f ,),(1

则>=<>

而>-+=<>

所以 ?

??-=+=v u y v u x 解得??

???-=+=22y x v y x u 所以>=<><-v u y x f ,),(12

,2y x y x -+=

4.21设f,g ∈N N

,,N 为自然数集,且

x+1, x=0,1,2,3 x/2, x 为偶数,

f(x)= 0, x=4, g(x)=

x, x ≥5, 3, x 为奇数.

求g ?f 并讨论它的性质(是否为单射或满射)。

设A={0,1,2},求g?f(A)。

解:(1)

(x+1)/2,x=1,3,

g?f(x)= 0, x=4,

x/2, x为偶数且x≥6,

3, x=0,2及大于等于5的奇数。

g?f不是单射,因为g?f(6)= g?f(5)=3.

g?f是满射,因为g?f能取到自然数集的任何数。

(2)g?f(0)=g(1)=3.

g?f(1)=g(2)=1.

g?f (2)=g(3)=3.

所以g?f(A)={3,1}

4.22设A={0,1,2},B={0,1},

求P(A)和B A

构造一个从P(A)到B A的双射函数。

解:(1)P(A)={Φ,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}} B A={f1,f2, (8)

其中 f1={<0,0>,<1,0>,<2,0>}

={<0,0>,<1,0>,<2,1>}

f

2

f

={<0,0>,<1,1><2,0>}

3

f

={<0,0>,<1,1>,<2,1>}

4

f

={<0.1>,<1,0>,<2,0>}

5

={<0,1>,<1,0>,<2,1>}

f

6

={<0,1>,<1,1>,<2,0>}

f

7

={<0,1>,<1,1>,<2,1>}

f

8

(2)设该双射函数为F

F={<Φ, f 1>,<{0}, f 2>,<{1}, f 3>,<{2}, f 4>,<{0,1}, f 5>,<{0,2},

f 6>,<{1,2},f 7>,<{0,1,2}, f 8>}

做的不错,只是题目抄错了。正确答案是

4.22设A={a ,b},B={0,1},

求P (A )和B A

构造一个从P (A )到B A 的双射函数。

解:(1)P (A )={Φ,{a},{b},{a ,b}}

B A ={f1,f2, (4)

其中 f 1={,}

f 2={,}

f 3={,}

f 4={,}

(2)设该双射函数为F

F={<Φ, f 1>,<{a}, f 2>,<{b}, f 3>,<{a,b}, f 4>}

118

4.24 123i 111123p f (n),f (n),f (n) R R ={x,y |x,y N f (x)=f (y)}

x=y

:R ={x,y |x=y N} R ={x,y |x,y }

R ={x,y |x,y 3∈∧∈解:可知

又因为为导出的等价关系

所以所以即同理:

同奇同偶除余i

}

N/R 数相同所以商集

N/R1={{x}|x ∈N} , N/R2={{所有的奇数},{所有的偶数}},

N/R3={[0],[1],[2]}

([0]={x|x=3k ∧k ∈N},[1]={x|x=3k+1∧k ∈N},[2]={x|x=3k+2∧k ∈N},)

4.25对下列函数f 、g 及集合A 、B ,计算f ? g 、f ? g (A )和f ? g(B),并说明f ? g 是否为单射或满射

(1) f : R →R ,f(x)=4x -2x

g: N →

A={2,4,6,8,10},B={0,1}.

(2) f : Z →R ,f(x)= x e

g:Z →Z, g(x)= 2x

A=N,B={2K|k ∈N}.

解:

(1)

f ? g(x)=f(g(x))= f(x )= 42-=2x -x dom(f ? g)=N

由于f(g(0))=0, f(g(1))=0 ,所以f ? g 不是单射.

显然对实数2.5,不存在自然数x,使得f(g(x))=2.5,所以f ? g 也不是满射。 f ? g (A )={2,12,30,56,90}

f ?

g (B )={0}

(2)

f ?

g (x)= f(g(x))=)(2x f =2

x e dom(f ? g)=Z

由于f(g(-1))=0, f(g(1))=e ,所以f ? g 不是单射.

显然对实数3e ,不存在自然数x,使得f(g(x))= 3e ,所以f ? g 也不是满射。 f ? g (A )={2x e |N x ∈}

f ?

g (B )={24x e |N x ∈}

离散数学答案屈婉玲版第二版 高等教育出版社课后答案

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(pr)∧(﹁q∨s) ?(01)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)(p∧q∧﹁r) ?(1∧1∧1) (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例)

第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p)

屈婉玲版离散数学课后习题答案【2】

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有错误!未找到引用源。2=(x+错误!未找到引用源。)(x 错误!未找到引用源。). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 错误!未找到引用源。2=(x+错误!未找到引用源。)(x 错误!未找到引用源。). G(x): x+5=9. (1)在两个个体域中都解释为)(x xF ?,在(a )中为假命题,在(b)中为真命题。 (2)在两个个体域中都解释为)(x xG ?,在(a )(b)中均为真命题。 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x 能表示成分数 H(x): x 是有理数 命题符号化为: ))()((x H x F x ∧??? (2)F(x): x 是北京卖菜的人 H(x): x 是外地人 命题符号化为: ))()((x H x F x →?? 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x 是火车; G(x): x 是轮船; H(x,y): x 比y 快

命题符号化为: )) F x G x→ ∧ ? ? y y ( )) ( ) , x ((y ( H (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快 命题符号化为: ))) x x F y y→ ?? ∧ ? G (y H ( , ( ) ( ( x ) 9.给定解释I如下: (a) 个体域D为实数集合R. (b) D中特定元素错误!未找到引用源。=0. (c) 特定函数错误!未找到引用源。(x,y)=x错误!未找到引用源。y,x,y D ∈错误!未找到引用源。. (d) 特定谓词错误!未找到引用源。(x,y):x=y,错误!未找到引用源。(x,y):x

离散数学(屈婉玲)答案说课讲解

离散数学(屈婉玲)答 案

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)? 0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数 0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除 0 命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 //最后一列全为1 (5)公式类型为可满足式(方法如上例)//最后一列至少有一个1 (6)公式类型为永真式(方法如上例)// 第二章部分课后习题参考答案

3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1 所以公式类型为永真式 (3) P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r

离散数学屈婉玲版课后习题

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1 所以公式类型为永真式 (3) P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1

离散数学(屈婉玲版)第四章部分答案

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。如果R=Is ,则(A );如 果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。 (2)设有序对与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A 、 B 、 C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。 D 、 E :⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)domR=(B),ranR=(C). (3)R ?R 中有(D )个有序对。 (4)R ˉ1的关系图中有(E )个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B 、 C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D 、 E ⑦1;⑧3;⑨6;⑩7。 答案: A:② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {<x,y >︳x,y ∈Z+∧x+3y=12}, 则 (1)R 中有A 个有序对。 (2)dom=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};

离散数学课后习题答案第四章

第十章部分课后习题参考答案 4.判断下列集合对所给的二元运算是否封闭: (1) 整数集合Z 和普通的减法运算。 封闭,不满足交换律和结合律,无零元和单位元 (2) 非零整数集合 普通的除法运算。不封闭 (3) 全体n n ?实矩阵集合 (R )和矩阵加法及乘法运算,其中n 2。 封闭 均满足交换律,结合律,乘法对加法满足分配律; 加法单位元是零矩阵,无零元; 乘法单位元是单位矩阵,零元是零矩阵; (4)全体n n ?实可逆矩阵集合关于矩阵加法及乘法运算,其中n 2。不封闭 (5)正实数集合 和运算,其中运算定义为: 不封闭 因为 +?-=--?=R 1111111ο (6)n 关于普通的加法和乘法运算。 封闭,均满足交换律,结合律,乘法对加法满足分配律 加法单位元是0,无零元; 乘法无单位元(1>n ),零元是0;1=n 单位元是1 (7)A = {},,,21n a a a Λ n 运算定义如下: 封闭 不满足交换律,满足结合律, (8)S = 关于普通的加法和乘法运算。 封闭 均满足交换律,结合律,乘法对加法满足分配律 (9)S = {0,1},S 是关于普通的加法和乘法运算。 加法不封闭,乘法封闭;乘法满足交换律,结合律 (10)S = ,S 关于普通的加法和乘法运算。 加法不封闭,乘法封闭,乘法满足交换律,结合律 5.对于上题中封闭的二元运算判断是否适合交换律,结合律,分配律。 见上题 7.设 * 为+Z 上的二元运算+∈?Z y x ,, X * Y = min ( x ,y ),即x 和y 之中较小的数. (1)求4 * 6,7 * 3。 4, 3

高等教育出版社《离散数学》屈婉玲 耿素云 张立昂版最全答案

第一章命题逻辑基本概念 课后练习题答案 1.将下列命题符号化,并指出真值: (1)p∧q,其中,p:2是素数,q:5是素数,真值为1; (2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1; (3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1; (4)p∧q,其中,p:3是素数,q:3是偶数,真值为0; (5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0. 2.将下列命题符号化,并指出真值: (1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1; (2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1; (3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; (4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1; (5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; 3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨; (2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;. 4.因为p与q不能同时为真. 5.设p:今天是星期一,q:明天是星期二,r:明天是星期三: (1)p→q,真值为1(不会出现前件为真,后件为假的情况); (2)q→p,真值为1(也不会出现前件为真,后件为假的情况); (3)p q,真值为1; (4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1. 返回 第二章命题逻辑等值演算 本章自测答案 5.(1):∨∨,成真赋值为00、10、11; (2):0,矛盾式,无成真赋值; (3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值; 7.(1):∨∨∨∨?∧∧; (2):∨∨∨?∧∧∧; 8.(1):1?∨∨∨,重言式; (2):∨?∨∨∨∨∨∨; (3):∧∧∧∧∧∧∧?0,矛盾式. 11.(1):∨∨?∧∧∧∧;

离散数学版屈婉玲(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑) 1.答:(2),(3),(4) 2.答:(2),(3),(4),(5),(6) 3.答:(1)是,T (2)是,F (3)不是 (4)是,T (5)不是(6)不是 4.答:(4) 5.答:?P ,Q→P 6.答:P(x)∨?yR(y) 7.答:??x(R(x)→Q(x)) 8、 c、P→(P∧(Q→P)) 解:P→(P∧(Q→P)) ??P∨(P∧(?Q∨P)) ??P∨P ? 1 (主合取范式) ? m0∨ m1∨m2∨ m3 (主析取范式) d、P∨(?P→(Q∨(?Q→R))) 解:P∨(?P→(Q∨(?Q→R))) ? P∨(P∨(Q∨(Q∨R))) ? P∨Q∨R ? M0 (主合取范式) ? m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、

b、P→(Q→R),R→(Q→S) => P→(Q→S) 证明: (1) P 附加前提 (2) Q 附加前提 (3) P→(Q→R) 前提 (4) Q→R (1),(3)假言推理 (5) R (2),(4)假言推理 (6) R→(Q→S) 前提 (7) Q→S (5),(6)假言推理 (8) S (2),(7)假言推理 d、P→?Q,Q∨?R,R∧?S??P 证明、 (1) P 附加前提 (2) P→?Q 前提 (3)?Q (1),(2)假言推理 (4) Q∨?R 前提 (5) ?R (3),(4)析取三段论 (6 ) R∧?S 前提 (7) R (6)化简 (8) R∧?R 矛盾(5),(7)合取 所以该推理正确 10.写出?x(F(x)→G(x))→(?xF(x) →?xG(x))的前束范式。 解:原式??x(?F(x)∨G(x))→(?(?x)F(x) ∨ (?x)G(x)) ??(?x)(?F(x)∨G(x)) ∨(?(?x)F(x) ∨ (?x)G(x)) ? (?x)((F(x)∧? G(x)) ∨G(x)) ∨ (?x) ?F(x)

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。如果R=Is ,则(A );如 果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。 (2)设有序对与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A 、 B 、 C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。 D 、 E :⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)domR=(B),ranR=(C). (3)R ?R 中有(D )个有序对。 (4)R ˉ1的关系图中有(E )个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B 、 C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D 、 E ⑦1;⑧3;⑨6;⑩7。 答案: A:② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {<x,y >︳x,y ∈Z+∧x+3y=12}, 则 (1)R 中有A 个有序对。 (2)dom=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};

离散数学习题答案(耿素云屈婉玲)

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: | (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 ; 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

, 由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 — ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理 15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论:p u → 证明:用附加前提证明法。 ' ① p 附加前提引入 ② p q ∨ ①附加 ③ ()()p q r s ∨→∧ 前提引入

离散数学(屈婉玲版)第四章部分标准答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xR y。如果R=Is ,则(A); 如果R 是数的小于等于关系,则(B),如果R=Es ,则(C)。 (2)设有序对<x+2,4>与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A、B 、C :① x ,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x =y=2;⑥ x=1,y=2;⑦x=2,y =1。 D 、E:⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S =<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)dom R=(B),ranR=(C). (3)R ?R中有(D)个有序对。 (4)R ˉ1的关系图中有(E)个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B、C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D、E ⑦1;⑧3;⑨6;⑩7。 答案: A :② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {︳x,y ∈Z+∧x +3y=12}, 则 (1)R 中有A 个有序对。 (2)d om=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、 E :④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};⑦{3,6,

离散数学最全课后答案(屈婉玲版)

………………………………………………最新资料推 荐……………………………………… 1.1.略 1.2.略 1.3.略 1.4.略 1.5.略 1.6.略 1.7.略 1.8.略 1.9.略 1.10.略 1.11.略 1.12.将下列命题符号化,并给出各命题的真值: (1)2+2=4当且仅当3+3=6.(2)2+2= 4的充要条件是3+3≠6.(3)2+2≠4与 3+3=6互为充要条件.(4)若2+2≠4, 则 3+3≠6,反之亦然. (1)p?q,其中,p: 2+2=4,q: 3+3=6, 真值为 1.(2)p??q,其中,p:2+2=4,q:3+3=6,真值为0. (3)?p?q,其中,p:2+2=4,q:3+3=6,真值为 0.(4)?p??q,其中,p:2+2=4,q:3+3=6,真值为1. 1.13.将下列命题符号化, 并给出各命题的真值:(1) 若今天是星期一,则明天是星期二.(2)只有今天 是星期一,明天才是星期二.(3)今天是星期一当 且仅当明天是星期二. (4)若今天是星期一,则明 天是星期三. 令p: 今天是星期一;q:明天是星期二;r:明天是星期三.(1) p→q ? 1. (2) q→p ? 1. (3) p?q? 1. (4)p→r当p ? 0时为真; p ? 1时为假. 1.14.将下列命题符号化. (1) 刘晓月跑得快,跳得高.(2) 老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小 组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃 饭, 一面听音乐. (8)如果天下大雨,他就乘 班车上班.(9)只有天下大雨,他才乘班车上 班.(10)除非天下大雨,他才乘班车上班.(11) 下雪路滑, 他迟到了. (12)2与4都是素数,这是不对的. (13)“2或4是素数,这是不对的”是不对的.

离散数学(屈婉玲版)第六章部分答案

6.1(5) 5S =n M (R),+为矩阵加法,则S 是(群) 答:满足封闭性,因为矩阵加法可结合所以为半群,且幺元为e =0的矩阵,故为独异点。又因为以任一n 阶矩阵的逆元存在是它的负矩阵,所以是群。 评语:答案太简单 6.2 (1)因为可结合,交换,幺元为1,但不存在逆元 所以是半群 (2)因为可交换,结合,幺元为0,是有限阶群并且是循环群,G 中的2阶元是2,4阶元是1和3 6.4 设Z 为正数集合,在Z 上定义二元运算 ° ,? x,y ∈Z 有 x ° y=x+y-2, 那么Z 与运算 ° 能否构成群?为什么? 解: 设 ? a,b,c ∈Z (a ° b )° c = (a+b-2) ° c = a+b- 2+ c-2 =a+b+c-4 a ° ( b ° c) = a ° (b+c-2) =a + b+c-2-2 =a+b+c-4 对2∈Z ,? x ∈Z 有 x ° 2=x+2-2=x=2° x, 可见 , 存在幺元,幺元为2。 对? x ∈Z 有4-x ∈Z,使x ° (4-x )= (4-x) ° x=2 所以 x-1 = 4-x 所以Z 与运算 ° 能构成群 。 6.7 下列各集合对于整除关系都构成偏序集,判断哪些偏序集是格? (1)L={1,2,3,4,5}. (2)L={1,2,3,6,12}. (3)L={1,2,3,4,6,9,12,18,36}. (4)L={1,2,2(2),…,2(n)}. (1)L={1,2,3,4,5}. 解:由它的哈斯图可以知道,该偏序集不是格,因为3和4、5和4 、3和5有最大下届是1,但是没有最小上届。 (2)L={1,2,3,6,12}. 解:由它的哈斯图可以知道,该偏序集是格。因为L 中的任意俩个元素都有最大下结和最小上届。 (3)L={1,2,3,4,6,9,12,18,36}. 解:由它的哈斯图可以知道,该偏序集是格。因为L 中的任意俩个元素都有最大下结和最小上届。 (4)L={1,2,2(2),…,2(n)}.

离散数学(屈婉玲版)第三章部分答案

3.6从1到300的整数中 (1)同时能被3、5、和7这3个数整除的数有A个。 (2)不能被3、5,也不能被7整除的数有B个。 (3)可以被3整除,但不能被5和7整除的数有C个。 (4)可被3或5整除,但不能被7整除的数有D个。 (5)只能被3、5和7之中的一个数整除的数有E个。 供选择的答案 A、B、C、D、E:①2;②6;③56;④68;⑤80;⑥102;⑦120;⑧124;⑨138;⑩162。 解:设1到300之间的整数构成全集E,A、B、C分别表示其中可被3、5或7整除的数的集合。文氏图如下图: 在A∩B∩C中的数一定可以被3、5和7的最小公倍数105整除,即 ∣A∩B∩C∣=?300/105?=2,同样可得 ∣A∩B∣=?300/15?=20, ∣A∩C∣=?300/21?=14, ∣B∩C∣=?300/35?=8. 然后将20-2=18,14-2=12,8-2=6分别填入邻近的3块区域. 再计算∣A∣=?300/3?=100, ∣B∣=?300/5?=60, ∣C∣=?300/7?=42. 所以 ∣A∪B∪C∣=162. 所以本题的答案是:A=①2;B=⑨138;C=④68;D=⑦120;E=⑧124. 3.10列元素法表示下列集合。 (1)A={ x | x ∈N ∧x2 ≤7}. (2)A={ x | x ∈N ∧|3-x|<3}. (3)A={ x | x ∈R ∧(x+1)2≤0}. (4)A={ |x,y∈N∧x+y≤4}. 解:(1) A={0,1,2}. (2) A={1,2,3,4,5}. (3) A={-1}. (4) A={<0,0>,<0,1>,<0,2>,<0,3>,<0,4>,<1,0>,<2,0>,<3,0>,<4,0>,

(完整版)离散数学[屈婉玲版]第一章部分习题汇总

第一章习题 1.1&1.2 判断下列语句是否为命题,若是命题请指出是简单命题还 是复合命题.并将命题符号化,并讨论它们的真值. (1) √2是无理数. 是命题,简单命题.p:√2是无理数.真值:1 (2) 5能被2整除. 是命题,简单命题.p:5能被2整除.真值:0 (3)现在在开会吗? 不是命题. (4)x+5>0. 不是命题. (5) 这朵花真好看呀! 不是命题. (6) 2是素数当且仅当三角形有3条边. 是命题,复合命题.p:2是素数.q:三角形有3条边.p?q真值:1 (7) 雪是黑色的当且仅当太阳从东方升起. 是命题,复合命题.p:雪是黑色的.q:太阳从东方升起. p?q真值:0 (8) 2008年10月1日天气晴好. 是命题,简单命题.p:2008年10月1日天气晴好.真值唯 一. (9) 太阳系以外的星球上有生物. 是命题,简单命题.p:太阳系以外的星球上有生物.真值唯一. (10) 小李在宿舍里. 是命题,简单命题.P:小李在宿舍里.真值唯一. (11) 全体起立! 不是命题. (12) 4是2的倍数或是3的倍数. 是命题,复合命题.p:4是2的倍数.q:4是3的倍数.p∨q 真值:1 (13) 4是偶数且是奇数.

是命题,复合命题.P:4是偶数.q:4是奇数.p∧q真值:0 (14) 李明与王华是同学. 是命题,简单命题.p: 李明与王华是同学.真值唯一. (15) 蓝色和黄色可以调配成绿色. 是命题,简单命题.p: 蓝色和黄色可以调配成绿色.真值:1 1.3 判断下列各命题的真值. (1)若 2+2=4,则 3+3=6. (2)若 2+2=4,则 3+3≠6. (3)若 2+2≠4,则 3+3=6. (4)若 2+2≠4,则 3+3≠6. (5)2+2=4当且仅当3+3=6. (6)2+2=4当且仅当3+3≠6. (7)2+2≠4当且仅当3+3=6. (8)2+2≠4当且仅当3+3≠6. 答案: 设p:2+2=4,q:3+3=6,则p,q都是真命题. (1)p→q,真值为1. (2)p→┐q,真值为0. (3)┐p→q,真值为1. (4)┐p→┐q,真值为1. (5)p?q,真值为1. (6)p?┐q,真值为0. (7)┐p?q,真值为0. (8)┐p?┐q,真值为1. 1.4将下列命题符号化,并讨论其真值。 (1)如果今天是1号,则明天是2号。 p:今天是1号。 q:明天是2号。 符号化为:p→q 真值为:1 (2)如果今天是1号,则明天是3号。 p:今天是1号。

离散数学-第六章集合代数课后练习习题及答案

第六章作业 评分要求: 1. 合计57分 2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置. 一有限集合计数问题 (合计20分: 每小题10分, 正确定义集合得4分, 方法与过程4分, 结果2分) 要求: 掌握集合的定义方法以及处理有限集合计数问题的基本方法 1 对60个人的调查表明, 有25人阅读《每周新闻》杂志, 26人阅读《时代》杂志, 26人阅读《财富》杂志, 9人阅读《每周新闻》和《财富》杂志, 11人阅读《每周新闻》和《时代》杂志, 8人阅读《时代》和《财富》杂志, 还有8人什么杂志也不读. (1) 求阅读全部3种杂志的人数; (2) 分别求只阅读《每周新闻》、《时代》和《财富》杂志的人数. 解定义集合: 设E={x|x是调查对象}, A={x|x阅读《每周新闻》}, B={x|x阅读《时代》}, C={x|x阅读《财富》} 由条件得|E|=60, |A|=25, |B|=26, |C|=26, |A∩C|=9, |A∩B|=11, |B∩C|=8, |E-A∪B∪C|=8 (1) 阅读全部3种杂志的人数=|A∩B∩C| =|A∪B∪C|-(|A|+|B|+|C|)+(|A∩B|+|A∩C|+|B∩C|) =(60-8)-(25+26+26)+(11+9+8)=3 (2) 只阅读《每周新闻》的人数=|A-B∪C|=|A-A∩(B∪C)|=|A-(A∩B)∪(A∩C)| =|A|-(|A∩B|+|A∩C|-|A∩B∩C|)=25-(11+9-3)=8 同理可得只阅读《时代》的人数为10, 只阅读《财富》的人数为12. 2 使用容斥原理求不超过120的素数个数. 分析:本题有一定难度, 难在如何定义集合. 考虑到素数只有1和其自身两个素因子, 而不超过120的合数的最小素因子一定是2,3,5或7(比120开方小的素数), 也就是说, 不超过120的合数一定是2,3,5或7的倍数. 因此, 可定义4条性质分别为2,3,5或7的倍数, 先求出不超过120的所有的合数, 再得出素数的个数. 解定义集合: 设全集E={x|x∈Z∧1≤x∧x≤120} A={2k|k∈Z∧k≥1∧2k≤120}, B={3k|k∈Z∧k≥1∧3k≤120}, C={5k|k∈Z∧k≥1∧5k≤120}, D={7k|k∈Z∧k≥1∧7k≤120}. 则不超过120的合数的个数=|A∪B∪C∪D|-4 (因为2,3,5,7不是合数) =(|A|+|B|+|C|+|D|)-(|A∩B|+|A∩C|+|A∩D|+|B∩C|+|B∩D|+|C∩D|)+ (|A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D|)-|A∩B∩C∩D|-4 =(60+40+24+17)-(20+12+8+8+5+3)+(4+2+1+1)-0-4 (理由见说明部分) =89 因此不超过120的素数个数=120-1-89=30 (因为1不是素数) 说明: |A|=int(120/2); |A?B|=int(120/lcd(2,3)); |A?B?C|=int(120/lcd(2,3,5)); |A?B?C?D|=int(120/lcd(2,3,5,7)).

离散数学第2版答案

离散数学第2版答案 【篇一:离散数学课后习题答案_屈婉玲(高等教育出版 社)】 txt>16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)? 0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1) ? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“?是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。”答:p: ?是无理数 1 q: 3是无理数 0 r: 2是无理数 1 s: 6能被2整除 1 t: 6能被4整除 0 命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q?p?q→?p (p→q)→(?q→?p) 0 01 111 1 0 11 011 1 1 00 100 1 1 11 001 1所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式, 再用真值表法求出成真赋值. (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r)

答:(2)(p→(p∨q)) ∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1 所以公式类型为永真式 (3) p qr p∨q p∧r (p∨q)→(p∧r) 0 0000 1 0 0100 1 0 1010 0 0 1110 0 10 010 0 10 111 1 11 010 0 11 111 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (?p→q)→(?q?p) ??(p?q)?(?q?p) ?(?p??q)?(?q?p) ? (?p??q)?(?q?p)?(?q??p)?(p?q)?(p??q) ? (?p??q)?(p??q)?(p?q) ?m0?m2?m3 ?∑(0,2,3) 主合取范式:

离散数学第二版答案(6-7章)

离散数学第二版答案(6-7章)

第六章 代数系统 6.1第129页 1. 证明: 任取,x y I ∈,(,)*(,)g y x y x y x yx x y xy g x y ==+-=+-=,因此,二元运算*是可交换的; 任取,,x y z I ∈, (,(,))*(*)*() ()g x g y z x y z x y z yz x y z yz x y z yz x y z xy xz yz xyz ==+-=++--+-=++---+ ((,),)(*)*()*()(,(,)) g g x y z x y z x y xy z x y xy z x y xy z x y z xy xz yz xyz g x g y z ==+-=+-+-+-=++---+= 因此,运算*是可结合的。 该运算的么元是0,0的逆元是0,2的逆元是2,其余元素没有逆元。 2.

(* , x, ) * 的最小公倍数 = *= y ) y (z z 的最小公倍数 x 和 y x z 因此对于任意的z, x,都有)* ,y z y ) (=,即二 x( x * y * *z 元运算*是可结合的。 ③设幺元为e = =的最小公倍数 和 * *,则1=e,即幺元为1. x= e x x x e e ④对于所有的元素I *,所以所有元 x∈,都有x x= x 素都是等幂的。 4.解:设n X= ①设f是X上的二元运算,则f是一个从X 2的 X→ 映射。 求X上有多少个二元运算即相当于求这样的映射的个数。 由于2 2n X=,映射f的个数为2n n,即X上有2n n个二元运算。 ②可交换即> y x f f, , < >= y < >< > >< >< >< < = A >< < > < >< 4,4 1,1 , 2,2 3,3 } 4,3 4,2 , 2,1 {> 3,1 4,1 3,2 具体如下图所示:

离散数学(屈婉玲版)第七章部分答案

列各组数中,那些能构成无向图的度数列那些能构成无向简单图的度数列 (1)1,1,1,2,3 (2)2,2,2,2,2 (3)3,3,3,3 (4)1,2,3,4,5 (5)1,3,3,3 解答:(1),(2),(3),(5)能构成无向图的度数列。 (1),(2),(3)能构成五项简单图的度数列。 设有向简单图D 的度数列为2,2,3,3,入度列为0,0,2,3,试求D 的出度列。 解:因为 出度=度数-入度,所以出度列为2,2,1,0。 设D 是4阶有向简单图,度数列为3,3,3,3。它的入度列(或出度列)能为1,1, 1,1吗 解:由定理可知,有向图的总入度=总出度。该有向图的总入度=1+1+1+1=4,总出度=2+2+2+2=8,4!=8,所以它的出度列(或入度列)不能为1,1,1,1。 35条边,每个顶点的度数至少为3的图最多有几个顶点 解:根据握手定理,所有顶点的度数之和为70,假设每个顶点的度数都为3,则 n 为小于等于3 70的最大整数,即:23 ∴ 最多有23个顶点 7.7 设n 阶无向简单图G 中,δ(G )=n-1,问△(G )应为多少 解: 假设n 阶简单图图n 阶无向完全图,在K n 共有 2)1(-n n 条边,各个顶点度数之和为n (n-1) ∴每个顶点的度数为n n n )1(-=n-1 ∴△(G )=δ(G )=n-1 一个n (n ≥2)阶无向简单图G中,n 为奇数,有r 个奇度数顶点,问G的补图G 中有几个奇度顶点 解:在K n 图中,每个顶点的度均为(n-1),n 为奇数,在G中度为奇数的顶点在G 中仍然为奇数, ∴共有r 个奇度顶点在G 中 7.9 设D是n 阶有向简单图,D’是D的子图,已知D’的边数m ’=n (n-1),问D的边数m 为多少 解: 在D’中m ’=n (n-1) 可见D’为有个n 阶有向完全图,则D=D’ 即D’就是D本身, ∴m=n (n-1) 有向图D 入图所示。求D 中长度为4 的通路总数,并指出其中有多少条是回路

相关文档
最新文档