中考数学二次函数动点问题-因动点产生的面积问题

中考数学二次函数动点问题-因动点产生的面积问题
中考数学二次函数动点问题-因动点产生的面积问题

因动点产生的面积问题

例1 2013年苏州市中考第29题

如图1,已知抛物线2

12

y x bx c =

++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).

(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;

(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围;

②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.

图1

动感体验

请打开几何画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个.

请打开超级画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个.

思路点拨

1.用c 表示b 以后,把抛物线的一般式改写为两点式,会发现OB =2OC . 2.当C 、D 、E 三点共线时,△EHA ∽△COB ,△EHD ∽△COD .

3.求△PBC 面积的取值范围,要分两种情况计算,P 在BC 上方或下方.

4.求得了S 的取值范围,然后罗列P 从A 经过C 运动到B 的过程中,面积的正整数值,再数一数个数.注意排除点A 、C 、B 三个时刻的值.

满分解答

(1)b =1

2c +

,点B 的横坐标为-2c . (2)由2111()(1)(2)222y x c x c x x c =+++=++,设E 1

(,(1)(2))2

x x x c ++.

过点E 作EH ⊥x 轴于H .

由于OB =2OC ,当AE //BC 时,AH =2EH .

所以1(1)(2)x x x c +=++.因此12x c =-.所以(12,1)E c c --.当C 、D 、E 三点在同一直线上时,

EH CO DH DO =.所以1212

c c c --=

--.整理,得2c 2+3c -2=0.解得c =-2或1

2c =(舍去). 所以抛物线的解析式为213

222

y x x =--.

(3)①当P 在BC 下方时,过点P 作x 轴的垂线交BC 于F . 直线BC 的解析式为1

22

y x =-. 设213(,2)2

2P m m m -

-,那么1(,2)2F m m -,21

22

FP m m =-+. 所以S △PBC =S △PBF +S △PCF =221

()24(2)42

B C FP x x FP m m m -==-+=--+.因此当P 在BC 下方

时,△PBC 的最大值为4当P 在BC 上方时,因为S △ABC =5,所以S △PBC <5.

综上所述,0<S <5.

②若△PBC 的面积S 为正整数,则这样的△PBC 共有11个.

考点伸展

点P 沿抛物线从A 经过C 到达B 的过程中,△PBC 的面积为整数,依次为(5),4,3,2,1,(0),1,2,3,4,3,2,1,(0).

当P 在BC 下方,S =4时,点P 在BC 的中点的正下方,F 是BC 的中点.

例 2 2012年菏泽市中考第21题

如图1,在平面直角坐标系中放置一直角三角板,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O逆时针旋转90°,得到三角形A′B′O.

(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;

(2)设点P是第一象限内抛物线上的一个动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O 面积的4倍?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出它的两条性质.

图1

动感体验

请打开几何画板文件名“12菏泽21”,拖动点P在第一象限内的抛物线上运动,可以体验到,当四边形PB′A′B是等腰梯形时,四边形PB′A′B的面积是△A′B′O面积的4倍.

请打开超级画板文件名“12菏泽21”,拖动点P在第一象限内的抛物线上运动,可以体验到,当四边形PB′A′B是等腰梯形时,四边形PB′A′B的面积是△A′B′O面积的4倍.

思路点拨

1.四边形PB′A′B的面积是△A′B′O面积的4倍,可以转化为四边形PB′OB的面积是

△A′B′O面积的3倍.

2.联结PO,四边形PB′OB可以分割为两个三角形.

3.过点向x轴作垂线,四边形PB′OB也可以分割为一个直角梯形和一个直角三角形.

满分解答

(1)△AOB绕着原点O逆时针旋转90°,点A′、B′的坐标分别为(-1, 0) 、(0, 2).

因为抛物线与x轴交于A′(-1, 0)、B(2, 0),设解析式为y=a(x+1)(x-2),

代入B′(0, 2),得a=1.

所以该抛物线的解析式为y=-(x+1)(x-2) =-x2+x+2.

(2)S △A ′B ′O =1.

如果S 四边形PB ′A ′B =4 S △A ′B ′O =4,那么S 四边形PB ′OB =3 S △A ′B ′O =3.如图2,作PD ⊥OB ,垂足为D . 设点P 的坐标为 (x ,-x 2+x +2).

232'1111

(')(22)22222PB OD S DO B O PD x x x x x x =+=-++=-++梯形. 2321113

(2)(2)22222

PDB

S DB PD x x x x x ?=?=--++=-+. 所以2'''2+2PDB PB A D PB OD S S S x x ?=+=-+四边形梯形.解方程-x 2+2x +2=3,得x 1=x 2=1. 所以点P 的坐标为(1,2).

图2 图3 图4

(3)如图3,四边形PB ′A ′B 是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线.

考点伸展

第(2)题求四边形PB ′OB 的面积,也可以如图4那样分割图形,这样运算过程更简单.

'11

'222PB O P S B O x x x ?=?=?=. 2211

2(2)222

PBO

P S BO y x x x x ?=?=?-++=-++. 所以2'''2+2PB O PBO PB A D S S S x x ??=+=-+四边形.

甚至我们可以更大胆地根据抛物线的对称性直接得到点P :作△A ′OB ′关于抛物线的对称轴对称的△

BOE ,那么点E 的坐标为(1,2).

而矩形EB ′OD 与△A ′OB ′、△BOP 是等底等高的,所以四边形EB ′A ′B 的面积是△A ′B ′O 面积的4倍.因此点E 就是要探求的点P .

例 3 2012年河南省中考第23题

如图1,在平面直角坐标系中,直线1

12

y x =

+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .

(1)求a 、b 及sin ∠ACP 的值; (2)设点P 的横坐标为m .

①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m 的值;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12河南23”,拖动点P 在直线AB 下方的抛物线上运动,可以体验到,PD 随点P 运动的图象是开口向下的抛物线的一部分,当C 是AB 的中点时,PD 达到最大值.观察面积比的度量值,可以体验到,左右两个三角形的面积比可以是9∶10,也可以是10∶9.

思路点拨

1.第(1)题由于CP //y 轴,把∠ACP 转化为它的同位角.

2.第(2)题中,PD =PC sin ∠ACP ,第(1)题已经做好了铺垫. 3.△PCD 与△PCB 是同底边PC 的两个三角形,面积比等于对应高DN 与BM 的比.

4.两个三角形的面积比为9∶10,要分两种情况讨论.

满分解答

(1)设直线1

12

y x =

+与y 轴交于点E ,那么A (-2,0),B (4,3),E (0,1).在Rt △AEO 中,OA =2,OE =1,所以5AE =25

sin AEO ∠=

. 因为PC //EO ,所以∠ACP =∠AEO .因此25

sin ACP ∠=

将A (-2,0)、B (4,3)分别代入y =ax 2+bx -3,得4230,

1643 3.a b a b --=??+-=?

解得12a =

,12

b =-. (2)由211(,3)22P m m m --,1

(,1)2

C m m +,

得221111

(1)(3)42222

PC m m m m m =+---=-++.

所以2225251595

sin (4)(1)2PD PC ACP PC m m m =∠=

=-++=--+

.所以PD 的最大值为95

. (3)当S △PCD ∶S △PCB =9∶10时,52

m =; 当S △PCD ∶S △PCB =10∶9时,329

m =

图2

考点伸展

第(3)题的思路是:△PCD 与△PCB 是同底边PC 的两个三角形,面积比等于对应高DN 与BM 的比.

而252511cos cos 4)(2)(4)25

DN PD PDN PD ACP m m m m =∠=∠=-++=-+-, BM =4-m .

①当S △PCD ∶S △PCB =9∶10时,19(2)(4)(4)510m m m -+-=-.解得5

2

m =.②当S △PCD ∶S △PCB =10∶

9时,110(2)(4)(4)59

m m m -+-=-.解得32

9m =.

例 4 2011年南通市中考第28题

如图1,直线l经过点A(1,0),且与双曲线

m

y

x

=(x>0)交于点B(2,1).过点(,1)

P p p-(p>1)作x

轴的平行线分别交曲线

m

y

x

=(x>0)和

m

y

x

=-(x<0)于M、N两点.

(1)求m的值及直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;

(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“11南通28”,拖动点P在射线AB上运动,可以体验到,当直线MN经过(0,2)点时,图形中的三角形都是等腰直角三角形;△AMN和△AMP是两个同高的三角形,MN=4MP存在两种情况.

思路点拨

1.第(2)题准确画图,点的位置关系尽在图形中.

2.第(3)题把S△AMN=4S△AMP转化为MN=4MP,按照点M与线段NP的位置关系分两种情况讨论.满分解答

(1)因为点B(2,1)在双曲线

m

y

x

=上,所以m=2.设直线l的解析式为y kx b

=+,代入点A(1,0)

和点B(2,1),得

0,

2 1.

k b

k b

+=

?

?

+=

?

解得

1,

1.

k

b

=

?

?

=-

?

所以直线l的解析式为1

y x

=-.

(2)由点(,1)

P p p-(p>1)的坐标可知,点P在直线1

y x

=-上x轴的上方.如图2,当y=2时,点P的坐标为(3,2).此时点M的坐标为(1,2),点N的坐标为(-1,2).

由P (3,2)、M (1,2)、B (2,1)三点的位置关系,可知△PMB 为等腰直角三角形.由P (3,2)、N (-1,2)、A (1,0)三点的位置关系,可知△PNA 为等腰直角三角形.所以△PMB ∽△PNA .

图2 图3 图4

(3)△AMN 和△AMP 是两个同高的三角形,底边MN 和MP 在同一条直线上. 当S △AMN =4S △AMP 时,MN =4MP .

①如图3,当M 在NP 上时,x M -x N =4(x P -x M ).因此222()4(1)x x x x ????--=-- ? ?????.解得113x +=或113x -=

(此时点P 在x 轴下方,舍去).此时113

p +=. ②如图4,当M 在NP 的延长线上时,x M -x N =4(x M -x P ).因此222()4(1)x x x x ????--=-- ? ?????.解得

15x +=

或15x -=(此时点P 在x 轴下方,舍去).此时15

p +=. 考点伸展

在本题情景下,△AMN 能否成为直角三角形?

情形一,如图5,∠AMN =90°,此时点M 的坐标为(1,2),点P 的坐标为(3,2).情形二,如图6,∠MAN =90°,此时斜边MN 上的中线等于斜边的一半.

不存在∠ANM =90°的情况.

图5 图6

例5 2010年广州市中考第25题

如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端

点B、C不重合),过点D作直线

1

2

y x b

=-+交折线OAB于点E.

(1)记△ODE的面积为S,求S与b的函数关系式;

(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.

图1

动感体验

请打开几何画板文件名“10广州25”,拖动点D由C向B运动,观察S随b变化的函数图象,可以体验到,E在OA上时,S随b的增大而增大;E在AB上时,S随b的增大而减小.双击按钮“第(3)题”,拖动点D由C向B运动,可以观察到,E在OA上时,重叠部分的形状是菱形,面积不变.双击按钮“第(2)题”可以切换.

思路点拨

1.数形结合,用b表示线段OE、CD、AE、BE的长.2.求△ODE的面积,要分两种情况.当E 在OA上时,OE边对应的高等于OC;当E在AB边上时,要利用割补法求△ODE的面积.3.第(3)题中的重叠部分是邻边相等的平行四边形.

4.图形翻着、旋转等运动中,计算菱形的边长一般用勾股定理.

满分解答

(1)①如图2,当E在OA上时,由

1

2

y x b

=-+可知,点E的坐标为(2b,0),OE=2b.此时S=S△ODE

=11

21

22

OE OC b b

?=??=.

②如图3,当E在AB上时,把y=1代入

1

2

y x b

=-+可知,点D的坐标为(2b-2,1),CD=2b-2,

BD=5-2b.把x=3代入

1

2

y x b

=-+可知,点E的坐标为

3

(3,)

2

b-,AE=

3

2

b-,BE=

5

2

b

-.此时

S=S矩形OABC-S△OAE-S△BDE-S△OCD

13151

33()()(52)1(22)

22222

b b b b

-?-----??-2

5

2

b b

=-+.

(2)如图4,因为四边形O1A1B1C1与矩形OABC关于直线DE对称,因此DM=DN,那么重叠部分是邻边相等的平行四边形,即四边形DMEN是菱形.

作DH⊥OA,垂足为H.由于CD=2b-2,OE=2b,所以EH=2.

设菱形DMEN的边长为m.在Rt△DEH中,DH=1,NH=2-m,DN=m,所以12+(2-m)2=m2.解

5

4

m=.所以重叠部分菱形DMEN的面积为

5

4

图2 图3 图4

考点伸展

把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形

的最小面积为1,如图6所示;最大面积为5

3

,如图7所示.

图5 图6 图7

例 6 2010年扬州市中考第28题

如图1,在△ABC 中,∠C =90°,A C =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .

(1)求线段AD 的长;

(2)若EF ⊥AB ,当点E 在斜边AB 上移动时,

①求y 与x 的函数关系式(写出自变量x 的取值范围); ②当x 取何值时,y 有最大值?并求出最大值.

(3)若点F 在直角边AC 上(点F 与A 、C 不重合),点E 在斜边AB 上移动,试问,是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.

图1 备用图

动感体验

请打开几何画板文件名“10扬州28”,拖动点E 在AB 上运动,从y 随x 变化的图象可以体验到,当F 在AC 上时,y 随x 的增大而增大;当F 在BC 上时,y 随x 变化的图象是开口向下的抛物线的一部分,y 的最大值对应抛物线的顶点.双击按钮“第(3)题”,我们已经设定好了EF 平分△ABC 的周长,拖动点E ,观察图象,可以体验到,“面积AEF ”的值可以等于3,也就是说,存在直线EF 将△ABC 的周长和面积同时平分.双击按钮“第(2)题”可以切换。

思路点拨

1.第(1)题求得的AD 的长,就是第(2)题分类讨论x 的临界点. 2.第(2)题要按照点F 的位置分两种情况讨论.

3.第(3)题的一般策略是:先假定平分周长,再列关于面积的方程,根据方程的解的情况作出判断.

满分解答

(1) 在Rt △ABC 中, AC =3,BC =4,所以AB =5.在Rt △ACD 中,39

cos 355

AD AC A ==?=. (2) ①如图2,当F 在AC 上时,905x <<

.在Rt △AEF 中,4

tan 3

EF AE A x ==.所以21223y AE EF x =?=.如图3,当F 在BC 上时,955x <≤.在Rt △BEF 中,3tan (5)4EF BE B x ==-.所

以21315

288

y AE EF x x =?=-+

. ②当905x <<时,223y x =的最大值为54

25

当9

55

x <≤时,231588y x x =-

+23575)8232x =--+(的最大值为7532

. 因此,当5

2x =时,y 的最大值为7532

图2 图3 图4

(3)△ABC 的周长等于12,面积等于6.先假设EF 平分△ABC 的周长,那么AE =x ,AF =6-x ,x 的变化范围为3<x ≤5.因此1142

sin (6)(6)2255

AEF S AE AF A x x x x ?=

??=-?=--.解方程2(6)35x x --=,得1

362

x = 因为1

362

x =+3≤x ≤5范围内(如图4)

,因此存在直线EF 将△ABC 的周长和面积同时平分. 考点伸展

如果把第(3)题的条件“点F 在直角边AC 上”改为“点F 在直角边BC 上”,那么就不存在直线EF 将△ABC 的周长和面积同时平分.

先假设EF 平分△ABC 的周长,那么AE =x ,BE =5-x ,BF =x +1.

因此21133

sin (5)(1)(45)22510

BEF S BE BF B x x x x ?=??=-+?=---. 解方程2

3(45)310

x x ---=.整理,得2450x x -+=.此方程无实数根.

例7 2009年兰州市中考第29题

如图1,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.

(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图2所示,请写出点Q 开始运动时的坐标及点P 运动速度;

(2)求正方形边长及顶点C 的坐标;

(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.

(4)如果点P 、Q 保持原速度速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由

图1 图2

动感体验

请打开几何画板文件名“09兰州29”,拖动点Q在x轴上运动,可以体验到,点Q运动的起点为(1,0);当P在AB上时,△OPQ的面积随x变化的图象是开口向下的抛物线的一部分;观察点P与OQ的垂直平分线的位置关系,可以体验到,有两个时刻,PO=PQ.双击按钮“PO=PQ,P在AB上”和“PO=PQ,P在CD上”,可以准确显示PO=PQ.

思路点拨

1.过点B、C、P向x轴、y轴作垂线段,就会构造出全等的、相似的直角三角形,出现相等、成比例的线段,用含有t的式子表示这些线段是解题的基础.2.求点C的坐标,为求直线BC、CD的解析式作铺垫,进而为附加题用两点间的距离公式作准备.

3.不论点P在AB、BC还是CD上,点P所在的直角三角形的三边比总是3∶4∶5,灵活运用方便解题.

4.根据二次函数的解析式求函数的最值时,要注意定义域与对称轴的位置关系.

满分解答

(1)Q(1,0),点P每秒钟运动1个单位长度.

(2)过点B作BE⊥y轴于点E,过点C作x轴的垂线交直线BE于F,交x轴于H.

在Rt△ABE中,BE=8,AE=10-4=6,所以AB=10.由△ABE≌△BCF,知BF=AE=4,CF=BE =6.所以EF=8+6=14,CH=8+4=12.因此点C的坐标为(14,12).

(3)过点P作PM⊥y轴于M,PN⊥x轴于N.因为PM//BE,所以AP AM MP

AB AF BF

==,即

1068

t AM MP

==.因

34

,

55

AM t PM t

==.于是

34

10,

55

PN OM t ON PM t

==-==.

设△OPQ的面积为S(平方单位),那么2

113347

(1)(10)5

2251010

S OQ PN t t t t

=??=+-=-++,定义域为0

≤t≤10.

因为抛物线开口向下,对称轴为直线

47

6

t=,所以当

47

6

t=时,△OPQ的面积最大.此时P的坐标为

(94

15

53

10

).

(4)当

5

3

t=或

295

13

t=时,OP与PQ相等.

图3 图4

考点伸展

附加题的一般思路是:点Q的横坐标是点P的横坐标的2倍.先求直线AB、BC、CD的解析式,根据直线的解析式设点P的坐标,再根据两点间的距离公式列方程PO=PQ.

附加题也可以这样解:

①如图4,在Rt△AMP中,设AM=3m,MP=4 m,AP=5m,那么OQ=8m.根据AP、OQ的长列

方程组

5,

81,

m t

m t

=

?

?

=+

?

解得

5

3

t=.

②如图5,在Rt△GMP中,设GM=3m,MP=4 m,GP=5m,那么OQ=8m.在Rt△GAD中,GD=.根

据GP、OQ的长列方程组

537.5,

81,

m t

m t

=-

?

?

=+

?

解得

295

13

t=.

③如图6,设MP=4m,那么OQ=8m.根据BP、OQ的长列方程组

51010,

81,

m t

m t

-=-

?

?

=+

?

解得

5

3

t=,但

这时点P不在BC上.

图5 图6

专题:二次函数中的动点问题

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2; 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结: ⑴求二次函数的图象与x轴的交点坐标.需转化为一元二次方程; ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号.或由二次函数 中a,b,c的符号判断图象的位置.要数形结合; ⑷二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点 坐标.或已知与x轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式.二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或

其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A 和点B (-.与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M .问在对称轴上是否存在点P .使△CMP 为等腰三角形若存在.请直接写出所有符合条件的点P 的坐标;若不存在.请说明理由. (3) 如图②.若点E 为第二象限抛物线上一动点.连接BE 、CE .求四边形BOCE 面积的最大值.并求此时E 点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时.以C 为圆心CM 为半径画弧.与对称轴交点即为所求点P.②M 为顶点时.以M 为圆心MC 为半径画弧.与对称轴交点即为所求点P.③P 为顶点时.线段MC 的垂直平分线与对称轴交点即为所求点P 。 第(3)问方法一.先写出面积函数关系式.再求最大值(涉及二次函数最值); 方法二.先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组).再求面积。

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数动点问题解答方法技巧分析

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求与已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标、 ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式与一元二次方程之间的内在联系: 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)与点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上就是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 ①特殊四边形为背景; ②点动带线动得出动三角形; ③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式; ⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。 二次函数的动态问题(动点)

二次函数中动点图形的面积最值专题

中 学 复 习 学 案 年级: 9年级 科目: 数学 执笔: 内容: 《二次函数中动点图形的面积最值专题一》 目 标:1.学会用代数法表示与函数图象相关的几何图形的长度,面积 2.能用函数图象的性质解决相关问题 重 点:二次函数中动点图形的面积最值的一般及特殊解法 难 点:点的坐标的求法 学习过程: 一、 学前准备: (1)填空 如图,抛物线 与x 轴交于点A 和点B ,与y轴交于点C.则点A 坐标为 , 点B 坐标为 ,点C坐标为 , ΔABC的面积为 . 顶点坐标为 ,对称轴为 . 直线AC 的解析式为 . (2)观察下列图形,指出如何求出阴影部分的面积 322++-=x x y

小结:规则图形的面积可直接套用公式,不规则图形的面积用割补法。 二、“二次函数中动点与图形面积”试题解析 例题:如图二次函数43 4312--=x x y 与x 轴交于点C ,与y 轴交于点A ,过点A 作一条直线与x 轴平行,与抛物线交于点B. (1) 求直线AC 的解析式; (2)连接BC ,求ΔABC 的面积. 变式1:若抛物线的顶点为B ,求ΔABC 的面积.

变式2:若点B 是线段AC 下方的抛物线上的动点, 那么,ΔABC 的面积有最大值吗?如果有,请求出. 最大面积和此时点B 的坐标. 变式3:如图,抛物线中的点A 、B 、C 与例题中的点A 、B 、C 一样,点P 是直线AC 上方抛物线上的动点,是否存在点P ,使ABC PAC S S ??=2,若存在,求出点P 的坐标,若不存在,说明理由. 变式4:若B 、C 是抛物线与x 轴的交点,A 是抛物线与y 轴的交点,点D 是线段AC 上的动点,求四边形ABCD 面积的最大

初中数学二次函数动点问题

函数性问题专题—动点问题 函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题) 一、因动点而产生的面积问题 例1:如图10,已知抛物线P :y =ax 2 +bx +c (a ≠0 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上,与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下: (1 求A 、B 、C 三点的坐标; (2 若点D 的坐标为(m ,0 ,矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围; (3 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM =k ·DF ,若点M 不在抛物线P 上,求k 的取值范围. 若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2、(3小题换为下列问题解答(已知条件及第(1小题与上相同,完全正确解答只能得到5分: (2 若点D 的坐标为(1,0 ,求矩形DEFG 的面积 . 例2:如图1,已知直线

12 y x =-与抛物线2 164 y x =- +交于A B ,两点. (1)求A B ,两点的坐标; (2)求线段A B 的垂直平分线的解析式; (3)如图2,取与线段A B 端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线A B 动点P 将与A B ,构成无数个三角形,这些三角求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.图2 图1 图10 第-2-页共4页 例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边 AB=4,BC=4

中考二次函数动点问题(含答案)

中考二次函数动点问题(含答案) 1.如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方 向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止 运动,设运动的时间为秒. (1)求正方形的边长. (2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分 (如图②所示),求两点的运动速度. (3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.(4)若点ABCD保持(2)中的速度不变,则点ABCD沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小.当点ABCD沿着这两边运动时,使ABCD的点ABCD有个. (抛物线ABCD的顶点坐标是. [解] (1)作轴于. , . . (2)由图②可知,点从点运动到点用了10秒. 又. 两点的运动速度均为每秒1个单位. (3)方法一:作ABCD轴于ABCD,则ABCD. ABCD ,即 ABCD . ABCD .ABCD .ABCD,

ABCD . 即 ABCD . ABCD ,且 ABCD , ABCD当 ABCD 时,ABCD有最大值. 此时 ABCD , ABCD点ABCD的坐标为 ABCD .(8分) 方法二:当ABCD时, ABCD . 设所求函数关系式为. 抛物线过点, . ,且, 当时,有最大值. 此时, 点的坐标为. (4). [点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。 . 2. 如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒. (1)求的度数. (2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度. (3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标. (4)如果点ABCD保持(2)中的速度不变,那么点ABCD沿ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小,当点ABCD沿这两边运动时,使ABCD的点ABCD有几个?请说明理由. 解: (1)ABCD.

二次函数中动点图形的面积最值(初三数学)

深圳高级中学(集团)GLOBE学科课程教学设计 《二次函数中动点图形的面积最值问题》 初三年级数学备课组 一、聚焦问题 因为点动产生图形发生变化,从而面积发生变化.利用二次函数求以动态几何为背景的最值问题,是中考中的一类重要题型。这类试题能有效整合代数和几何的部分重要知识,适于考查考生分析、解决问题的能力及实践和创新的能力,较好地渗透了分类讨论、数形结合、转化与化归、函数与方程等数学思想。 中考考纲要求教师在教学过程中渗透和落实数学学科核心素养的培养(数感、符号意识、几何直观、应用意识),GLOBE教学法要求教师以问题为导向,通过合作探究,引导学生用跨学科知识、思维和方法来解决问题。根据以上的要求,本课聚焦问题如下: 1.学科知识层面: 复习强化二次函数的基本知识,学会用代数式表示函数各个点的坐标,能够利用坐标计算、利用代数式表示二次函数中特定图形、动态图形的面积及其最大值。 2.学科素养层面: 通过利用代数式表示面积的方式,培养学生几何问题代数化的能力,对复杂问题进行分解和转化的能力,培养学生的几何思维能力,空间思维能力。 3.价值观引领方面: 从数到式、从点到线再到面,从静到动,体会数学学习的过程,体验获得成功的喜悦,锻炼克服困难的意志,建立自信心,养成认真勤奋、独立思考、合作交流、反思质疑的学习习惯,形成坚持真理、修正错误、严谨求实的科学态度。 因此,本课聚焦的重点问题是:“以静制动”把动态问题变成静态问题来解、“复杂问题简单化”归纳总结提炼出这类面积问题解题模型,让学生真正掌握科学、简便的解题路径,正确、快速地解题。 二、核心问题:利用割补法求多边形面积 方法要点是:把所求面积的图形进行适当割补,转化成有利于面积表达的常规几何图形。 三、分解问题 分解问题一:如何求底边平行于坐标轴的三角形面积? 问题引领1:通过坐标求三角形的底和高表示面积. 问题引领2:如何求底边平行于坐标轴的三角形面积? 分解问题二:如何利用割补法求两边均不平行坐标轴三角形的面积? 问题引领:如何利用割补法求两边均不平行坐标轴三角形的面积及其最值? 分解问题三:如何求二次函数中动点四边形的面积及最值? 问题引领:如何求二次函数中动点四边形的面积及最值?

二次函数动点问题(一)

(2)抛物线的对称轴与x轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点 精品资料欢迎下载 二次函数中的动点问题(一) 学习目标 1、熟悉掌握二次函数的概念及图像的特征。 2、掌握二次函数解析式的具体求法及二次函数的一些基本性质及利用二次函数的性质解决一些极值问题:如边长、面积、利润等。 3、解决二次函数中因动点产生不同图形的问题及其包含的一些几何问题 学习过程 一、因动点产生的相似三角形问题 例1:如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,△6),且ABE与△ABC的面积之比为3∶2. (1)求直线AD和抛物线的解析式; ....的坐标. 专项练习: 直线y=- 1 3 x+1分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y =ax2+bx+c经过A、C、D三点. (1)写出点A、B、C、D的坐标; (2)求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标; (3)在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的 坐标;若不存在,请说明理由. 二、因动点产生的等腰三角形问题 例2:如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连

精品资料欢迎下载结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式; (2)若m=8,求x为何值时,y的值最大,最大值是多少? (3)若y 12 △,要使DEF为等腰三角形,m的值应为多少?m 图1 专项训练: 如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC 上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H所经过的路长(不必写解答过程). 图1图2 三、因动点产生的直角三角形问题 例3:如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),联结PP′、P′A、P′C.设点P的纵坐标为a. (1)当b=3时,①求直线AB的解析式; ②若点P′的坐标是(-1,m),求m的值;

二次函数中动点问题——平行四边形(练习)

2018年04月28日187****6232的初中数学组卷 一.解答题(共5小题) 1.如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0)和点C(0,3). (1)求抛物线的解析式和顶点E的坐标; (2)点C是否在以BE为直径的圆上?请说明理由; (3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R 的坐标,若不存在,请说明理由. 2.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D. (1)求抛物线的解析式; (2)设点M(1,m),当MB+MD的值最小时,求m的值; (3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E 作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.

3.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2. (1)求A,B两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值; (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ 的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由. (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由. 4.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).

二次函数动点问题的学习归纳

二次函数动点问题的学习归纳 模式1:平行四边形 例题1:在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标. 练习:如图,抛物线 322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF//DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

例题2:如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数 y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2. (1)求二次函数y=ax2+bx+c的解析式; (2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标. 练习:如图1,直线 4 3 4 + - =x y 和x轴、y轴的交点分别为B、C,点A的坐标是 (-2,0). (1)试说明△ABC是等腰三角形; (2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S. ①求S与t的函数关系式; ②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON为直角三角形时,求t的值.

二次函数动点问题压轴题专题汇编(含答案)

二次函数的动态问题(动点) 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =∠的点P 有 个. [解] (1)作BF y ⊥轴于F . ()()01084A B ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=,. P Q ∴,两点的运动速度均为每秒1个单位. 图① 图②

(3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 3 5 GA t ∴=. 3 105OG t ∴=-. 4OQ t =+, ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?. 即2319 20105 S t t =- ++. 19195323 210b a -=-=???- ??? ,且190103≤≤, ∴当19 3t = 时,S 有最大值. 此时476331 1051555 GP t OG t ===-=,, ∴点P 的坐标为7631155?? ??? ,. (8分) 方法二:当5t =时,163 7922 OG OQ S OG OQ ==== ,,. 设所求函数关系式为220S at bt =++. 抛物线过点()63102852? ? ??? ,,,, 1001020286325520.2a b a b ++=??∴?++=??, 31019.5a b ?=-??∴??=?? ,

中考数学压轴题 二次函数动点问题 专题练习

二次函数的动点问题 1如图,已知抛物线经过原点O 和x 轴上另一点A ,它的对称轴x =2 与x 轴 交于点C ,直线y =-2x -1经过抛物线上一点B (-2,m ),且与y 轴、直线x =2分别交于点D 、E . (1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB =CE ;② D 是BE 的中点; (3)若P (x ,y )是该抛物线上的一个动点,是否存在这样的点P ,使得PB =PE ,若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由 分析 (1)由点B (-2,m )在直线12--=x y 上,可求得m 的值及 点B 的坐标,进而求得抛物线的解析式; (2)通过分别求得CB 和CE 的长来说明CB =CE, 过点B 作BG ∥x 轴,与y 轴交于F 、直线x =2交于G ,过点E 作EH ∥x 轴,交y 轴于H ,由△DFB ≌△DHE,证得D 是BE 的中点; (3)若存在点P 使得PB=PE,则点P 必在线段BE 的中垂线CD 上, 动点P 又在抛物线上,通过解直线CD 和抛物线对应的函数关系式所联列的方程组,其解即为所求点的坐标. 解(1)∵ 点B (-2,m ) 在直线12--=x y 上, ∴ m =-2×(-2)-1=3. ∴ B (-2,3) ∵ 抛物线经过原点O 和点A ,对称轴为x =2, ∴ 点A 的坐标为(4,0) . 设所求的抛物线对应函数关系式为y =a (x -0)(x -4). 将点B (-2,3)代入上式,得3=a (-2-0)(-2-4),∴ 4 1=a . ∴ 所求的抛物线对应的函数关系式为)4(41-= x x y ,即x x y -=24 1 . (2)①直线y =-2x -1与y 轴、直线x =2的交点坐标分别为D (0,-1) E (2,-5).

二次函数与几何图形动点问题

A 专题九 二次函数与几何图形动点问题 中考目标: 1、 灵活运用二次函数、特殊三角形和四边形相关性质、判定、定理,确定二次函数,判定线与线关系、特殊三角形、四边形及相应的周长、面积、还有存在、最值等问题; 2、 能够通过数形结合,进行建构模型,联想、猜测,运用分类、转化、从特殊到一般归纳等数学思想解 决问题; 3、 运用“动中求静”,找到、运用不变的数、不变的量、不变的关系,建立函数关系及综合应用代数、 几何知识解决问题。 一.考点归纳:特殊图形的定义、性质、判定等,图形的变化:轴对称、平移、旋转(特殊的是中心对称) 二次函数部分的归纳: 1、二次函数的表达式:一般式 ,顶点( , ) 对称轴x= , 还有 式; 2、二次函数的图象是 ,二次函数的性质: 。 二、考点探究 活动一:二次函数与三角形 例1.已知抛物线y =ax 2+bx +c (a >0)的图象经过点B (12,0)和C (0,-6),对称轴为x =2. (1)求该抛物线的解析式; (2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同 时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直 平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由; (3)在(2)的结论下,直线x =1上是否存在点M 使,△MPQ 为等腰三角形?若存在,请求出所有点M 的 坐标,若不存在,请说明理由. 练习:如图,二次函数y = -x 2+ax +b 的图像与x 轴交于A (-2 1,0)、B (2,0)两点,且与y 轴交于点C ; (1) 求该拋物线的解析式,并判断△ABC 的形状; (2) 在x 轴上方的拋物线上有一点D ,且以A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标; (3) 在此拋物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由。 跟踪练习:《题型专练》P56 T1;P58 T5 中考考点:二次函数与四边形 例1. 如图,抛物线2 23y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物 线交于A 、C 两点,其C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶 点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 跟踪练习:《题型专练》P57 T3;P59 T7 中考考点:二次函数与三角形、四边形的面积

二次函数与面积专题(可编辑修改word版)

3 图 1 图 2 重庆市巴川中学初 2019 级九上数学专题训练三 ——二次函数与面积问题 班级 姓名 等级 题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数). 例 1、定义:如图 1,抛物线 y=ax 2+bx+c(a≠0)与 x 轴交于 A ,B 两点,点 P 在抛物线上(点 P 与 A ,B 两点不重合),如果△ABP 的三边满足 AP 2+BP 2=AB 2,则称点 P 为抛物线 y=ax 2+bx+c(a ≠0)的勾股点. (1) 直接写出抛物线 y=-x 2+1 的勾股点的坐标; (2) 如图 2,已知抛物线 C :y=ax 2+bx(a≠0)与 x 轴交于 A ,B 两点,点 P(1, )是抛物线 C 的 勾股点,求抛物线 C 的函数表达式; (3) 在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S △ABQ =S △ABP 的点 Q (异于点 P )的 坐标.

练习 1. 如图,已知抛物线y =-x 2+ 2x + 3 与x 轴交于点A 和点B,与y 轴交于点C,连接BC 交抛物线的对称轴于点E,D 是抛物线的顶点. (1)直接写出点A、B、C、D 的坐标,并求出S△ABD; (2)求出直线BC 的解析式; (3)若点P 在第一象限内的抛物线上,且S△ABP=4S△COE,求P 点坐标.

题型二:已知二定点,在抛物线上求一动点,使三角形面积最大

例2. 如图,已知抛物线 y=ax 2+bx-3 与 x 轴交于 A 、B 两点,过点 A 的直线 l 与抛物线交于点 C , 其中 A 点的坐标是(-1,0),C 点坐标是(-4,-3). (1) 求抛物线的解析式; (2) 若点 E 是位于直线 AC 的上方抛物线上的一动点,试求△ACE 的最大面积及 E 点的坐标; (3) 在(2)的条件下,在抛物线上是否存在异于点 E 的 P 点,使 S △PAC =S △EAC ,若存在,求 出点 P 的坐标;若不存在,请说明理由. 变式:在抛物线上是否存在点 P ,使 S △PAC =S △ABC ,若存在,求出点 P 的坐标;若不存在,请说明理由.

二次函数的动点问题(含答案)

7 2 x = B(0,4) A(6,0) E F x y O 二次函数与四边形 一.二次函数与四边形的形状 例1.(浙江义乌市) 如图,抛物线2 23y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 练习1.(河南省实验区) 23.如图,对称轴为直线7 2 x = 的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标; (2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形 ②是否存在点E ,使平行四边形OEAF 为正方形若存在,求出点E 的坐标; 若不存在,请说明理由. 练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '. (1)求抛物线2l 的函数关系式; (2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形 (3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形若存,求 出点M 的坐标;若不存在,说明理由. A 5- 4- 3- 2- 1- 1 2 3 4 5 5 4 3 2 1 A E B C ' 1- O 2l 1l x y

中考数学压轴题二次函数动点问题一

二次函数压轴题 1.如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式. (2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小若存在,请求出点M 的坐标;若不存在,请说明理由。 2.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0), OB =OC ,tan∠ACO=3 1. (1)求这个二次函数的表达式. (2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形若存在,请求出点F 的坐标;若不存在,请说明理由. (3)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大求出此时P 点的坐标和△APG 的最大面积. 3.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点, 与y 轴交于点C (0,3)。

⑴求抛物线的解析式; ⑵设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC 是等腰三角形若存在,求出符合条件的点P的坐标;若不存在,请说明理由; ⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。 4.已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB

相关文档
最新文档