草甘膦合成工艺的改进

草甘膦合成工艺的改进
草甘膦合成工艺的改进

合成工艺的优化

合成工艺的优化 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 转化率是消耗的原料的摩尔数除于原料的初始摩尔数。 选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。 收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。 转化率×选择性= 收率 反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,少量原料依然存在于反应体系中。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。 化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。 只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。 提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。

而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓

瑞替加滨的合成工艺改进

收稿日期:2013-04-28 作者简介:朱磊(1987-),男(汉族),江苏泰州人,硕士研究生, E-mail :qpalzm0523@https://www.360docs.net/doc/e46564273.html, ;*通讯作者:王浦海(1956-),男(汉族),江苏南京人,研究员,硕士生导师,主要从事药物化学教学与研究,Tel :(025)58139412,E-mail :wangpuhai@hotmail.com 。 文章编号:1005-0108(2014)01-0031-03 瑞替加滨的合成工艺改进 朱磊1,王佳乐1,王浦海 2* (1.南京工业大学药学院,江苏南京211816;2.南京工业大学江苏省药物研究所,江苏南京211816)摘要:目的改进抗癫痫药瑞替加滨的合成工艺。方法以对硝基苯胺(2)为起始原料,首先与氯甲酸乙酯反 应得到N -(4-硝基苯基)氨基甲酸乙酯(3),3经还原、氨基保护、硝化、脱保护制得N -(2-硝基-4-氨基苯基)氨基甲酸乙酯(6),6与对氟苯甲醛反应生成N -[2-硝基-4-(4-氟苯基亚甲基氨基)苯基]氨基甲酸乙酯(7), 7不经分离直接以NaBH 4还原制得N -[2-硝基-4-(4-氟苯基甲基氨基)苯基]氨基甲酸乙酯(8),最后8经三氯化 铁/水合肼还原制得抗癫痫药物瑞替加滨。结果与结论目标化合物的结构经IR、1H-NMR、13 C-NMR和HRMS (ESI )谱确证。改进后的工艺操作简单,反应选择性高,成本低,利于工业化生产,总收率为62%(以对 硝基苯胺计)。 关键词:瑞替加滨;抗癫痫药;工艺改进中图分类号:O626;R914.5文献标志码:A 瑞替加滨(retigabine ,1)化学名为N -[2-氨基-4-(4-氟苯基甲基氨基)苯基]氨基甲酸乙酯, 是由GlaxoSmithKline 和Valeant 制药公司研发的神经元钾离子通道开启剂,是一种全新作用机制的抗癫痫药。该药于2011年3月在欧盟获准上市,2011年6月在美国获准上市,用于成人部分性癫痫发作的辅助治疗。该药对耐药性部分癫痫的发作尤其有效, 可明显降低发作频率,为临床抗癫痫治疗提供了新方法[1-2] 。本文作者对瑞替加滨的合成工艺进行改进。 1合成路线 文献报道的瑞替加滨的合成方法主要有以下 4种:1)以2-硝基-1,4-苯二胺为原料,与对氟苯甲醛反应后经过两次还原,再与氯甲酸乙酯反应制 得瑞替加滨(二盐酸盐)[3-4] 。2)以2-硝基-5-氟 苯胺为原料, 与对氟苄胺反应后经还原反应,再与氯甲酸乙酯反应制得瑞替加滨(二盐酸盐)[3] 。3)以4-氟-1,2-二硝基苯为起始原料,与对氟苄胺反应制得4-(4-氟苯基甲基氨基)-1,2-二硝基苯,经还原、与焦碳酸二乙酯进行酰化制得瑞替加 滨[5-6] 。4)以N -(4-氨基苯基)氨基甲酸乙酯为原料,经氨基保护、硝化、脱保护,与对氟苯甲醛反 应制得N -[2-硝基-4-(4-氟苯基亚甲基氨基)苯基] 氨基甲酸乙酯,再经过两次还原反应制得瑞替加滨(二盐酸盐,总收率为44%)[3] 。 本文作者参考相关文献[3,7-8] ,在文献[3]报 道的方法基础上,以廉价易得的对硝基苯胺(2) 为起始原料,经取代、还原、氨基保护、硝化、脱保 护、加成消去、还原反应制得瑞替加滨(1),总收率约为62%(以对硝基苯胺计),合成路线见图1 。 Figure 1The improved synthetic route to retigabine 第24卷第1期2014年2月总117期 中国药物化学杂志Chinese Journal of Medicinal Chemistry Vol.24No.1p.31Feb.2014 Sum 117

抗高血压药缬沙坦的新合成方法

化学试剂,2009,31(4),303~304 抗高血压药缬沙坦的新合成方法 邹江,杨琰,鲁峰,王文峰3 (北京赛科药业有限责任公司,北京 101111) 摘要:以2N 2三苯甲基252(4′2溴甲基联苯222基)四氮唑为原料,与L 2缬氨酸甲酯盐酸盐反应制得N 2[[2′2(2N 2三苯甲基2四氮唑252基)2(1,1′2二苯基)242基]2甲基]2L 2缬氨酸甲酯,然后经过脱三苯甲基保护、酰化、水解得到标题化合物,总收率4918%。 关键词:缬沙坦;血管紧张素Ⅱ受体拮抗剂;合成 中图分类号:O626.2 文献标识码:A 文章编号:025823283(2009)0420303202 收稿日期:2008206217作者简介:邹江(19792),男,山东人,硕士,研究方向为原料药及医药中间体。 缬沙坦(Valsartan ,1),化学名:N 2(12氧戊 基)2N 2[42[22(1H 2四唑252基)苯基]苄基]2L 2缬氨酸,是一种血管紧张素Ⅱ的1型(AT 1)受体拮抗剂,具有全新的降压机制,降压平稳、疗效强、作用时间长、患者耐受性好;作用部位确切,降压起效温和,对心率和细胞组织影响极小,长期用药对心肾功能有较好的保护作用。 文献[123]报道的关于缬沙坦的合成方法主要有:1)以4′2甲基222氰基联苯为原料,经过溴化、水解、氧化合成4′2甲酰基222氰基联苯,与L 2缬氨酸苄酯对甲苯磺酸盐缩合后还原得到N 2[42(22氰基苯基)苄基]2L 2缬氨酸苄酯,戊酰化后得到N 2[42(22氰基苯基)苄基]2N 2戊酰基2L 2缬氨酸苄酯,然后与三丁基叠氮化锡反应成四氮唑环,最后由催化氢解得到缬沙坦;2)4′2溴甲基222氰基联苯与L 2缬氨酸苄酯对甲苯磺酸盐反应得到N 2[42(22氰基苯基)苄基]2L 2缬氨酸苄酯,戊酰化、氢解、环合后制得缬沙坦;3)4′2溴甲基222氰基联苯L 2缬氨酸甲酯盐酸盐缩合得到N 2[(2′2氰基联苯242基)甲基]2(L )2缬氨酸甲酯,戊酰化得到N 2[(2′2氰基联苯242基)甲基]2N 2戊酰基2(L )2缬氨 酸甲酯,与三丁基叠氮化锡反应得到四氮唑物,经水解后得到缬沙坦。以上3种方法都是应用氰基与叠氮化物高温反应制备四氮唑环,污染大,危险性高。 本文根据最近专利文献[4]并在其基础上进行了工艺优化。以2N 2三苯甲基252(4′2溴甲基联苯222基)四氮唑为原料,与L 2缬氨酸甲酯盐酸盐反应制得N 2[[2′2(2N 2三苯甲基2四氮唑252基)2(1,1′2二苯基)242基]2甲基]2L 2缬氨酸甲酯(2);原文献中需要制备化合物2的氢溴酸盐,我们在反应过程中加入缚酸剂制备化合物2的游离碱,不 经纯化直接投入下一步反应中。由化合物2制备 N 2(12氧戊基)2N 2[[2′2(1H 2四氮唑252基)2(1,1′2二苯基)242基]2甲基]2L 2缬氨酸甲酯(4),原文献是先酰化后脱三苯甲基保护;我们在实验中发现,这样的酰化过程经常会伴随脱三苯甲基保护的副反应,不利于反应控制;我们调整了反应的次序,先脱三苯甲基保护得到N 2[[2′2(1H 2四氮唑252基)2(1,1′2二苯基)242基]2甲基]2L 2缬氨酸甲酯(3),然后再酰化得到化合物4。在水解的操作中,原文献采用三甲基硅醇钠的方法,成本高,反应条件苛刻;我们采用稀氢氧化钾(浓度<6%)低温(25~ 30℃ )反应的方式来进行水解,取得了不错的结果,产品缬沙坦中手性异构体含量<012%。整个工艺过程,中间体不经纯化直接投入下一步反应。合成路线如下所示。 3 03第31卷第4期邹江等:抗高血压药缬沙坦的新合成方法o

缬沙坦粗品合成第一工序 甲酯

缬沙坦粗品合成第一工序甲酯 甲酯设备: (1)、2个反应釜1500升,(2)、2台水冲泵,(3)、1个1500升高位槽(抽氯化亚砜),(4)、1个甲醇罐2000升,(5)、1个蒸出甲醇罐,(6)、2个片冷冷却系统, 甲酯投料:缬氨酸150kg,甲醇(回收甲醇)860升+180升,氯化亚砜200kg,饮用水200升。 酯化操作工艺: 1、先将200kg的氯化亚砜抽入高位槽滴加待用。 2、打入酯化釜甲酯860升,再投入缬氨酸150kg盖好釜盖,开启冷冻系统,将釜内降温到-5—5度。 3、打开酸性废气,开始滴加氯化亚砜,滴加时控制釜内温度-10—15度滴加时控制时间2±0.5小时,滴加结束后升温30±10度,搅拌反应3小时。反应结束继续升温,将釜内加热到有回流状态,即温度在55—60度时反应回流5小时。 析晶操作工艺: 上述反应保温结束,将酯化釜内的料液转至结晶釜内开始升温,打开蒸馏阀门及配套的真空阀门、控制表压≤-0.06Mpa。釜内温度20—55度,减压蒸馏,当蒸出680±50升甲醇时停止蒸馏,打开甲醇管道阀门,向釜内加入180升新甲醇,再打开蒸汽阀门继续升温到

55—60度回流反应60±30分钟。 4、回流反应结束后,用冷却水将釜内料液温度降至40—50度。 5、打开真空系统,控制表压≤-0.06Mpa釜内温度35—75度,继续减压蒸馏,直至无液体流出(足够干)。 6、蒸馏结束打开氮气阀门,破釜内压力为0时关闭氮气,开废气阀门,将釜内降温至35±10度, 7、冷却完毕后,静止60分钟,再向釜内加入700升饮用水,搅拌至溶清,送入缩合釜内待用。 缬沙坦粗品合成第二工序缩合 缩合:设备2个5000升反应釜,一个盐酸高位槽1500升,一个螺冷,一台水冲泵抽料用,一个饮用水储罐2000升。 投料配比: 饮用水:700升、300升、300升、600;升饱和盐水300升、300升,碳酸钠275kg精致盐酸125升,联苯溴化物270kg、乙酸乙酯2700升、200升缬氨酸甲酯盐酸盐溶液700—800升 操作工艺 1、向釜内打入饮用水700升,然后抽缬氨酸甲酯盐酸盐溶液搅拌溶清。 2、向釜内投入碳酸钠275kg,搅拌到溶清。 3、向釜内加入2700升乙酸乙酯搅拌。

沙坦联苯的应用及合成工艺

沙坦联苯的应用及合成工艺 商品名:沙坦联苯; 英文名:2-Cyano-4'-methylbiphenyl; 简称: OTBN; 化学名: 2-氰基-4-甲基联苯; 化学分子式: C H N; 1411 分子量: 193.24 分子结构: ; 外观:白色或类白色粉末结晶; 熔程: 48°C~52°C; 含量≥99%;有关杂质含量不大于0.5%。 用途:用于合成新型沙坦类高血压药(洛沙坦、替迷沙坦、缬沙坦、伊普沙坦、伊贝沙坦等) 。 特性:沙坦联苯不溶于水,溶于甲醇、乙醇、THF(四氢呋喃)、苯、甲苯庚烷等有机溶剂。 目前治疗高血压、心脏病、中风、肾炎等循环系统疾病疗效较好的

药物是血管紧张素Ⅱ[简称A ( Ⅱ) ]拮抗体药品。 血管紧张素Ⅱ受体拮抗剂(ATⅡ)是作用于肾素--血管紧张素系统的一类药物,近年来广泛用于一线抗高血压临床用药,这类药物目前上市的有:络沙坦、缬沙坦、厄贝沙坦、替米沙坦、坎地沙坦、奥美沙坦、依普罗沙坦品种,到1999 年底在国外上市的该类药物已达9个, 这无疑对高血压疾病的治疗是一大进步。沙坦类药物具有高效、长效、安全、可以口服、耐受性好、靶器官保护等特点,并避免了非选择性ACEI 类药物引起咳嗽的不良反应,优势明显,市场占有率不断提高,成为21 世纪市场上最具发展潜力的降压药物之一。 沙坦类抗高血压药物具有巨大的潜在市场, 这些药品售价昂贵,每吨高达数万美元。据统计, 2010年全球这类药物的市场已达到266亿美元。 大多数沙坦类药物都是以沙坦联苯(2-氰基-4-甲基联苯, 2-Cyano-4'-methylbiphenyl)作为其关键的中间体,但由于其生产技术难度大、设备繁杂、可操作性差、工业生产投入高、专利保护等原因,只有少数外国公司拥有此项产品的生产技术,国内尚处于开发阶段。因此这种中间体的开发研究和生产,备受国内各化工、制药企业的重视。 沙坦联苯是沙坦类药品的基础中间体,目前沙坦类药物的市场扩大速度越来越快,发展规模越来越大。

化学化工浅谈缬沙坦的生产方法剖析

浅谈缬沙坦的生产方法 目录 目录..................................................... I 浅谈缬沙坦的生产方法...................................... II 摘要.................................................... II Abstract.................................................. III 1引言 .. (1) 1.1高血压疾病的概况 (1) 1.2关于高血压药物研制和开发的意义 (1) 1.3高血压药物研制现状 (2) 1.3.1血管紧张素II受体拮抗剂 (2) 1.3.2 AT1受体拮抗剂 (2) 1.3.3 AT2受体拮抗剂 (3) 1.3.4 ATI/AT2双重受体拮抗剂 (4) 1.3.5 AⅡ受体拮抗剂的前景介绍 (4) 2抗高血压药物缬沙坦的合成方法 (4) 2.1抗高血压药物缬沙坦 (4) 2.1.1缬沙坦的简介 (4) 2.1.2 缬沙坦的药理分析 (5) 2.2缬沙坦的合成方法 (5) 2.2.1先d后a路线合成法 (6) 2.2.2先a后d路线合成法 (8) 2.2.3先c后ad路线合成法 (10) 2.3缬沙坦的生产 (11) 2.3.1原料的检验 (11) 2.3.2各物质的合成 (15) 2.3.3缬沙坦的合成 (16) 2.3.4 结论 (16) 参考文献 (18) 致谢 (19) I

浅谈缬沙坦的生产方法 浅谈缬沙坦的生产方法 摘要 本文详细介绍了缬沙坦的各种合成方法,综合比较了各种合成方法的利弊,并分析了缬沙坦合成的国内外研究现状和发展趋势。 关键词:缬沙坦;合成;工艺流程 II

有机合成工艺优化

有机合成工艺优化 1.合成工艺的优化主要就是反应选择性研究有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有 机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。 平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温 度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度, 可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低 浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主 反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再 确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性, 搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组 分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位置和相对 大小。从而可以看出各组分的相对大小及各组分随温度和浓度条件不同的变化。对不同的副反应 采取不同的抑制方法。 (1)首先搞清反应过程中那些副产物生成;(2)重点找出含量较多的副产物的结构,因 为只有抑制了主要副反应,才能显著提高主反应的选择性;(3)根据主要副产物的结构,研究

有机合成工艺优化.doc

有机合成工艺优化方法学---心得 1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓度)或一次性加入(此组分为高浓度,其他组分就是低浓度)进行反应,就可根据监测主副产物的相对含量来判断该组分是低浓度还是高浓度有利于主反应。确定了某一组分的浓度影响,接下来就是研究该组分的最佳配比问题。相同的条件下,再确定其他组分浓度的影响。 (3)溶剂的影响: (4)酸碱强度的影响: (5)催化剂的影响: 3.定性反应产物 动力学研究方法要求副反应最小,而其他方法要求主反应最大。因此研究反应的选择性,搞清副反应的产物结构是必要地前提。在条件允许的情况下,应尽量分析反应混合物的全部组分,包括主产物,各种副产物,分析他们在气相色谱、液相色谱或薄层色谱上的相对位

缬沙坦工艺流程

缬沙坦半成品生产工艺 投料前检查确保合成系统、管道系统、放空系统、尾气吸收系统运行正常。生产过程中的尾气经放空总管去尾气吸收塔吸收处理。 反应原理及工艺流程简述 (1)甲酯缩合工序 L-缬氨酸与氯化亚砜反应生成L-缬氨酸甲酯盐酸盐,L-缬氨酸甲酯盐酸盐与溴代沙坦联苯反应生成N-【(2,-氰基联苯-4-基)甲基】-L-缬氨酸甲酯盐酸盐。 从人孔向甲酯反应釜R401中投入L-缬氨酸,真空抽入一定量的甲醇,夹套通入冰盐水降温至20℃以下,从高位槽经流量计向釜内滴加入氯化亚砜。约2小时滴完,滴加结束,夹套通入蒸汽升温至80℃回流反应5小时生成L-缬氨酸甲酯盐酸盐。反应结束,打开真空阀,压力保持在-0.09MPa减压蒸馏,蒸馏出来的甲醇冷凝后进入甲醇接收罐回收再利用。向釜内加入饮用水制成水溶液备用。 预先向缩合反应釜R402中加入饮用水,从人孔投入碳酸钠、溴代沙坦联苯,真空抽入一定量的醋酸乙酯,然后真空抽入上述甲酯反应釜中的备用水溶液,夹套通入蒸汽加热升温至40℃反应4小时。反应结束,静置半小时分层,从高位槽经流量计向釜内滴加盐酸,边滴加边搅拌2小时成盐,然后将物料通离心机离心甩料,滤饼烘干得缩合物N-【(2,-氰基联苯-4-基)甲基】-L-缬氨酸甲酯盐酸盐。 (2)粗品工序 N-【(2,-氰基联苯-4-基)甲基】-L-缬氨酸甲酯盐酸盐与特戊酰

氯反应生成N-(2,-氰基联苯-4-亚甲基)-N-戊酰基-L-缬氨酸甲酯,N-(2,-氰基联苯-4-亚甲基)-N-戊酰基-L-缬氨酸甲酯再与叠氮钠和三乙胺反应生成N-(1-戊酰基)-N-【4-【2-(1H-四氮唑-5-基)苯基】苄基】-L-缬氨酸(缬氨酸) 向戊酰化反应釜R403中真空抽入一定量甲苯、加入经计量的饮用水,从人孔投入缩合物N-【(2,-氰基联苯-4-基)甲基】-L-缬氨酸甲酯盐酸盐和碳酸钠,搅拌溶解,然后从高位槽向釜内缓慢滴加特戊酰氯,保持温度在60℃以下,1小时滴完后继续反应2小时。反应结束,静置分层。下层水层去污水处理,夹套通入蒸汽,开启真空阀,将釜内的有机层在90℃和-0.09MPa条件下减压蒸馏甲苯,蒸馏出的甲苯冷凝后进入甲苯接收罐回收再利用。釜内剩余物料真空抽料到四氮唑反应釜R404。从人孔向四氮唑反应釜中加入三乙胺盐酸盐、叠氮钠,夹套通入蒸汽加热至100℃,回流反应15小时。反应结束,停止通入蒸汽,加入经计量的饮用水,从人孔投入亚硝酸钠,通入冰盐水降温至20℃以下,真空抽入一定量的盐酸,静置分层,下层水层真空抽入三乙胺回收釜;上层甲苯层在四氮唑反应釜中,加入经计量的饮用水,真空抽入一定量的液碱,控制温度50℃反应5小时。反应结束,真空进料到甲苯回收釜R406中静置分层,上层甲苯回收再利用,下层水层真空抽入一定量的醋酸乙酯和盐酸,静置分层,下层水层去污水处理。夹套通入冰盐水将上层有机层降温到0-5℃结晶,析晶半小时,物料进入离心机离心甩料,所得滤饼烘干得缬沙坦粗品,离心母液进入醋酸乙酯母液接收槽。从高位槽向三乙胺回收釜R405中的

第十二章_嘌呤代谢最终版本_王忠超、孙晓娟汇总

第十二章嘌呤代谢系统 第一节概述 嘌呤代谢是指核酸碱基腺嘌呤及鸟嘌呤等的嘌呤衍生物的活体合成及分解。动物,其嘌呤化合物几乎全部氧化为尿酸,分别以不同形式而排出。人体尿酸主要由细胞代谢分解的核酸和其他嘌呤类化合物以及食物中的嘌呤,经酶的作用分解而来。为了了解尿酸的生成机制,首先要了解嘌呤代谢及其调节机制。 一、嘌呤代谢调节 嘌呤代谢速度受1-焦磷酸-5-磷酸核糖(PRPP)和谷氨酰胺的量以及鸟嘌呤核苷酸、腺嘌呤核苷酸和次黄嘌呤核苷酸对酶的负反馈控制来调节。次黄嘌呤-鸟嘌呤磷酸核糖转移酶和黄嘌呤氧化酶,为嘌呤磷酸核糖焦磷酸酰胺移换酶,是嘌呤代谢过程中的关键酶,它们的作用点见下图12-1。 注:E1:磷酸核糖焦磷酸酰胺移换酶;E2:次黄嘌呤脱氢酶;E3腺苷酸代琥珀酸合成酶;E4次黄嘌呤-鸟嘌呤磷酸核糖转移酶;E5黄嘌呤氧化酶;→表示负反馈控制。 由核酸分解代谢为尿酸是一个十分复杂的过程,主要有以下三种生成途径:

(1)核酸→鸟嘌呤核苷酸→鸟嘌呤→黄嘌呤→尿酸。 (2)核酸→腺嘌呤核苷酸→腺嘌呤→黄嘌呤→尿酸。 (3)5-磷酸核糖+ATP→次黄嘌呤核苷酸→次黄嘌呤→黄嘌呤→尿酸。 此乃尿酸生成的一个总轮廓,中间有许多环节已被省略,在尿酸生成的过程中,有多种酶的参与和调节。但从上述尿酸生成的简要过程中可以看出,嘌呤是尿酸生成的主要来源。因此,嘌呤合成代谢增高及(或)尿酸排泄减少均可造成血清尿酸值增高。 生物化学研究表明,人体体内约有8种酶参与了尿酸的生成过程,其中有7种酶均促进尿酸生成,它们包括:①磷酸核糖焦磷酸酰胺转移酶;②磷酸核糖焦磷酸合成酶;③腺嘌呤磷酸糖核糖苷转移酶;④腺苷去胺基酶;⑤嘌呤核苷酸磷酸酶;⑥5-核苷酸酶;⑦黄嘌呤氧化酶。这些酶的活性增加时,尿酸生成即增加;在这些酶中,以黄嘌呤氧化酶最为重要。另一种次黄嘌呤-鸟嘌呤磷酸核糖转移酶,其作用和上述7种酶正好相反,当其活性增强时可抑制尿酸生成,活性减弱时则尿酸生成增加。酶缺陷包括某种酶的数量增多或活性增强和某种酶的完全性缺乏或部分缺乏,皆可导致嘌呤合成加速和尿酸生成增多。酶缺陷在痛风发病中占有十分重要的地位,但大多数很难得到证实,仅少数病人可以鉴定出酶缺陷。嘌呤排出物的多样性,可能与在进化过程中发生的酶缺失现象(eezymaphresis)有关[1、2]。对导致过量嘌呤生物合成的机制,有嘌呤代谢酶的数量增多或活性过高,或酶活性降低或缺乏。 二、尿酸代谢的平衡 血清中尿酸浓度,取决于尿酸生成和排泄速度之间的平衡。尿酸是嘌呤代谢的终末产物,体内尿酸的积聚,可见于如下的5种情况:①外源性吸收增多,即摄食富含嘌呤的食物增多; ②内源性生物合成增加,包括酶缺陷,如核酸分解加速和嘌呤基氧化产生尿酸增多;③排泄减少,即由肾脏经尿排出减少和由胆汁、胃肠分泌后,肠道细菌分解减少;④体内代谢减少,即尿酸内源性破坏减少;⑤上述综合因素或不同因素的组合。 拥有尿酸(氧化)酶的物种,能将尿酸转化为溶解性较高、更易排出的尿囊素(allantoin),故血清尿酸水平低而无痛风存在,人和几种类人动物是在进化过程中发生尿酸氧化酶基因突变性灭活的,从这点来说,人类的高尿酸血症是由尿酸分解代谢的先天性缺陷造成[3]。高尿酸血症血清中尿酸浓度取决于尿酸生成和排泄速度之间的平衡,人体内尿酸有两个来源,一是从富含核蛋白的食物中核苷酸分解而来的,属外源性,约占体内尿酸的20%;二是从体内氨基酸、磷酸核糖及其他小分子化合物合成和核酸分解代谢而来的,属内源性,约占体内总尿酸的80%。对高尿酸血症的发生,显然内源性代谢紊乱较外源性因素更为重要。核素示踪研究,正常人体内尿酸池的尿酸平均为1200mg,每天产生约750mg,排出500~1000mg,约2/3经尿排泄,另1/3由肠道排出,或在肠道内被细菌尿酸氧化酶分解。

关于工艺流程优化的分析

关于化工工艺流程优化的分析 摘要:工艺流程的优化属于化工系统工程学研究的范围,它主要是研究在一定的条件下,如何用最合适的生产路线和生产设备,以及最节省的投资和操作费用,合成最佳的工艺流程。工艺流程也是实现产品生产的技术路线,通过对工艺流程的研究及优化,能够尽可能的挖掘出设备的潜能,找到生产瓶颈,寻求解决的途径,以达到产量高、功耗低和效益高的生产目标。 关键字:工艺流程,优化 一、化学工艺、化工工艺流程基本概念 化学工艺,即化工技术或化学生产技术,指将原料物主要经过化学反应转变为产品的方法和过程,包括实现这一转变的全部措施。化学工艺在高等学校的课程设置中,有工业化学和化学工艺学,两种课程仅在名称上不同,其内容均与上述化学生产技术的一般内容大体相似。化学生产过程一般地可概括为三个主要步骤:①原料处理。为了使原料符合进行化学反应所要求的状态和规格,根据具体情况,不同的原料需要经过进化、提浓、混合、乳化或粉碎(对固体原料)等多种不同的预处理。②化学反应。这是生产的关键步骤。经过预处理的原料,在一定的温度、压力等条件下进行反应,以达到所要求的反应转化率和收率。反应类型是多样的,可以是氧化、还原、复分解、磺化、异构化、聚合、焙烧等。通过化学反应,获得目的产物或其混合物。③产品精制。将由化学反应得到的混合物进行分离,除去副产物或杂质,以获得符合组成规格的产品。以上每一步都需在特定的设备中,在一定的操作条件下完成所要求的化学的和物理的转变。 化工工艺流程是由若干个具有独立的化工过程的工序所组成的,其结构一般都比较复杂,如果对整个工艺流程寻优,则涉及的影响因素及变量的数目太多,而不容易做出优化结论,如果把流程分解成一若干化工过程表示的工序,先对每个单一的化工过程寻优,则可运用有关的化学工程理论进行优化分析。在生产过程控制中,工艺优化是以原有生产工艺为基础,通过对生产流程、工艺条件、原辅料的深入研究,针对生产关键、工艺薄弱环节,组织技术人员改进工艺,使生产成本降低,生产过程、工艺条件达到最优化。对生产工艺流程的优化,除了技术上的参数优化调整、设备优化改造外,要想获得更大的突破、尤其是解决瓶颈

沙坦联苯的应用及合成工艺模板

沙坦联苯的应用及合成工艺 商品名: 沙坦联苯; 英文名: 2-Cyano-4'-methylbiphenyl; 简称: OTBN; 化学名: 2-氰基-4-甲基联苯; 化学分子式: C H N; 1411 分子量: 193.24 分子结构: ; 外观:白色或类白色粉末结晶; 熔程: 48°C~52°C; 含量≥99%;有关杂质含量不大于0.5%。 用途:用于合成新型沙坦类高血压药(洛沙坦、替迷沙坦、缬沙坦、伊普沙坦、伊贝沙坦等) 。 特性: 沙坦联苯不溶于水,溶于甲醇、乙醇、THF( 四氢呋喃) 、苯、

甲苯庚烷等有机溶剂。 当前治疗高血压、心脏病、中风、肾炎等循环系统疾病疗效较好的药物是血管紧张素Ⅱ[简称A ( Ⅱ) ]拮抗体药品。 血管紧张素Ⅱ受体拮抗剂( ATⅡ) 是作用于肾素--血管紧张素系统的一类药物, 近年来广泛用于一线抗高血压临床用药, 这类药物当前上市的有: 络沙坦、缬沙坦、厄贝沙坦、替米沙坦、坎地沙坦、奥美沙坦、依普罗沙坦品种, 到1999 年底在国外上市的该类药物已达9个, 这无疑对高血压疾病的治疗是一大进步。沙坦类药物具有高效、长效、安全、能够口服、耐受性好、靶器官保护等特点,并避免了非选择性ACEI 类药物引起咳嗽的不良反应, 优势明显, 市场占有率不断提高, 成为21 世纪市场上最具发展潜 力的降压药物之一。 沙坦类抗高血压药物具有巨大的潜在市场, 这些药品售价昂贵, 每吨高达数万美元。据统计, 全球这类药物的市场已达到266亿美元。 大多数沙坦类药物都是以沙坦联苯(2-氰基-4-甲基联苯, 2-Cyano-4'-methylbiphenyl)作为其关键的中间体,但由于其生产技 术难度大、设备繁杂、可操作性差、工业生产投入高、专利保护等原因,只有少数外国公司拥有此项产品的生产技术,国内尚处于开发阶段。因此这种中间体的开发研究和生产,备受国内各化工、制药企业的重视。 沙坦联苯是沙坦类药品的基础中间体, 当前沙坦类药物的市 场扩大速度越来越快, 发展规模越来越大。

沙坦联苯的合成工艺研究

沙坦联苯的合成工艺 摘要:综合分析沙坦联苯的各种合成工艺的利弊之后 ,确定以对溴甲苯和邻氯苯甲腈为原料一步催化合成。并对该工艺的反应配比、催化剂配比、反应温度、滴加速度进行了深入细致的研究 ,确定摩尔比邻氯苯甲腈:对溴甲苯: NiCl 2·6H2O:PPh 3 :Zn =0.3:0.25:0.125:0.5:0.275可得到收率85%、 含量 99.0%以上产品。 关键词:对溴甲苯;邻氯苯甲腈;沙坦联苯;合成 Study on Syntheti c Techn ique of Sartanbiphenyl LU J in2liang (Chemistry Institute of J iangxi, J iangxiNanchang 330029) Abstract: The writer of this essay tries t o catalyze and synthesize the raw material of p2 br omot oluene and o2 chl orobenzonitrile int o sartabi phenyl according t o analysis on the advantages and disadvantages in different kinds of synthesis technics . And the reacti on rati o, reacti on temperature and titrati on rate of this technics are further studied in the paper . When the rati o of o2 chl orobenzonitrile t o p2 br omot ol2 uene to NiCl 2·6H2O:PPh 3 :Zn =0.3:0.25:0.125:0.5:0.275 (mol) . The yield and content of the p roduct can reach 85% and more than 99 . 0 % res pectively . Key words: p2 B r omot oluene, o2 Chl orobenzonitrile, Sartanbi pheny, Synthesis

发酵法生产鸟苷的工艺优化

发酵法生产鸟苷的工艺优化 摘要以菌株Bacillus Subtilis-BB518为生产菌株,对该菌株进行摇瓶发酵试验优化培养基组成。然后,利用该培养基配方进行50L全自动发酵罐发酵试验选择适当的溶解氧条件。最终,该菌种在优化的培养条件下鸟嘌呤核苷发酵水平达到17.8g/L,比出发菌株发酵产苷提高了18.7%。 关键词鸟嘌呤核苷优化溶解氧 1960年,Kuninaka[1]发现5′鸟苷酸具有较强烈的增鲜功能,在谷氨酸钠中加入1.5~2%的鸟苷酸钠可使其鲜味增加10~25倍,而鸟嘌呤核苷(简称:鸟苷)是生产鸟苷酸的原料;同时鸟苷又是抗病毒药物三氮唑核苷和无环鸟苷的前体。因此,大批量生产鸟苷前景广阔。 目前,核苷酸的工业化生产方法主要有三种:酶水解RNA法、菌体自溶法和发酵法。菌体自溶法由于产量低,提取困难而基本上不用;而两步发酵法生产鸟苷酸由于其产率高、周期短、控制易、产量大等优点,以及鸟苷可以直接透过细菌细胞膜,溶解度较低,基本上不会对嘌呤合成造成反馈抑制,通过化学或生物磷酸化形成鸟苷酸的工艺又相当成熟,因而目前已经成为工业生产鸟苷酸的主要方法。 虽然我国自80年代初已经开展了鸟苷类物质发酵的研究[2~4],但是一直进展不大,因而鸟苷生产成本居高不下,成为限制鸟苷酸工业发展的重要环节。本课题通过摇瓶正交试验以及50L全自动发酵罐溶解氧控制试验对过程的工艺进行了优化,从而使鸟苷的发酵产率提高了18.7%,发酵产苷达到了17.8g/L。 1 材料与方法 1.1 菌种:枯草芽孢杆菌(B.Subtilis)BB518 1.2 培养基 1.2.1 斜面及茄子瓶培养基配方 葡萄糖10 g/L,酵母膏10 g/L,蛋白胨10 g/L,氯化钠5 g/L,琼脂20 g/L,pH值7.0,0.1Mpa灭菌20min。 1.2.2 种子培养基配方 葡萄糖20 g/L,酵母膏10 g/L,硫酸铵5 g/L,氯化钠5 g/L,玉米浆10 g/L,pH值7.0,0.1Mpa灭菌20min。 1.2.3 发酵培养基配方 葡萄糖120 g/L,酵母粉20 g/L,玉米浆20 g/L,硫酸铵18 g/L,磷酸二氢钾4g/L,硫酸镁8g/L ,碳酸钙20g/L, pH值7.0,0.1Mpa灭菌15min。 1.3 仪器设备 FUS-50L(A)全自动发酵罐,往复式摇床。 1.4 分析方法 pH测定:Mettler Toledo在线pH检测系统,pH计。 DO测定:Mettler Toledo在线DO检测系统。 鸟苷测定:纸层析法,展开剂为异丙醇:氨:水=7:2:1(v/v)。 还原糖测定:改良斐林法。 细菌生长比浊度测定: 752分光光度计在590nm下测定OD值。 1.5 培养方法

工艺优化方法

1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技 术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大 小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主

工艺优化管理方案

工艺管理方案 为了确保生产工艺稳定运行,各产品质量及过程控制符合规定要求,结合合成二车间生产实际情况,现将各岗位生产工艺做出以下几点要求: 一、合成岗位 1、加强对原材料质量抽查力度,并确保各种原材料投料比准确,严禁出现多投或少投甚至错投的现象; 2、各合成工每班必须对三乙胺计量槽进行排底,在操作记录上写清各种原材料实际投入量及各种原材料含量及水分; 3、对解聚、加成、缩合各阶段反应时间及保温时间做出明确要求,解聚在48--50℃间保温不得少于50分钟,加成在42--43℃间保温不得少于60分钟,缩合在52--53℃间保温不得少于70分钟,各阶段过程控制中严禁出现温度波动大及超温现象; 4、必须将合成液降至35℃以下才可以出料,打料前合成工要与脱醇小班长进行合成液打料交接并确认签字。 二、脱醇岗位 1、盐酸加入量必须准确,696/含量,严禁私自多加或少加; 2、加完盐酸至放合成液的时间不能超过1.5小时; 3、脱醇釜温度低于35℃时加合成液。 4、从加合成液起15分钟内必须关闭放料阀门。 5、合成液加完后温度需控制在50℃以下,约15分钟后排水升温。 6、升温时应遵循“先慢后快”的原则。55-65℃,控制在45分钟左右,65-75℃、75-85℃各为1小时左右。从升温-85℃,时间不得低于2.5小时,从升温 --停气出料,为6.5-7.5小时。 7、物料变黄后,保温30分钟。 8、出料时,温度最佳控制在119±2℃,最高不超过125℃。并加入清洗水300L(含洗釜和洗管道的水)。 三、乙胺回收岗位 1、控制指标 母液中和PH值 10.50-10.80 三乙胺塔底温度 100℃~110℃ 三乙胺塔顶温度 92.5℃~95.5℃ 三乙胺水分≤0.20% 2、操作要求:中和温度控制在45--55℃,PH值在10.50—10.80之间,中和后的料液进入三乙胺分离器,分离时间不得少于15分钟;三乙胺精馏过程中严格控制进料量,保证塔底、塔底温度,确保排除的废母液中兑碱无三乙胺气味。 四、甲醇回收岗位 1、控制指标 老塔:甲缩醛塔底温度:77℃-80℃ 甲缩醛塔顶温度:39℃-41℃ 甲醇塔底温度:102℃-105℃ 甲醇塔顶温度:63--65℃ 新塔:甲缩醛塔底温度:80℃-88℃ 甲缩醛塔顶温度:41℃-45℃

相关文档
最新文档