遗传算法-C语言模板

遗传算法-C语言模板
遗传算法-C语言模板

using System;

using System.IO;

usingSystem.Collections;

usingSystem.Collections.Generic;

usingSystem.Text;

https://www.360docs.net/doc/e46640779.html,ponentModel;

usingSystem.Data;

usingSystem.Data.OleDb;

namespace ConsoleApplication1

{

public class Genetic_Algorithm变量声明

{

Random rand=new Random();

intMaxTime;//最大运行时间

intpopsize;//种群数量

intChromosomeLength;//染色体长度

double CrossRate;//交叉率

double MutateRate;//变异率

double[] f;//适应度值

int[] selected;//定义selected数组,用于表示需要进行交叉操作的染色体序号

double[] wheel;//轮盘

int[,] pregeneration;//上一代

int[,] nextgeneration;//下一代

int[] Best;//定义当前最优解

int convergence;//定义当前最优解的已持续代数

public Genetic_Algorithm(intpopulationsize, intchromolength)//GA--构造函数,变量初始化

{

rand = new Random(https://www.360docs.net/doc/e46640779.html,lisecond);

MaxTime = 50;

popsize=populationsize;

ChromosomeLength = chromolength;

CrossRate = 0.8;

MutateRate = 0.2;

f = new double[2*popsize];

selected = new int[popsize];

wheel = new double[popsize + 1];

pregeneration = new int[popsize, ChromosomeLength];//当前的染色体种群nextgeneration = new int[popsize, ChromosomeLength];//下一代(子代)染色体种群

Best = new int[ChromosomeLength];

convergence = 1;

}

public void RunGA()//运行

{

inti;

CreateFirstPop();//产生初始种群

i = 0;

bool quit = true;

while (quit)

{

for (; i

{

Console.WriteLine("The {0}th Generation..........", i + 1);

CalFitness(ref pregeneration, popsize);//计算适应值

PrintResult();//输出每步的结果

WheelSelect();//此步确定了selected[i]的值

CreateNextGeneration();//产生子代,包括被选择为selected[i]的染色体的交叉,还有变异ProduceNext();

}

Console.WriteLine("Press 'q' to quit, press Enter to continue.....");

if (Console.Read() == 'q')

{

quit = false;

}

else

{

MaxTime += 50;

}

}

}

void CreateFirstPop()//产生初始种群

{

Console.WriteLine("Creating first generation..........\n");

inti,j,r;

for(i=0;i

{

for(j=0;j

{

r=rand.Next(1,11);//////生成1~10的数字

pregeneration[i, j] = r;

}

}

}

void CreateNextGeneration()//产生下一代种群(经交叉、变异)

{

inti;

for (i = 0; i

{

Crossover(selected[i], selected[i + 1], i, i + 1);//将序号为selected[i]和selected[i + 1]的染色体进行交叉,产生的子代放在pregeneration中i和i+1的位置

}

Mutation(ref nextgeneration);//变异

}

void CalFitness(ref int[,] curgeneration,int number)//计算适应度值的函数

{

for (inti = 0; i< number; i++)

{

double fitness = 0;

for (int j = 0; j

{

fitness += Math.Abs(curgeneration[i, j]-j-1);

}

f[i] = fitness;

}

}

void FindMax(ref double[] f, out int max)//寻找数组中最大值

{

inti;

max = 0;

for (i = 1; i

{

if (f[i] > f[max])

{

max = i;

}

}

}

void FindMin(ref double[] f, out int min)//寻找数组中最小值

{

inti;

min = 0;

for (i = 1; i

{

if (f[i] < f[min])

{

min = i;

}

}

}

void WheelSelect() //轮盘选择popsize个染色体(可重复),并将序号放入selected[]中,作为交叉的染色体

{

inti,j ,r;

double sum;

wheel[0] = 0; sum = 0;

for (i = 0; i

{

sum += f[i];

wheel[i + 1] = wheel[i] + f[i];

}

for (i = 0; i

{

r = rand.Next((int)sum);

for (j = 0; j

{

if (r > wheel[j] && r < wheel[j + 1])

{

selected[i] = j;

break;

}

}

}

}

void Crossover(int p1, int p2, int c1, int c2)//交叉==>将序号为selected[i]和selected[i + 1](这里形参是p1,p2)的染色体进行交叉,产生的子代放在pregeneration中i和i+1(这里形参是c1,c2)的位置

{

doubledr = rand.NextDouble();

if (dr

{

int[] covering_code = new int[ChromosomeLength];

for (inti = 0; i

covering_code[i] = rand.Next(0, 2);

for (inti = 0; i

{

if (covering_code[i] == 0)

{

nextgeneration[c1, i] = pregeneration[p1, i];

nextgeneration[c2, i] = pregeneration[p2, i];

}

else

{

nextgeneration[c1, i] = pregeneration[p2, i];

nextgeneration[c2, i] = pregeneration[p1, i];

}

}

}

else

{

for (inti = 0; i

{

nextgeneration[c1, i] = pregeneration[p1, i];

nextgeneration[c2, i] = pregeneration[p2, i];

}

}

}

void Mutation(ref int[,] curgeneration)//变异

{

intis_not_mutation;

doubledr;

for (inti = 0; i

{

dr = rand.NextDouble();

if (dr

{

for (int j = 0; j

{

is_not_mutation = rand.Next(0, 2);

if (is_not_mutation == 1)

curgeneration[i, j] = rand.Next(1, 11);

}

}

}

}

void PrintResult()//计算每次迭代后种群中最优解及其适应度值,平均适应值

{

inti,j;

int min;

double average;

average = 0;

for (i = 0; i

{

average += f[i];

}

average = (double) average / popsize;

Console.Write("Average profit is {0}\n", average);

FindMin(ref f, out min);

//计算稳定的次数

for (j = 0; j

{

if (pregeneration[min, j] != Best[j])

{

convergence = 1;

goto G2;

}

}

convergence++;

G2:

for (j = 0; j

{

Best[j] = pregeneration[min, j];

}

//打印相关的数据

Console.Write("染色体");

for (j = 0; j

{

Console.Write(pregeneration[min, j] + ",");

}

Console.WriteLine("");

Console.WriteLine("综合目标{0} of individual ", f[min]);

Console.WriteLine("已经稳定的代数{0} of individual ",convergence); Console.WriteLine("");

}

void ProduceNext()//选择==>父代和子代中popsize个最优的解进入下一代

{

int[,] temgeneration=new int [2*popsize,ChromosomeLength];//定义临时种群,用来将父代和子代放在一起,进行选优

//将父代放入临时种群

for (inti = 0; i<= popsize - 1; i++)

{

for (int j = 0; j <= ChromosomeLength - 1; j++)

{

temgeneration[i, j] = pregeneration[i, j];

}

}

//将子代放入临时种群

for (inti = 0; i<= popsize - 1; i++)

{

for (int j = 0; j <= ChromosomeLength - 1; j++)

{

temgeneration[i + popsize, j] = nextgeneration[i, j];

}

}

CalFitness(ref temgeneration, popsize * 2);//计算临时种群(父代和子代)的各染色体适应值int []tem=new int [ChromosomeLength];//定义临时染色体,用来染色体排序时的交换...

//根据临时种群(父代和子代)的各染色体适应值,进行排序

for (inti = 0; i< 2*popsize - 1; i++)

{

for (int j = i + 1; j <= 2 * popsize - 1; j++)

{

if (f[i] > f[j])

{

doubletem_f = f[i];

f[i] = f[j];

f[j] = tem_f;

for (int k = 0; k

{

tem[k] = temgeneration[i, k];

temgeneration[i, k] = temgeneration[j, k];

temgeneration[j, k] = tem[k];

}

}

}

}

//取临时种群中前popsize个好的染色体作为下一代种群,并将子代变为父代,精英选择

for (inti = 0; i<= popsize - 1; i++)

{

for (int j = 0; j <= ChromosomeLength - 1; j++)

{

pregeneration[i, j] = temgeneration[i, j];

}

}

}

}

class Program

{

static void Main(string[] args)

{

intchromosomelength = 10;

intpopulationsize = 300;

Console.WriteLine("Press Enter to start running Genetic Algorithm");

Console.ReadKey();

Genetic_Algorithm GA = new Genetic_Algorithm(populationsize, chromosomelength);

GA.RunGA();

}

}

}

遗传算法的c语言程序

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

第三章-遗传算法的理论基础

第三章 遗传算法的理论基础 遗传算法有效性的理论依据为模式定理和积木块假设。模式定理保证了较优的模式(遗传算法的较优解)的样本呈指数级增长,从而满足了寻找最优解的必要条件,即遗传算法存在着寻找到全局最优解的可能性。而积木块假设指出,遗传算法具备寻找到全局最优解的能力,即具有低阶、短距、高平均适应度的模式(积木块)在遗传算子作用下,相互结合,能生成高阶、长距、高平均适应度的模式,最终生成全局最优解。Holland 的模式定理通过计算有用相似性,即模式(Pattern)奠定了遗传算法的数学基础。该定理是遗传算法的主要定理,在一定程度上解释了遗传算法的机理、数学特性以及很强的计算能力等特点。 3.1 模式定理 不失一般性,本节以二进制串作为编码方式来讨论模式定理(Pattern Theorem)。 定义3.1 基于三值字符集{0,1,*}所产生的能描述具有某些结构相似性的0、1字符串集的字符串称作模式。 以长度为5的串为例,模式*0001描述了在位置2、3、4、5具有形式“0001”的所有字符串,即(00001,10001) 。由此可以看出,模式的概念为我们提供了一种简洁的用于描述在某些位置上具有结构相似性的0、1字符串集合的方法。 引入模式后,我们看到一个串实际上隐含着多个模式(长度为 n 的串隐含着2n 个模式) ,一个模式可以隐含在多个串中,不同的串之间通过模式而相互联系。遗传算法中串的运算实质上是模式的运算。因此,通过分析模式在遗传操作下的变化,就可以了解什么性质被延续,什么性质被丢弃,从而把握遗传算法的实质,这正是模式定理所揭示的内容 定义3.2 模式H 中确定位置的个数称作该模式的阶数,记作o(H)。比如,模式 011*1*的阶数为4,而模式 0* * * * *的阶数为1。 显然,一个模式的阶数越高,其样本数就越少,因而确定性越高。 定义3.3 模式H 中第一个确定位置和最后一个确定位置之间的距离称作该模式的定义距,记作)(H δ。比如,模式 011*1*的定义距为4,而模式 0* * * * *的定义距为0。 模式的阶数和定义距描述了模式的基本性质。 下面通过分析遗传算法的三种基本遗传操作对模式的作用来讨论模式定理。令)(t A 表示第t 代中串的群体,以),,2,1)((n j t A j =表示第t 代中第j 个个体串。 1.选择算子 在选择算子作用下,与某一模式所匹配的样本数的增减依赖于模式的平均适值,与群体平均适值之比,平均适值高于群体平均适值的将呈指数级增长;而平均适值低于群体平均适值的模式将呈指数级减少。其推导如下: 设在第t 代种群)(t A 中模式所能匹配的样本数为m ,记为),(t H m 。在选择中,一个位串 j A 以概率/j j i P f f =∑被选中并进行复制,其中j f 是个体)(t A j 的适应度。假设一代中群体 大小为n ,且个体两两互不相同,则模式H 在第1+t 代中的样本数为:

基本遗传算法的C源程序。doc【精品毕业设计】(完整版)

/********************************************************** ********/ /* 基于基本遗传算法的函数最优化SGA.C */ /* A Function Optimizer using Simple Genetic Algorithm */ /* developed from the Pascal SGA code presented by David E.Goldberg */ //********************************************************** ********/ #include #include #include #include "graph.c" /* 全局变量*/ struct individual /* 个体*/ { unsigned *chrom; /* 染色体*/ double fitness; /* 个体适应度*/ double varible; /* 个体对应的变量值*/ int xsite; /* 交叉位置*/ int parent[2]; /* 父个体*/ int *utility; /* 特定数据指针变量*/ };

struct bestever /* 最佳个体*/ { unsigned *chrom; /* 最佳个体染色体*/ double fitness; /* 最佳个体适应度*/ double varible; /* 最佳个体对应的变量值*/ int generation; /* 最佳个体生成代*/ }; struct individual *oldpop; /* 当前代种群*/ struct individual *newpop; /* 新一代种群*/ struct bestever bestfit; /* 最佳个体*/ double sumfitness; /* 种群中个体适应度累计*/ double max; /* 种群中个体最大适应度*/ double avg; /* 种群中个体平均适应度*/ double min; /* 种群中个体最小适应度*/ float pcross; /* 交叉概率*/ float pmutation; /* 变异概率*/ int popsize; /* 种群大小*/ int lchrom; /* 染色体长度*/ int chromsize; /* 存储一染色体所需字节数*/ int gen; /* 当前世代数*/ int maxgen; /* 最大世代数*/ int run; /* 当前运行次数*/

一个简单实用的遗传算法c程序完整版

一个简单实用的遗传算 法c程序 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一个简单实用的遗传算法c程序(转载) 2009-07-28 23:09:03 阅读418 评论0 字号:大中小 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从,目录 coe/evol中的文件中获得。要求输入的文件应该命名为‘’;系统产生的输出文件为‘’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 /**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include <> #include <> #include <> /* Change any of these parameters to match your needs */ #define POPSIZE 50 /* population size */

遗传算法求解函数极值C语言代码

#include "stdio.h" #include "stdlib.h" #include "conio.h" #include "math.h" #include "time.h" #define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100 #define pc 0.9 //交叉概率为0.9 #define pm 0.1 //变异概率为10% #define ps 0.6 //进行选择时保留的比例 #define genmax 2000 //最大代数200 int RandomInteger(int low,int high); void Initial_gen(struct unit group[N]); void Sort(struct unit group[N]); void Copy_unit(struct unit *p1,struct unit *p2); void Cross(struct unit *p3,struct unit *p4); void Varation(struct unit group[N],int i); void Evolution(struct unit group[N]); float Calculate_cost(struct unit *p); void Print_optimum(struct unit group[N],int k); /* 定义个体信息*/ typedef struct unit { int path[num_C]; //每个个体的信息 double cost; //个体代价值 }; struct unit group[N]; //种群变量group int num_gen=0; //记录当前达到第几代 int main() { int i,j; srand((int)time(NULL)); //初始化随机数发生器 Initial_gen(group); //初始化种群 Evolution(group); //进化:选择、交叉、变异 getch(); return 0; } /* 初始化种群*/ void Initial_gen(struct unit group[N]) { int i,j; struct unit *p; for(i=0;i<=N-1;i++) //初始化种群里的100个个体 {

遗传算法的基本原理

第二章 遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S 作为搜索空间,f :S —>R 为目标函数,全局优化问题作为任务)(max x f S x ∈给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值+∞<=)(**x f f 称为一个全局最大值,当且仅当x ? S x ∈,(ρi i b a <,i 12)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P ; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。

2.1.3 遗传编码 由于GA 计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA 个体的表现型集合做组成的空间称为问题(参数)空间,由GA 基因型个体所组成的空间称为GA 编码空间。遗传算子在GA 编码空间中对位串个体进行操作。 定义:由问题空间向GA 编码空间的映射称为编码,而有编码空间向问题空间的映射成为译码。 1)2)3)它们对1) 2) k =1,2,…,K; l =1,2,…,L; K=2L 其中,个体的向量表示为),,,(21kL k k k a a a a =,其字符串形式为kL k k k a a a s 21=,s k 称为个体a k 对应的位串。表示精度为)12/()(--=?L u v x 。 将个体又位串空间转换到问题空间的译码函数],[}1,0{:v u L →Γ的公式定义为: 对于n 维连续函数),,2,1](,[),,,,(),(21n i v u x x x x x x f i i i n =∈=,各维变量的二进制

遗传算法基本理论实例

目录 _ 一、遗产算法的由来 (2) 二、遗传算法的国内外研究现状 (3) 三、遗传算法的特点 (5) 四、遗传算法的流程 (7) 五、遗传算法实例 (12) 六、遗传算法编程 (17) 七、总结 ......... 错误!未定义书签。附录一:运行程序.. (19)

遗传算法基本理论与实例 一、遗产算法的由来 遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。John H.Holland教授及其学生首先提出的遗传算法就是一个重要的发展方向。 遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程和现象叫做“自然选择,适者生存”。按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的

遗传算法C语言源代码(一元函数和二元函数)

C语言遗传算法代码 以下为遗传算法的源代码,计算一元代函数的代码和二元函数的代码以+++++++++++++++++++++++++++++++++++++为分割线分割开来,请自行选择适合的代码,使用时请略看完代码的注释,在需要更改的地方更改为自己需要的代码。 +++++++++++++++++++++++++++++++一元函数代码++++++++++++++++++++++++++++ #include #include #include #include #define POPSIZE 1000 #define maximization 1 #define minimization 2 #define cmax 100 #define cmin 0 #define length1 20 #define chromlength length1 //染色体长度 //注意,你是求最大值还是求最小值 int functionmode=minimization; //变量的上下限的修改开始 float min_x1=-2;//变量的下界 float max_x1=-1;//变量的上界 //变量的上下限的修改结束 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index;

遗传算法基本理论与方法

摘要:基本遗传算法的操作是以个体为对象,只使用选择、交叉和变异遗传算子,遗传进化操作过程的简单框架。模式定理和积木块假设是解释遗传算法有效性的理论基础,理论分析与实际应用都表明基本的遗传算法不能处处收敛于全局最优解,因此基本遗传算法有待进一步改进。 关键词:遗传算法;遗传算法的改进 1.标准遗传算法 基本遗传算法包括选择、交叉和变异这些基本遗传算子。其数学模型可表示为: sag=(c,e,p0,n,φ,г,ψ,t) 其中c为个体的编码方法;e为个体适应度评价函数;p0为初始种群;n为种群大小;φ为选择算子;г为交叉算子;ψ为变异算子;t为遗传运算终止条件; 2 遗传算法基本方法及其改进 2.1编码方式 编码方式决定了个体的染色体排列形式,其好坏直接影响遗传算法中的选择算子、交叉算子和变异算子的运算,也决定了解码方式。 二进制编码 二进制编码使用的字符号{0,1}作为编码符号,即用一个{0,1}所组成的二进制符号串构成的个体基因型。二进制编码方法应用于遗传算法中有如下优点: 1)遗传算法中的遗传操作如交叉、变异很容易实现,且容易用生物遗传理论来解释; 2)算法可处理的模式多,增强了全局搜索能力; 3)便于编码、解码操作; 4)符合最小字符集编码原则; 5)并行处理能力较强。 二进制编码在存着连续函数离散化的映射误差,不能直接反应出所求问题的本身结构特征,不便于开发专门针对某类问题的遗传运算算子。 2.2初始种群的设定 基本遗传算法是按随机方法在可能解空间内产生一个一定规模的初始群体,然后从这个初始群体开始遗传操作,搜索最优解。初始种群的设定一般服从下列准则:1)根据优化问题,把握最优解所占空间在整个问题空间的分布范围,然后,在此分布范围内设定合适的初始群体。 2)先随机生成一定数目的个体,然后从中挑出最好的个体加入到初始群体中。该过程不断迭代,直到初始群体中个体数目达到了预先确定的种群大小。 2.3选择算子的分析 选择算子的作用是选择优良基因参与遗传运算,目的是防止有用的遗传信息丢失,从而提高全局收敛效率。常用的遗传算子: (1)轮盘赌选择机制 轮盘赌选择也称适应度比例选择,是遗传算法中最基本的选择机制,每个个体被选择进入下一代的概率为这个个体的适应度值占全部个体适应度值之和的比例。但是轮盘赌选择机制选择误差较大,不是所有高适应度值的个体都能被选中,适应度值较低但具有优良基因模式的个体被选择的概率也很低,这样就会导致早熟现象的产生。 (2)最优保存选择机制 最优保存选择机制的基本思想是直接把群体中适应度最高的个体复制到下一代,而不进行配对交叉等遗传操作。具体步骤如下: 1)找出当前群体中适应度值最高和最低的个体的集合;

一个简单实用的遗传算法c程序

一个简单实用的遗传算法c程序(转载) c++ 2009-07-28 23:09:03 阅读418 评论0 字号:大中小 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从https://www.360docs.net/doc/e46640779.html,,目录coe/evol 中的文件prog.c中获得。要求输入的文件应该命名为…gadata.txt?;系统产生的输出文件为…galog.txt?。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 /**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include #include #include /* Change any of these parameters to match your needs */

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

遗传算法C语言代码

// GA.cpp : Defines the entry point for the console application. // /* 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的, Sita S.Raghavan (University of North Carolina at Charlotte)修正。 代码保证尽可能少,实际上也不必查错。 对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。 注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。 该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。 代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。 读者可以从https://www.360docs.net/doc/e46640779.html,, 目录coe/evol中的文件prog.c中获得。 要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。 输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 */ #include #include #include /* Change any of these parameters to match your needs */ //请根据你的需要来修改以下参数 #define POPSIZE 50 /* population size 种群大小*/ #define MAXGENS 1000 /* max. number of generations 最大基因个数*/ const int NVARS = 3; /* no. of problem variables 问题变量的个数*/ #define PXOVER 0.8 /* probability of crossover 杂交概率*/ #define PMUTATION 0.15 /* probability of mutation 变异概率*/ #define TRUE 1 #define FALSE 0 int generation; /* current generation no. 当前基因个数*/ int cur_best; /* best individual 最优个体*/ FILE *galog; /* an output file 输出文件指针*/ struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/ { double gene[NVARS]; /* a string of variables 变量*/

谈谈遗传算法的原理

谈谈遗传算法的原理 发表时间:2011-08-24T09:52:45.450Z 来源:《魅力中国》2011年7月上供稿作者:朱小宝 [导读] 从上表中可以看出,群体经过一代进化之后,其适应度的最大值、平均值都得到了明显的改进。 朱小宝 (南昌航空大学飞行器工程学院江西南昌 330029) 中图分类号:TP301.6 文献标识码:A 文章编号:1673-0992(2011)07-0000-01摘要:自从霍兰德于1975年在他的著作《Adaption im Natural and artificial Systems》中首次提出遗传算法以来,经过了近30年的研究,现在已经发展到了一个比较成熟的阶段,并且在实际中得到了很好的应用。为了更好的了解遗传算法,本文通过最简单的一个手工计算实例来还原遗传算法的全过程。 关键词:遗传算法生物进化染色体种群 自然界的生物进化是按“适者生存,优胜劣汰”规律进行的,而遗传算法就是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。其基本思想是力求充分模仿这一自然寻优过程的随机性、鲁棒性和全局性,这是一种全局优化搜索算法,因为其直接对结构对象进行操作,不存在求导和函数连续性的限定。 遗传算法采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体),即种群。这里每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应值比例的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化一代代演化下去,直到满足期望的终止条件为止。 遗传算法主要步骤: (1)编码:由于遗传算法不能直接处理解空间的数据,必须通过编码将它们表示成遗传空间的基因型串结构数据。 (2)选择初始种群:随机产生N个初始串结构数据,每个串结构数据称为一个个体,也称为染色体,N个个体体构成了一个种群。 (3)选择适应度函数:遗传算法在搜索过程中一般不需要其他外部信息或知识,仅用适应度函数来评价个体的适应度。 (4)选择:利用选择概率再随机的选择个体和复制数量。选择算子的设计可依据达尔文适者生存的进化论原则,选择概率大的被选中的机会较多。 (5)杂交:对被选中的个体进行随机配对并随机的选择基因交换位,交换基因后产生新的个体,全体新个体构成新的(下一代)种群。 (6)变异:变异操作是按位进行求反,对二二进制编码的个体而言,就是对随机选中的某位进行求反运算,即“0”变“1”,“1”变大“0”。 (7)一代种群通过遗传,即选择、杂交和变异产生下一代种群。新种群又可重复上述的选择、杂交和变异的遗传过程。 为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。 求下述二元函数的最大值: Max f(x1,x2)= x12+ x22 S,t, x1∈{1,2,3,4,5,6,7} x2∈{1,2,3,4,5,6,7} (1) 个体编码 遗传算法的运算对象是表示个体的符号串,所以必须把变量 x1, x2 编码为一种符号串。本题中,用无符号二进制整数来表示。因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。例如,基因型 X=101110 所对应的表现型是:x=[5,6]。个体的表现型x和基因型X之间可通过编码和解码程序相互转换。 (2) 初始群体的产生 群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。 如:011101,101011,011100,111001 (3) 适应度汁算 目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接用目标函数值作为个体的适应度。 (4) 选择运算 我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。其具体操作过程是: 1.先计算出群体中所有个体的适应度的总和 fi ( i=1.2,…,M ); 2.fi其次计算出每个个体的相对适应度的大小 fi / ,它即为每个个体被遗传到下一代群体中的概率, 3.每个概率值组成一个区域,全部概率值之和为1; 4.最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

遗传算法基本原理111

第二章遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S作为搜索空间,f:S—>R为目标函数,全局优化问题作为任务给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值称为一个全局最大值,当且仅当成立时,被称为一个全局最大值点(全局最 大解)。 局部极大值与局部极大值点(解)的定义: 假设在S上给定了某个距离度量,如果对,,使得对, ,则称x’为一个局部极大值点,f(x’)为一个局部极大 值。当目标函数有多个局部极大点时,被称为多峰或多模态函数(multi-modality function)。 主要考虑两类搜索空间: 伪布尔优化问题:当S为离散空间B L={0,1}L,即所有长度为L且取值为0或1的二进制位串的集合时,相应的优化问题在进化计算领域称为伪布尔优化问题。 连续参数优化问题:当取S伪n维实数空间R n中的有界集合,其中,i = 1, 2, … , n时,相应的具有连续变量的优化问题称为连续参数优化问题。 对S为B L={0,1}L,常采用的度量时海明距离,当时,常采用的度量就是欧氏距离。 2.1.2 遗传算法的基本流程

遗传算法的基本步骤如下: 1)选择编码策略,把参数集合X和域转换为位串结构空间S; 2)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。 2.1.3 遗传编码 由于GA计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA个体的表现型集合做组成的空间称为问题(参数)空间,由GA基因型个体所组成的空间称为GA编码空间。遗传算子在GA

遗传算法的C语言程序案例

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

相关文档
最新文档