肉质相关基因TCAP启动子与转录因子MyoD结合的ChIP分析

肉质相关基因TCAP启动子与转录因子MyoD结合的ChIP分析
肉质相关基因TCAP启动子与转录因子MyoD结合的ChIP分析

肉质相关基因TCAP启动子与转录因子MyoD结合的ChIP分析

摘要:为了检测肉质相关基因TCAP(Titin-cap,Telethonin)启动子与转录因子MyoD(Myogenic differentiation antigen)的体内结合情况,采用染色质免疫共沉淀(Chromatin immunoprecipitation,ChIP)结合PCR技术分析TCAP启动子与转录因子MyoD的结合。结果表明,以MyoD抗体免疫沉淀的DNA片段为模板,PCR扩增获得了TCAP基因启动区121 bp的片段,实现了转录因子MyoD与TCAP启动子DNA序列结合。试验证实TCAP基因是MyoD调控的下游基因,在肌肉发育过程中发挥重要作用。

关键词:染色质免疫共沉淀;TCAP基因;MyoD转录因子

动物的产肉潜力及肌肉品质与肌纤维的数量和生长密切相关。TCAP (Titin-cap,Telethonin)蛋白作为一种肌丝蛋白在肌原纤维的组装过程中发挥着重要作用,其在横纹肌和心肌中特异性表达,是肌联蛋白激酶的作用底物,并绑定于肌联蛋白Z1-Z2区,通过连接和支撑肌联蛋白为其他肌纤维蛋白提供空间上固定的结合位点[1]。TCAP基因与肌肉萎缩[2]、心肌症[3,4]、肌营养不良[5]等均相关。在培养的骨骼肌细胞中,通过RNA干扰发现TCAP基因下调表达后会抑制成肌细胞的分化[6],这些都证实了TCAP基因与骨骼肌发育关系密切。

TCAP基因由2个外显子组成,在人、鼠和猪中编码167个氨基酸,在牛中编码166个氨基酸[7],且在不同物种间高度保守[8]。研究表明牛TCAP基因内含子1和外显子2的SNP位点与肉质性状显著相关[9]。黄京书[10]克隆了猪TCAP 基因并发现了4个SNP位点,且G334A位点基因型与猪屠宰率、瘦肉率、6~7腰椎间背膘厚、胸腰椎间背膘厚、臀部平均背膘厚、三点平均背膘厚、眼肌高、眼肌宽、至第一颈椎胴体长、至第一胸肋胴体长极显著相关,且肥肉率、肩部背膘厚、瘦肥比率性状在不同基因型间的差异也达到显著水平。

TCAP基因对猪肉质性状有着密切影响,但是其作用的具体机制还不明确。课题组在前期工作中克隆了猪TCAP基因启动子1 662 bp序列,构建了7个启动子缺失片段重组质粒分别转染C2C12细胞。结果表明,各个片段的启动子活性都显著提高,其中-155 bp/+33区段启动子活性最高,推测为潜在的核心启动子区。利用生物信息学技术对猪TCAP基因启动子区序列做进一步分析后发现存在调控肌肉生长发育的肌分化因子(Myogenic differentiation antigen,MyoD)转录因子结合位点,且将构建的转录因子MyoD超表达载体与TCAP基因启动子序列进行共转染,发现启动子活性明显升高,说明MyoD对TCAP基因的表达具有一定的调控作用。故试验采用染色质免疫共沉淀技术(ChIP)体内验证TCAP 基因启动子序列与转录因子MyoD的结合情况,进一步探讨TCAP基因影响肉质性状的作用机制。

转录调节位点和转录因子数据库介绍_张光亚

10生物学通报2005年第40卷第11期 2003年即Watson和Crick发表DNA双螺旋结构50周年,宣布了人类基因组计划的完成,与此同时,其他许多生物的基因组计划已完成或在进行中,在此过程中产生的大量数据库对科学研究的深远影响是以前任何人未曾预料到的。然而遗憾的是,许多生物学家、化学家和物理学家对这些数据库的使用甚至去何处寻找这些数据库都只有一个比较模糊的概念。 基因转录是遗传信息传递过程中第一个具有高度选择性的环节,近20年来对基因转录调节的研究一直是基因分子生物学的研究中心和热点,因此亦产生了大量很有价值的数据库资源,对这些数据库的了解将为进一步研究带来极大便利,本文对其中一些数据库进行简要介绍。 1DBTSS DBTSS(DataBaseofTranscriptionalStartSites)由东京大学人类基因组中心维护,网址:http://dbtss.hgc.jp。最初该数据库收集用实验方法得到的人类基因的TSS(TranscriptionalStartSites,转录起始位点)数据。对转录起始位点(TSS)的确切了解具有非常重要的意义,可更准确的预测翻译起始位点;可用于搜索决定TSS的核苷酸序列,而且可更精确地分析上游调控区域(启动子)。自2002年发布第一版以来已作了多次更新。目前包含的克隆数为190964个,含盖了11234个基因,在SNP数据库中显示了人类基因中的SNP位点,而且现在含包含了鼠等其他生物的相关数据。DBTSS最新的版本为3.0。 在该最新的版本中,还新增了人和鼠可能同源的启动子,目前可以显示3324个基因的启动子,通过本地的比对软件LALIGN可以图的形式显示相似的序列元件。另一个新的功能是可进行与已知转录因子结合位点相似的部位的定位,这些存贮在TRANSFAC(http://transfac.gbf.de/TRANSFAC/index.html)数据库中,免费用于研究,但TRANSFAC专业版是商业版本。 DBTSS对匿名登录的用户是免费的,该网站要求用户在使用前注册,用户注册后即可使用。主页分为2个区域,一个介绍网站的部分信息和用户注册,另一区域为用户操作区,该区约分为10个部分,可分别进行物种和数据库的选择、BLAST、SNP以及TF(转录因子)结合部位搜索等部分。后者的使用可以见网页中的Help部分,里面有比较详细的介绍。DBTSS还提供了丰富的与其他相关网站的链接,如上文提到的TRANSFAC数据库、真核生物启动子数据库(Eukaryot-icPromoterDatabase,http://www.epd.isb-sib.ch/)以及人类和其他生物cDNA全长数据库等。 2JASPAR JASPAR是有注释的、高质量的多细胞真核生物转录因子结合部位的开放数据库。网址http://jaspar.cgb.ki.se。所有序列均来源于通过实验方法证实能结合转录因子,而且通过严格的筛选,通过筛选后的序列再通过模体(motif)识别软件ANN-Spec进行联配。ANN-Spec利用人工神经网络和吉布斯(Gibbs)取样算法寻找特征序列模式。联配后的序列再利用生物学知识进行注释。 目前该数据库收录了111个序列模式(profiles),目前仅限于多细胞真核生物。通过主页界面,用户可进行下列操作:1)浏览转录因子(TF)结合的序列模式;2)通过标识符(identifier)和注解(annotation)搜索序列模式;3)将用户提交的序列模式与数据库中的进行比较;4)利用选定的转录因子搜索特定的核苷酸序列,用户可到ConSite服务器(http://www.phylofoot.org/consite)进行更复杂的查询。JASPAR数据库所有内容可到主页下载。 与相似领域数据库相比,JASPAR具有很明显优势:1)它是一个非冗余可靠的转录因子结合部位序列模式;2)数据的获取不受限制;3)功能强大且有相关的软件工具使用。JASPAR与TRANSFAC(一流的TF数据库)有较明显的差异,后者收录的数据更广泛,但包含不少冗余信息且序列模式的质量参差不齐,是商业数据库,只有一部分是可以免费使用。用户在使用过程中会发现二者的差异,这主要是由于二者对数据的收集是相互独立的。另外该数据库还提供了相关的链接:如MatInspector检测转录因子结合部位,网址http://transfac.gbf.de/programs/matinspector/;TESS转录元件搜索系统,网址http://www.cbil.upenn.edu/tess/。 转录调节位点和转录因子数据库介绍! 张光亚!!方柏山 (华侨大学生物工程与技术系福建泉州362021) 摘要转录水平的调控是基因表达最重要的调控水平之一,对转录调节位点和转录因子的研究具有重要意义。介绍了DBTSS、JASPAR、PRODORIC和TRRD等相关数据库及其特征、内容和使用。 关键词转录调节位点转录因子数据库生物信息学 !基金项目:国务院侨办科研基金资助项目(05QZR06) !!通讯作者

DNA复制 转录与翻译重要知识汇总

DNA复制、转录与翻译重要知识汇总 ? 今天给同学们汇总的知识是有关生物遗传学中的难点,DNA的复制转录以及翻译,对这部分知识不明白记不住的同学们一定要自己把表里面的内容写一遍,加深记忆哦~ DNA分子的复制、转录、翻译

三者之间的关系 1.过程不同 (1)复制的过程:DNA解旋,以两条链为模板,按碱基互补配对原则,合成两条子链,子链与对应母链螺旋化。(马上点标题下“高中生物”关注可获得更多知识干货,每天更新哟!) (2)转录的过程:DNA解旋,以其一条链为模板,按碱基互补配对原则,形成mRNA单链,进入细胞质与核糖体结合。

(3)翻译的过程:以mRNA为模板,合成有一定氨基酸序列的蛋白质。 2.特点不同 (1)对细胞结构的生物而言,DNA复制发生于细胞分裂过程中,是边解旋边复制,半保留复制。 (2)转录和翻译则发生于细胞分裂、分化等过程。转录是边解旋边转录,DNA双链全保留。转录是以DNA的一条链为模板合成RNA的过程,并不是一个DNA分子通过转录可生成一个RNA分子,实际上,转录是以基因的一条链为模板合成RNA的过程。一个DNA分子上有许多基因,能控制多种蛋白质的合成,所以一个DNA 分子通过转录可以合成多个RNA分子。 (3)一个mRNA分子上可相继结合多个核糖体,同时合成多条相同的肽链,顺次合成多肽链。从核糖体上脱离下来的只是多肽链,多肽链还要在相应的细胞器(内质网、高尔基体)内加工,最后才形成具有一定空间结构的有活性的蛋白质。 3.三者之间的关联要素 (1)DNA中含有T而无U,而RNA中含有U而无T,因此可通过放射性同位素标记T或U,研究DNA复制或转录过程。 (2)复制和转录发生在DNA存在的部位,如细胞核、叶绿体、线粒体、拟核、质粒等部位。同学们比较容易忽视在线粒体和叶绿体中也有少量的DNA存在。这些DNA分子上的基因可以控制部分蛋白质的合成,因此线粒体和叶绿体中也存在转录和翻译所需的酶、核糖体等条件,也会发生转录和翻译过程。 (3)转录出的RNA有3类,mRNA、tRNA和rRNA都是以DNA为模板通过转录合成的。但携带遗传信息的只有mRNA。 (4) DNA复制和转录都需要解旋酶,解旋酶的作用不是解开DNA分子的双链螺旋状态使之成为双链线性状态,而是断裂DNA分子中碱基对之间的氢键,使DNA双链解开成单链,以便作为模板进行复制或转录。 知识点汇总: 1、DNA的结构特点:由两条脱氧核苷酸链按方式盘旋而成的规则的结构。 由和连接,形成 两条链上的碱基通过键形成,即A—T (氢键有个),G—C (氢键有个)。 2、DNA复制 时期:。

ChIP-Seq技术在转录因子结合位点分析的应用

ChIP-Seq技术在转录因子结合位点分析的应用 摘要:染色质免疫沉淀(Chromatin immunoprecipitaion, ChIP)技术是用来研究细胞 内特定基因组区域特定位点与结合蛋白相互作用的技术。将ChIP与第二代高通量测序技术相结合的染色质免疫沉淀测序(chromatin immunoprecipitation followed by sequencing,ChIP-Seq)技术能在短时间内获得大量研究数据,高效地在全基因组范围内检测与组蛋白、转录因子等相互作用的DNA区段,在细胞的基因表达调控网络研究中发挥重要作用。本文 简要介绍了ChIP-Seq技术的基本原理、实验设计和后续数据分析,以及ChIP-Seq技术在 研究转录因子结合位点中的。 关键词:ChIP-Seq;转录因子; 引言 染色质是真核生物基因组DNA主要存在形式,为了阐明真核生物基因表达调控机制,对于蛋白质与DNA在染色质环境下的相互作用的研究是基本途径。转录因子是参与基因表达调控的一类重要的细胞核蛋白质,基因的转录调控是生物基因表达调控层次中最关键的一层,转录因子通过特异性结合调控区域的DNA序列来调控基因转录过程。转录因子由基础转录因子和调控性转录因子两类组成,其中基础转录因子在转录起始位点附近的启动子区,与RNA聚合酶相互作用实现基因的转录;而调控性转录因子一般与位置多样的增强子序列结合,再通过形成增强体在组织发育、细胞分化等基因表达水平调控中发挥极其重要的作用[1]。 ChIP-Seq是近年来新兴的将ChIP与新一代测序技术相结合,在全基因s组范围内分析转录因子结合位点(transcription factor binding sites,TFBS)、组蛋白修饰(histone modification)、核小体定位(nucleosome positioning)和DNA 甲基化(DNA methylation)的高通量方法[2-4]。其中ChIP是全基因组范围内识别DNA与蛋白质体内相互作用的标准方法[5],最初用于组蛋白修饰研究[6],后来用于转录因子[7]。同时,新一代测序技术的迅猛发展也将基因组学水平的研究带入了一个新的阶段,使得许多基于全基因组的研究成为可能。相对于传统的基于芯片的ChIP-chip (chromatin immunoprecipitation combined with DNA tiling arrays),ChIP-seq 提供了一种高分辨率、低噪音、高覆盖率的研究蛋白质-DNA 相互作用的手段[8],可以应用到任何基因组序列已知的物种,可以研究任何一种DNA 相关蛋白与其靶定DNA 之间的相互作用,并能确切得到每一个片段的序列信息.随着测序成本的降低,ChIP-seq 逐步成为研究基因调控和表观遗传机制的一种常用手段。此外,为了达到更好的检测效果和更为完整的信息,近年来,将ChIP-Seq和ChIP-chip两者融合的研究具有很好的应用前景[9,10]。 转录因子在器官发生过程中起至关重要的作用,在全基因组水平将转录因子定位于靶基因DNA是认识转录调控网络的有效方法之一,了解基因转录调控的关键是识别蛋白质与DNA的相互作用。ChIP-Seq技术能够揭示转录因子的结合位点和确定直接的靶基因序列,可在体内分析特定启动子的分子调控机制,因此被广泛应用于转录调控机制的研究。本文主要就这一技术在转录因子结合位点研究中的基本原理、实验设计和数据分析等技术层面、以及实际应用层面进行讨论。 1 ChIP-seq基本原理及实验设计 1.1 ChIP技术 蛋白质与DNA相互识别是基因转录调控的关键,也是启动基因转录的前提。ChIP是在全基因组范围内检测DNA与蛋白质体内相互作用的标准方法[11],该技术由Orlando等[12]于1997年创立,最初用于组蛋白修饰的研究,后来广泛应用到转录因子作用位点的研究中[13]。ChIP的基本原理为:活细胞采用甲醛交联后裂解,染色体分离成为一定大小的片段,然后用特异性抗体免疫沉淀目标蛋白与DNA交联的复合物,对特定靶蛋白与DNA片段进行

高中生物必修二转录复制知识点总结

二、DNA复制中相关的数量计算 碱基互补配对原则:嘌呤和嘧啶之间通过氢键配对,形成碱基对,且A只和T配对、C只和G配对,这种碱基之间的一一对应的关系就叫做碱基互补配对原则。 (1)因为 A=T,G=C 所以,A+G=T+C,即嘌呤数之和等于嘧啶数之和。 同理可得:A+C=T+G,即不互补的嘌呤数与嘧啶数之和相等。 (2)DNA是由两条脱氧核苷酸链组成的,第一条链的A与第二条链的T互补 配对,因此:A1=T2 同理:T1=A2 G1=C2 C1=G2 所以:A1+T1=A2+T2=1/2(A+T) G1+C1=G2+C2=1/2(G+C)因此:(A1+T1)/(G1+C1)=(T2+A2)/(C2+G2) (A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)(A1+C1)/(G1+T1)=(T2+G2)/(C2+A2 (3)因为A=T ,G=C。所以A+G=T+C 所以(A+G)/(A+G+ T+C)=( T+C) / (A+G+ T+C)= 50% 也可以写成以下形式: (A+G)/( T+C)=(A+C) /( T+G)= ( T+G) /( A+C)=1 规律概括:在DNA双链中,任意两个不互补碱基之和相等,并为碱基总数的一半。DNA 分子的双螺旋将解开,互补的碱基之间的氢键断裂(解旋酶),解开的两条单链作为复制的 模板,游离的脱氧核苷酸依据碱基互补配对原则,通过形成氢键,结合到作为模板的单链。 规律1:亲代DNA复制n代后,DNA分子数为 2n ,含亲代母链的DNA分子数为 2个,不含亲代母链的DNA分子数为 2n-2 。 变通1:亲代母链与子代DNA链数之比为: 1/2n ,含亲代母链的DNA分子数与子代DNA分子数之比为: 2/ 2n。 规律2:亲代DNA分子经 n 次复制后,所需某种游离的脱氧核苷酸数为:R =a(2n-1) 【其中,a表示亲代DNA含有的某种碱基数,n表示复制的次数】 规律3:碱基总数=失去H2O数+2 (2)DNA半保留复制的实验证据(考点)

转录因子

转录因子 ? 1 简介 ? 2 方法 ? 3 转录因子 转录因子-简介 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 转录因子-方法 这篇文章的试验方法是,通过高密度的寡核苷酸芯片,反映出人21和22号染色体的几乎所有的非重复序列,通过这种芯片,检测三种转录因子,Sp1、 cMyc、和p53的结合位点。结果表明,每种转录因子都有大量的TFBS与之结合。然而,只有22%的转录因子结合位点分布在蛋白编码基因的5'端, 36%的TFBS分布在蛋白编码基因的中部或3'端,并且这36%的TFBS常常和基因组中的非蛋白编码RNA分布在一起。这暗示,在人的基因组中,不仅包含蛋白编码基因,也包含数量相当的非编码基因(noncoding genes),他们都受常见的转录因子所调控。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的

王思民-2014.7-启动子与转录因子(基因表达调控蛋白)

启动子与转录因子/基因表达调控蛋白生命活动丰富多彩、千变万化。但是万变不离其宗,不管如何变化都围绕着中心法则展开。核酸作为遗传物质指导蛋白质的表达,表达产生的一些特殊蛋白(如转录因子、调控蛋白)反过来又对DNA 指导合成蛋白质的过程进行调控。对基因表达调控的研究一直是生物学研究热点,涉及到生命活动的各个过程,也是各类信号通路研究无法绕过的部分。 当面对某个基因表达调控研究时,第一个想到的研究对象是什么?没错,就是基因的启动子。通过启动子区域对基因表达进行调控是最直接有效的手段,所以也是研究基因表达调控的重点。现在的基因数据库信息丰富,拿到基因及其启动子序列非常简单。那么问题又来了,拿到启动子序列以后,下一步怎么找相关的调控蛋白/转录因子呢?生物信息学方法预测?你会得到很多可能的目标调控蛋白/转录因子,还要做实验一个一个验证。凝胶迁移(EMSA),染色质免疫共沉淀(ChIP)?只能针对已知能与启动子结合的调控蛋白/转录因子,而且还需要相应探针/抗体,对于大量筛选无能为力。 美国Signosis的转录因子(结合启动子)微孔板芯片检测试剂可以方便、高效地解决这一问题。该方法专门用于筛查与特定DNA序列(通常是含有转录因子结合位点的启动子序列)相互作用的调控蛋白/转录因子,获得目的基因的启动子序列后,使用该方法可以筛查48/96种常见的调控蛋白/转录因子与启动子序列结合情况。该方法利用转录因子与特定DNA序列结合的特点,针对每一种转录因子设计

相应的生物素标记探针;当混合探针与核蛋白样本共同孵育时,探针与相应的转录因子结合形成转录因子/探针复合物;除去游离的探针,收集转录因子/探针复合物;分离复合物中的DNA探针,探针的量与 转录因子含量呈正相关。在探 针混合物中同时加入启动子片 段,如果DNA序列中含有转录 因子结合位点,就会与生物素 标记的探针竞争性结合转录因 子,转录因子与相应探针形成 的复合物减少。通过比较有无 目的基因启动子片段中转录因 子探针检测差异,可以分析出 与无目的基因启动子片段相互 作用的转录因子种类。 这种方法可以简单、快速地在48/96种常见转录因子筛选出与目的启动子片段相互作用的调控蛋白/转录因子,从而进一步探索目的基因的表达调控。待筛选的调控蛋白/转录因子都是在生命活动中起重要通的调控蛋白/转录因子,大大方便了后续的基因表调控、信号通路及其它方面的研究。

转录因子

转录因子 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。而顺式作用因子则指的是基因上与反式作用因子结合的对基因表达起调控作用的基因序列。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。但是,在这一类因子中,要严格区分开哪些是R NA聚合酶的亚基,哪些仅是辅助因子,是很困难的。 (3)某些转录因子仅与其靶启动子中的特异顺序结合。如果这些顺序存在于启动子中,则这些顺序因子是一般转录机构的一部分。如果这些顺序仅存在于某些种类的启动子中,则识别这些顺序的因子也只是在这些特异启动子上起始转录必须的。 黑腹果蝇的RNA聚合酶需要至少两个转录因子方能在体外起始转录。其中一个是B因子,它与含TATA盒的部位结合。人的因子TFⅡD亦和类似的部位结合。同样,CTF(CAAT结合因子)则与腺病毒的主要晚期启动子中与CAAT盒同源的部位相结合。结合在上游区的另一个转录因子是USF(亦称MLTF),则可以识别腺病毒晚期启动子中靠近-55的顺序。转录因子Sp1则能和GC盒相结合。在SC40启动子中有多个GC盒,位于-70到-110之间。它们均能和Sp1相结合。然而含有GC盒的不同的DNA顺序与Sp1的亲和力却各不相同。可见GC盒两侧的顺序对Sp1-GC盒的结合究竟如何能影响转录。有时候需要几个转录因子才能起始转录。例如胞苷激酶的启动子需要S p1与GC盒结合和CTF与CAAT盒结合;腺病毒晚期启动子需要TFⅡD与TATA盒结合和USF与其邻近部位相结合。以上所述的因子是一般转录都需要的,似乎并没有什么调节功能。另一些转录因子则可以调控一组特殊基因的转录。热休克基因就是一个很好的例子。真核生物的热休克基因在转录起始点的上游15bp处有一个共同顺序。H STF因子仅在热休克细胞中有活性。它与包括热休克共同顺序在内的一段DNA相结合,所以这个因子的激活可以引起约包括20个基因的一组基因起始转录。在这里,转录因子和RNA聚合酶Ⅱ之间关系很类似细菌的σ因子与核心酶之间的关系。 转录因子是一种具有特殊结构、行使调控基因表达功能的蛋白质分子,也称为反式作用因子。植物中的转录因子分为二种,一种是非特异性转录因子,它们非选择性地调控基因的转录表达,如大麦(Hordeum vulgare) 中的HvCBF2 (C-repeat/DRE binding factor 2) (Xue et al., 2003)。还有一种称为特异型转录因子,它们能够选择性调控某种或某些基因的转录表达。典型的转录因子含有DNA结合区(DNA-binding domain)、转录调控区(acti vation domain)、寡聚化位点(oligomerization site) 以及核定位信号(nuclear localization signal) 等功能区域。这些功能区域决定转录因子的功能和特性(Liu et al., 1999)。DNA结合区带共性的结构主要有:1)HTH 和HL H 结构:由两段α-螺旋夹一段β-折叠构成,α-螺旋与β-折叠之间通过β-转角或成环连接,即螺旋-转角-螺旋结构和螺旋-环-螺旋结构。2)锌指结构:多见于TFIII A 和类固醇激素受体中,由一段富含半胱氨酸的多肽链构成。每四个半光氨酸残基或组氨酸残基螯合一分子Zn2+ ,其余约12-13 个残基则呈指样突出,刚好能嵌入DNA 双螺旋的大沟中而与之相结合。3)亮氨酸拉链结构:多见于真核生物DNA 结合蛋白的 C 端,与癌基因表达调控有关。由两段α - 螺旋平行排列构成,其α - 螺旋中存在每隔7 个残基规律性排列的亮氨酸残基,亮氨酸侧链交替排列而呈拉链状,两条肽链呈钳状与DNA 相结合。

基因的转录和翻译真题练习

基因的表达真题演练 J 1.(2012年课标全国卷,1,6分)同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。其原因是参与这两种蛋白质合成的() A. tRNA种类不同 B mRNA碱基序列不同 C. 核糖体成分不同 D. 同一密码子所决定的氨基酸不同 2. (2012年安徽理综卷,5,6分)图示细胞内某些重要物质的合成过程。该过程发生在() A. 真核细胞内,一个mRNA分子上结合多个核糖体同时合成多条肽链 B. 原核细胞内,转录促使mRNA在核糖体上移动以便合成肽链

C原核细胞内,转录还未结束便启动遗传信息的翻译 D.真核细胞内,转录的同时核糖体进入细胞核启动遗传信息的翻译 3. (2011年海南卷)野生型大肠杆菌能在基本培养基上生长,用射线照射野生型大肠杆菌得到 一突变株,该突变株在基本培养基上培养时必须添加氨基酸甲后才能生长。对这一实验结果的解释,不合理的是() A. 野生型大肠杆菌可以合成氨基酸甲 B野生型大肠杆菌代谢可能不需要氨基酸甲 C. 该突变株可能无法产生氨基酸甲合成所需的酶 D. 该突变株中合成氨基酸甲所需酶的功能可能丧失 4. (2011年海南卷)关于RNA的叙述,错误的是() A. 少数RNA具有生物催化作用 B真核细胞内mRNA和tRNA都是在细胞质中合成的 C. mRNA上决定1个氨基酸的3个相邻碱基称为密码子 D. 细胞中有多种tRNA,一种tRNA只能转运一种氨基酸 5. (2011年安徽理综卷)甲、乙图示真核细胞内两种物质的合成过程,下列叙述正确的是() A. 甲、乙所示过程通过半保留方式进行 B. 甲所示过程在细胞核内进行,乙在细胞质基质中进行 C. DNA分子解旋时,甲所示过程不需要解旋酶,乙需要解旋酶 D 一个细胞周期中,甲所示过程在每个起点只起始一次,乙可起始多次 ,合成的产物是双链核酸分子 甲 6.(2011年江苏卷)下列物质合成时,需要模板的是()

关于组蛋白、甲基化、CHIP-Seq、结合位点、转录因子

关于组蛋白、甲基化、转录因子、结合位点和CHIP-Seq 1)染色质:真核细胞分裂间期的细胞核内的一种物质,这种物质的基本化学成分为脱氧核 糖核酸核蛋白(核蛋白就是由DNA或RNA与蛋白质形成的复合体),主要由DNA和组蛋白构成,也含有少量的非组蛋白和RNA。由于它可以被碱性的染料染色,所以称为染色质。在细胞的有丝分裂期,染色质经过螺旋、折叠,包装成了染色体。 2)核小体:核小体是染色体的基本结构单位,由DNA和组蛋白(histone)构成,是染色质(染 色体)的基本结构单位。由4种组蛋白H2A、H2B、H3和H4,每一种组蛋白各二个分子,形成一个组蛋白八聚体,约200 bp的DNA分子盘绕在组蛋白八聚体构成的核心结构外面,形成了一个核小体。这时染色质的压缩包装比(packing ratio)为6左右,即DNA 由伸展状态压缩了近6倍。200 bp DNA为平均长度;不同组织、不同类型的细胞,以及同一细胞里染色体的不同区段中,盘绕在组蛋白八聚体核心外面的DNA长度是不同的。如真菌的可以短到只有154 bp,而海胆精子的可以长达260bp,但一般的变动范围在180bp到200bp之间。在这200bp中,146 bp是直接盘绕在组蛋白八聚体核心外面,这些DNA不易被核酸酶消化,其余的DNA是用于连接下一个核小体。连接相邻2个核小体的DNA分子上结合了另一种组蛋白H1。组蛋白H1包含了一组密切相关的蛋白质,其数量相当于核心组蛋白的一半,所以很容易从染色质中抽提出来。所有的H1被除去后也不会影响到核小体的结构,这表明H1是位于蛋白质核心之外的。 3)染色体:在细胞的有丝分裂的分裂期由染色质经螺旋折叠形成,呈线状或棒状。 4) 有丝分裂:真核细胞的染色质凝集成染色体、复制的姐妹染色单体在纺锤丝的牵拉下分 向两极,从而产生两个染色体数和遗传性相同的子细胞核的一种细胞分裂类型。分裂具有周期性。即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。一个细胞周期包括两个阶段:分裂间期和分裂期,(这两个阶段所占的时间相差较大,一般分裂间期占细胞周期的90%-95%;分裂期大约占细胞周期的5%-10%。细胞种类不同,一个细胞周期的时间也不相同。)分裂期又分为分裂前期、分裂中期、分裂后期和分裂末期。细胞在分裂之前,必须进行一定的物质准备。细胞增殖包括物质准备和细胞分裂整个过程。有丝分裂是一个连续的过程按先后顺序划分为间期、前期、中期、后期和末期五个时期,在前期和中期之间有时还划分出一个前中期。 5) 分裂间期:主要完成DNA的复制和蛋白质的合成,DNA复制时边解旋编复制。 6) 姐妹染色单体:姐妹染色单体是指染色体在细胞有丝分裂(包括减数分裂)的间期进 行自我复制,形成由一个着丝点连接着的两条完全相同的染色单体。(若着丝点分裂,则就各自成为一条染色体了)。每条姐妹染色单体含1个DNA。 7) 同源染色体:二倍体细胞中染色体以成对的方式存在, 一条来自父本,一条来自母本, 且形态、大小相同,并在减数分裂前期相互配对的染色体。含相似的遗传信息。 8) 组蛋白:一组进化上非常保守的碱性蛋白质,其中碱性氨基酸(Arg,Lys)约占25%,存 在于真核生物染色质,分为5种类型(H1,H2A,H2B,H3,H4),后4种各2个形成组蛋白八聚体,构成核小体的核心,占核小体质量的一半。组蛋白的基因非常保守。亲缘关系较远的种属中,四种组蛋白(H2A、H2B、H3、H4)氨基酸序列都非常相似。 9) 甲基化(methylation):从活性甲基化合物(如S-腺苷基甲硫氨酸)上催化其甲基转移到其 他化合物的过程。可形成各种甲基化合物,或是对某些蛋白质或核酸等进行化学修饰形成甲基化产物。甲基化是蛋白质和核酸的一种重要的修饰,调节基因的表达和关闭,与癌症、衰老、老年痴呆等许多疾病密切相关,是表观遗传学的重要研究内容之一。最常见的甲基化修饰有DNA甲基化和组蛋白甲基化。DNA甲基化是指生物体在DNA甲基转移酶(DNA methyltransferase,DMT) 的催化下,以s-腺苷甲硫氨酸(SAM)为甲基

017-DNA复制、转录、翻译的区别知识点小结

2011-2012-1 高三年级生物作业纸 知识点小结 一. DNA 复制、转录、翻译的区别 ????????装???????订???????线????????内????????不???????准???????答????????题????????? 姓名____________ 班级____________ 学号___________ 编号 017

二、遗传信息、遗传密码子、反密码子的比较

三、基因表达中相关数量计算 1.基因中碱基数与mRNA 中碱基数的关系 转录时,组成基因的两条链中只有一条链能转录,另一条链则不能转录。 基因为双链结构而RNA 为单链结构,因此转录形成的mRNA 分子中碱基 数目是基因中碱基数目的1/2。 2.mRNA 中碱基数与氨基酸的关系 翻译过程中,信使RNA 中每3个碱基决定一个氨基酸,所以经翻译合成的蛋白质分子中的氨基酸数目是 信使RNA 碱基数目的1/3。列关系式如下: 3.计算中“最多”和“最少”的分析 (1)翻译时,mRNA 上的终止密码不决定氨基酸,因此准确地说,mRNA 上的碱基数目比蛋白质中氨基酸数目的3倍还要多一些。 (2)基因或DNA 上的碱基数目比对应的蛋白质中氨基酸数目的6倍还要多一些。 (3)在回答有关问题时,应加上最多或最少等字。 如:mRNA 上有n 个碱基,转录产生它的基因中至少有2n 个碱基,该mRNA 指导合成的蛋白质中最多有n ?个氨基 酸。 (4)蛋白质中氨基酸的数目=肽键数+肽链数(肽键数=脱去的水分子数)。 四、中心法则的提出及其发展 1.中心法则的提出 (1)提出人:克里克。 (2)基本内容(用关系简式表示):

转录因子

角朊细胞 角朊细胞的增殖和分化是一个受到精细调节的过程,并伴随着一系列形态学和生化改变,最终形成角质细胞,这就必然涉及到许多结构基因的同时活化与灭活,即基因表达的调控,而转录水平的调控尤为重要。现已发现许多转录因子如AP1、AP2、Sp1、POU结构域及C/EBP等可调节角朊细胞基因的表达。 目录

转录水平、翻译水平及翻译后水平,其中最常见的调控方式就是转录调控。现已发现AP1、AP2、NFκB、C/EBP、ets、Sp1及POU结构域等转录因子可作为表皮中的调控蛋白,从而调节编码套膜蛋白(involucrin, iNV)、转谷氨酰胺酶(transglutaminase,TG)、SPRR2A、兜甲蛋白(loricrin)、角蛋白及BPAG1等蛋白的基因的表达。本文就与角朊细胞基因表达有关的转录因子作一简要综述。 编辑本段转录因子的一般特征 转录因子(transcription factor)是能与位于转录起始位点上游50~5000bp的顺式作用元件(cis-acting elements)、沉默子(silencer)或增强子(enhancer)结合并参与调节靶基因转录效率的一组蛋白,并能将来自细胞表面的信息传递至核内基因。转录因子通常有几个功能域,可分为DNA结合域、转录调控域及自身活性调控域,DNA结合域可与特定的DNA序列(一般长8~20bp)相互作用,使转录因子与靶基因结合起来,随之转录调控域就可发挥其激活或抑制作用,通常这些结构域在结构与功能上是独立分开的。不同的转录因子还可结合于紧密相邻的DNA序列而形成一种多聚体结构来调节基因表达,这种组合调控(combinatorial regulation)不论转录因子是否激活及其含量多少均可激活基于靶基因中特定转录因子结合位点的转录。除启动基础转录活性外,转录因子还能整合从细胞表面经信号转导途径传递而来的信号[2]。 编辑本段激活角朊细胞基因表达的转录因子 (一)AP1 AP1转录因子通常以jun(c-jun、junB、junD)与Fos(Fra-1、Fra-2、c-fos、fosB)家族成员组成的同源或异源二聚体表达其活性,即结合于5’-GTGAGCTCAG-3’序列。目前已知AP1位点对于编码角蛋白(K1、K5、 K6及K19)、丝聚合蛋白原(profilaggrin)基因的最适转录活性十分重要[3,7],编码角质化包膜(cornified envelope)相关蛋白-TG1、兜甲蛋白及INV的基因也含有功能性AP1 位点[8,9],如hINV基因启动子在其转录起始位点上游2.5kb内有5个AP1共有结合位点(AP1-1~5),其中2个AP1位点AP1-1和AP1-5若同时发生突变时角朊细胞的转录水平就可下降80%;佛波酯(TPA)则可使AP1与hINV启动子处AP1-1及AP1-5位点的结合能力增强10~100倍,后经点突变实验证实AP1-1和AP1-5位点可部分介导佛波酯(TPA)诱导的效应[10]。丝聚合蛋白原、K1、兜甲蛋白及K19基因中的AP1位点可活化转录[3,6,7],

基因的转录与翻译真题练习测试

基因的表达真题演练 去黑三遗传信息的转录和翻译 1. (2012年课标全国卷,1,6分)同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各 种氨基酸含量相同,但排列顺序不同。其原因是参与这两种蛋白质合成的() 种类不同 BmRN碱基序列不同 C. 核糖体成分不同 D. 同一密码子所决定的氨基酸不同 2. (2012年安徽理综卷,5,6分)图示细胞内某些重要物质的合成过程。该过程发生在() A. 真核细胞内,一个mRN分子上结合多个核糖体同时合成多条肽链 B. 原核细胞内,转录促使mRN在核糖体上移动以便合成肽链 C原核细胞内,转录还未结束便启动遗传信息的翻译 D.真核细胞内,转录的同时核糖体进入细胞核启动遗传信息的翻译 3. (2011年海南卷)野生型大肠杆菌能在基本培养基上生长,用射线照射野生型大肠杆菌得到一突变株,该突变株在基本培养基上培养时必须添加氨基酸甲后才能生长。对这一实验结果的解释,不合理的是() A. 野生型大肠杆菌可以合成氨基酸甲 B野生型大肠杆菌代谢可能不需要氨基酸甲 C. 该突变株可能无法产生氨基酸甲合成所需的酶 D. 该突变株中合成氨基酸甲所需酶的功能可能丧失 4. (2011年海南卷)关于RNA勺叙述,错误的是() A. 少数RNA具有生物催化作用 B真核细胞内mRN/和tRNA都是在细胞质中合成的

上决定1个氨基酸的3个相邻碱基称为密码子 D.细胞中有多种tRNA,—种tRNA只能转运一种氨基酸 5. (2011年安徽理综卷)甲、乙图示真核细胞内两种物质的合成过程,下列叙述正确的是() A. 甲、乙所示过程通过半保留方式进行,合成的产物是双链核酸分子 B. 甲所示过程在细胞核内进行,乙在细胞质基质中进行 分子解旋时,甲所示过程不需要解旋酶,乙需要解旋酶 D一个细胞周期中,甲所示过程在每个起点只起始一次,乙可起始多次 6. (2011年江苏卷)下列物质合成时,需要模板的是() A. 磷脂和蛋白质BDNA和酶C.性激素和胰岛素 D.神经递质和受体 7. (2010年广东理综卷)下列叙述正确的是() 是蛋白质合成的直接模板 B. 每种氨基酸仅由一种密码子编码 复制就是基因表达的过程 DDNA1主要的遗传物质 8. (2010年海南卷)下列关于遗传信息传递的叙述,错误的是() A.线粒体和叶绿体中遗传信息的传递遵循中心法则 中的遗传信息是通过转录传递给mRN的 中的遗传信息可决定蛋白质中氨基酸的排列顺序 DDNA病毒中没有RNA其遗传信息的传递不遵循中心法则 9. (2010年天津理综卷)根据下表中的已知条件,判断苏氨酸的密码子是 10. (2011年江苏卷)关于转录和翻译的叙述,错误的是() A. 转录时以核糖核苷酸为原料 B. 转录时RNA聚合酶能识别DNA中特定碱基序列 CmRN在核糖体上移动翻译出蛋白质 D.不同密码子编码同种氨基酸可增强密码的容错性 11. (2010年上海卷)以“一GAATT—”的互补链转录mRNA则此段mRN的序列是()A—GAAUUG B. —CTTAA— C. —CUUAA— D. —GAATT—

启动子分析-----------转录因子结合位点

启动子分析-----------转录因子结合位点 启动子分析-----------转录因子结合位点 启动子是DNA分子可以与RNA聚合酶特异结合的部位,也就是使转录开始的部位。在基因表达的调控中,转录的起始是个关键。常常某个基因是否应当表达决定于在特定的启动子起始过程。启动子一般可分为两类: (1)一类是RNA聚合酶可以直接识别的启动子。这类启动子应当总是能被转录。但实际上也不都如此,外来蛋白质可对其有影响,即该蛋白质可直接阻断启动子,也可间接作用于邻近的DNA结构,使聚合酶不能和启动子结合。 (2)另一类启动子在和聚合酶结和时需要有蛋白质辅助因子 的存在。这种蛋白质因子能够识别与该启动子顺序相邻或甚至重叠的DNA顺序。 因此,RNA聚合酶能否与启动子相互作用是起始转录的关键问题,似乎是蛋白质分子如何能识别DNA链上特异序列。例如,RNA聚合酶分子上是否有一个活性中心能够识别出DNA双螺旋上某特异序列的化学结构?不同启动子对RNA 聚合酶的亲和力各不同。这就可能对调控转录起始的频率,亦即对基因表达的程度有重要不同。DNA链上从启动子直到

终止子为止的长度称为一个转录单位。一个转录单位可以包括一个基因,也可以包括几个基因。启动子预测软件大体分为三类,第一类是启发式的方法,它利用模型描述几种转录因子结合部位定向及其侧翼结构特点,它具有挺高的特异性,但未提供通用的启动子预测方法;第二类是根据启动子与转录因子结合的特性,从转录因子结合部位的密度推测出启动子区域,这方法存在较高的假阳性;另一类是根据启动子区自身的特征来进行测定,这种方法的准确性比较高。同时,还可以结合是否存在CpG岛,而对启动子预测的准确性做出辅助性的推测。 启动子预测软件有:PromoterScan ; Promoter 2.0 ; NNPP ;EMBOSS Cpgplot ; CpG Prediction 启动子及转录因子结合位点数据库及预测工具 冷泉港启动子分析程序介绍 https://www.360docs.net/doc/e511114542.html,/links/ch_09_t_6.html 在线预测和分析基因启动子(promoter) 一般在公共数据库中,如NCBI、UCSC、Ensembl给出的人类基因序列都没有对基因进行详细的标注。不过,有

DNA复制转录翻译的比较

DNA复制、转录、翻译的比较【课标要求】遗传信息的转录和翻译。 【考向了望】基因表达过程中有关碱基数目的计算。【知识梳理】一、DNA复制、转录、翻译的比较

二、基因表达中相关数量计算来 (一)基因中碱基数与mRNA中碱基数的关系:转录时,组成基因的两条链中只有一条链能转录,另一条链则不能转录。基因为双链结构而RNA为单链结构,因此转录形成的mRNA分子中碱基数目是基因中碱基数目的1/2。(二)mRNA中碱基数与氨基酸的关系:翻译过程中,信使RNA中每3个碱基决定一个氨基酸,所以经翻译合成的蛋白质分子中的氨基酸数目是信使RNA碱基数目的1/3。综上可知:蛋白质中氨基酸数目=tRNA数目=1/3mRNA 碱基数目=1/6DNA(或基因)碱基数目。 (三)计算中“最多”和“最少”的分析 1、翻译时,mRNA上的终止密码不决定氨基酸,因此准确地说,mRNA上的碱基数目比蛋白质中氨基酸数目的3倍还要多一些。 2、基因或DNA上的碱基数目比对应的蛋白质中氨基酸数目的6倍还要多一些。 3、在回答有关问题时,应加上最多或最少等字。如:mRNA上有n个碱基,转录产生它的基因中至少有2n个碱基,该mRNA指导合成的蛋白质最多有n/3个氨基酸。 4、蛋白质中氨基酸的数目=肽键数+肽链数(肽键数=缩去的水分子数)。【基础训练】1、合成一条含1000个氨基酸的多肽链,需要转运RNA的个

数、信使RNA上的碱基个数和双链DNA上的碱基对数至少依次是( A )A、1000个,3000个和3000对 B、1000个,3000个和6000对 C、300个,300个和3000对 D、1000个,3000个和1000对 2、鸡的输卵管细胞能合成卵清蛋白、红细胞能合成β—珠蛋白、胰岛细胞能合成胰岛素,用编码上述蛋白质的基因分别作探针,对3种细胞中提取的总DNA的限制酶切成片段进行杂交实验;用同样的3种基因片段作探针,对上述3种细胞中提取的总RNA进行杂交实验。上述实验结果如下表: 注:“+”表示杂交过程中有杂合双链;“-”表示杂交过程中有游离的单链。 根据上述事实,下列叙述正确的是( C ) A、胰岛细胞中只有胰岛素基因 B、上述3种细胞的分化是由细胞在发育过程中某些基因丢失所致 C、在红细胞成熟过程中有选择性地表达了β—珠蛋白基因 D、在输卵管细胞中无β—珠蛋白基因和胰岛素基因 3一个mRNA分子有m个碱基,其中G+C有n个;由该mRNA合成的蛋白质有两条肽链。则其模板DNA分子的A+T数、合成蛋白质时脱去的水分子数分别是( D )

基因的转录与翻译真题练习测试

精心整理基因的表达真题演练 遗传信息的转录和翻译 命题剖析考 向 扫 描 1 以示意图等形式考查DNA的结构、特点、转录过程及与DNA分子复 制的区别,考查学生对DNA分子复制与转录过程的理解能力及对二 者区别的分析能力。选择题是常见题型2 以选择题或非选择题等形式考查转录、翻译过程及其调控机制,考查学生的识图能力及理解、推理分析等综合思维能力3 以选择题的形式考查中心法则相关内容及基因对性状的控制,考查 学生获取信息、分析问题的能力 命 题 动 向 遗传信息的转录和翻译部分是高考的重点,内容侧重转录与翻译的具体过程、条件、特点及碱基数目的计算等,题型多样化,选择题、非选择题均有。对中心法则和基因与性状的关系的考查以选择题为主,可能会结合具体实例分析基因控制性状的模式或遗传信息传递的过程 年课标全国卷,1,6分)同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。其原因是参与这两种蛋白质合成的( ) BmRNA碱基序列不同 C.核糖体成分不同 D.同一密码子所决定的氨基酸不同 年安徽理综卷,5,6分)图示细胞内某些重要物质的合成过程。该过程发生在( A.真核细胞内,一个mRNA分子上结合多个核糖体同时合成多条肽链 B.原核细胞内,转录促使mRNA在核糖体上移动以便合成肽链 C原核细胞内,转录还未结束便启动遗传信息的翻译 D.真核细胞内,转录的同时核糖体进入细胞核启动遗传信息的翻译 年海南卷)野生型大肠杆菌能在基本培养基上生长,用射线照射野生型大肠杆菌得到一突变株,该突变株在基本培养基上培养时必须添加氨基酸甲后才能生长。对这一实验结果的解释,不合理的是) A.野生型大肠杆菌可以合成氨基酸甲 B野生型大肠杆菌代谢可能不需要氨基酸甲 C.该突变株可能无法产生氨基酸甲合成所需的酶 D.该突变株中合成氨基酸甲所需酶的功能可能丧失 年海南卷)关于RNA的叙述,错误的是( ) A.少数RNA具有生物催化作用 B真核细胞内mRNA和tRNA都是在细胞质中合成的 上决定1个氨基酸的3个相邻碱基称为密码子 D.细胞中有多种tRNA,一种tRNA只能转运一种氨基酸 5.(2011年安徽理综卷)甲、乙图示真核细胞内两种物质的合成过程,下列叙述正确的是( ) A.甲、乙所示过程通过半保留方式进行,合成的产物是双链核酸分子 B.甲所示过程在细胞核内进行,乙在细胞质基质中进行 分子解旋时,甲所示过程不需要解旋酶,乙需要解旋酶 D一个细胞周期中,甲所示过程在每个起点只起始一次,乙可起始多次 6.(2011年江苏卷)下列物质合成时,需要模板的是( )

相关文档
最新文档