贝叶斯分析

贝叶斯分析
贝叶斯分析

第四章贝叶斯分析

Bayesian Analysis

§4.0引言

一、决策问题的表格表示——损失矩阵

对无观察(No-data)问题a=δ

可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失):

a

1…a

j…a m

π(θ

1

)l11l j1l m1

π(θ

i

)l i1l ij

π(θ

n

)l m1l nm 或

π(θ

1)…π(θ

i

)…π(θ

n

)

a 1l

11

l

i1

l

n1

a

j l ij

a m l

m1

l

mn

损失矩阵直观、运算方便

二、决策准则

通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。本章在介绍贝叶斯分析以前,先介绍其他决策原则。

三、决策问题的分类:

1.不确定型(非确定型)

自然状态不确定,且各种状态的概率无法估计.

2.风险型

自然状态不确定,但各种状态的概率可以估计.

四、按状态优于:

l ij ≤l

ik

?I, 且至少对某个i严格不等式成立, 则称行动a

j

按状态优于a

k

a 1 a 2 a 3

θ1 4 7 2 θ2 6 6 8 θ3

3 4 7

§4.1 严格不确定型决策问题的决策准则

一、悲观准则(极小化极大(Wald)准则) min j

max i

l (θi ,a j )或 max j min i

u ij

例:

a 1 a 2 a 3 a 4

θ1 10 8 7 9 θ2 4 1 9 2 θ3 13 16 12 14 θ4

6 9 8 10

各行动最大损失: 13 16 12 14 其中损失最小的损失对应于行动a 3.

采用该原则者极端保守, 是悲观主义者, 认为老天总跟自己作对.

二、乐观系数法

极小化极小:min j

min i

l (θi ,a j )或max j max i

u ij

例:

a 1 a 2 a 3 a 4

θ1 10 8 7 9 θ2 4 1 9 2 θ3 13 16 12 14 θ4

6 9 8 10

各行动最小损失: 4 1 7 2 其中损失最小的是行动a 2.

采用该原则者极端冒险,是乐观主义者,认为总能撞大运。

Hurwicz :上两法的折衷,取乐观系数λ(由决策人选定) min j

[λmin i

l (θi ,a j )+(1-λ)max i

l (θi ,a j )]

例如 λ=0.5时

1a 2a 3a 4a

λmin

i l

ij

2 0.5 3.5 1

(1-λ)max

i l

ij

6.5 8 6 7

两者之和8.5 8.5 9.5 8

其中损失最小的是:行动a

4

三、后悔值极小化极大准则(Savage-Niehans)

定义后悔值s

ij =l

i j

-m in

k

l

ik

其中m in

k l

ik

为自然状态为θ

i

时采取不同行动时的最小损失.

构成后悔值(机会成本)矩阵S={s

ij }

m n?

,使后悔值极小化极大,即:

min max j i s ij

例:损失矩阵同上, 后悔值矩阵为:

3 1 0 2

3 0 8 1

1 4 0 2

0 3 2 4

各种行动的最大后悔值为: 3 4 8 4

其中行动a1 的最大后悔值最小,所以按后悔值极小化极大准则应采取行动1.

四、等概率准则(Laplace)

i

∑l ij来评价行动a j的优劣

选min

j

i

∑l ij

上例:

i

∑l ij: 33 34 36 35 其中行动a1的损失最小

五、莫尔诺(Molnor)对理想决策准则的要求(1954)

1.能把方案或行动排完全序;

2.优劣次序与行动及状态的编号无关;

3.若行动a

k 按状态优于a

j

,则应有a

k

优于a

j

4.无关方案独立性:已经考虑过的若干行动的优劣不因增加新的行动而改变;

5.在损失矩阵的任一行中各元素加同一常数时,各行动间的优劣次序不变;

6.在损失矩阵中添加一行,这一行与原矩阵中的某行相同,则各行动的优劣次序不变。§4.2 风险型决策问题的决策准则

一、最大可能值准则

令π(θ

k )=maxπ(θ

i

)

选a

r 使l(θ

k

,a

r

)=m in

j

l(θ

k

,a

j

)

例:

π(θ

i

) a1a2a3

θ

10.2 7 6.5 6

θ

20.5 3 4 5

θ

30.3 4 1 0

π(θ

2

) 概率最大, 各行动损失为3 4 5

∴应选行动a

1

二、贝叶斯原则

使期望损失极小:

m in

j {

i

∑l(θi,a j)π(θi) }

上例中, 各行动的期望损失分别为4.1, 3.6, 3.7, 对应于a

2

的期望损失3.6最小

∴应选a

2

.

三、伯努利原则

损失函数取后果效用的负值,再用贝叶斯原则求最优行动.

四、E—V(均值—方差)准则

若Eπl

i j ≤Eπl

ik

且σσ

j k

≤则a

j

优于a

k

通常不存在这样的a

j 上例中:

a 1a

2

a

3

E 4.1 3.6 3.7

V(σ2) 2.29 3.79 5.967

不存在符合E—V准则的行动, 这时可采用f(μ,σ)的值来判断(μ为效益型后果的期望) ?μ-ασ

f(μ,σ)=?μ-ασ2

?μ-α(μ2+σ2)

f越大越优. α反映了决策人的风险态度。

五、不完全信息情况下的决策准则(Hodges-Lehmann准则)

状态概率分布不可靠时, 可采用:

φ(a j )=λ

u

ij

i

i ∑?π + m in i

u ij i=1,2,… ,m j=1,2,…,n

φ越大越优.

§4.3贝叶斯定理

一、条件概率

1.A 、B 为随机试验E 中的两个事件 P(A |B)=P(AB)/P(B)

由全概率公式: A j j=1,2,…,n 是样本空间的一个划分, P(B)=j

P(B|A j )P(A j )

得Bayes 公式

P(A i |B)=P(B|A i )·P(A i )/P(B) = P(B|A i )·P(A i )/j

P(B|A j )P(A j )

2. 对Θ,Χ两个随机变量 ·条件概率密度

f (θ| x)=f(x |θ)f (θ)/f (x) ·在主观概率论中

π(θ| x)=f(x |θ)π(θ)/m(x) 其中:π(θ)是θ的先验概率密度函数

f(x |θ)是θ出现时,x 的条件概率密度,又称似然函数. m(x)是x 的边缘密度, 或称预测密度. m(x)=

Θ

?

f(x |θ)π(θ) d θ 或

i

p(x|θi )π(θi )

π(θ|x)是观察值为x 的后验概率密度。 例: A 坛中白球30%黑球70% B 坛中白球70%黑球30%

两坛外形相同,从中任取一坛,作放回摸球12次,其中白球4次,黑球8次,求所取为A 坛的概率.

解:设观察值4白8黑事件为x ,记取A 坛为 θ1, 取B 坛为θ2 在未作观察时,先验概率p(θ1)=p(θ2)=0.5 则在作观察后,后验概率

P(θ1|x)=p(x|θ1)p(θ1)p(x|θ1)p(θ1)+p(x|θ2)p(θ2)

=034.×8

7.0×0.5

(03

4.×078.×0.5+074.×038.×0.5) =074.(07

4.×034.)

=0.24010.2482

=0.967

显然, 通过试验、观察,可修正先验分布.

§4.4 贝叶斯分析的正规型与扩展型

一、正规型分析

由Bayesian 原则:先验分布为π(θ)时,最优的决策规则δ是贝叶斯规则δπ, 使贝叶斯风险

r(π,π

δ)=?

∈δmin r(π,δ(x))

其中:r(π,δ(x)) = E πR(θ,δ(x)) =E π[E x θ l(θ,δ(x))] =

θ

?x

?

l(θ,δ(x)) f(x |θ)dx π(θ) d θ (1)

据 (1) 式,选δπ使r(π,δ)达到极小,这就是正规型的贝叶斯分析。

在求解实际问题时,求使(1)式极小的δ(x)往往十分困难,尤其在状态和观察值比较复杂时,Δ集中的策略数目很大,穷举所有的δ(x)有困难,且计算量颇大。实际上可用下法:

二、扩展型贝叶斯分析(Extensive Form Analysis)

在(1)式中因l(θ,δ)>-∞,f(x |θ),π(θ)均为有限值。

∴由Fubini 定理,积分次序可换

即r(π,δ(x))=

θ

?x ?l(θ,δ(x)) f(x |θ)dx π(θ) d θ

=x

?l(θ,δ(x)) f(x |θ)π(θ) d θdx (2)

显然,要使(2)式达到极小,应当对每个x ∈X ,选择δ,使

θ?l(θ,δ(x)) f(x |θ)π(θ) dθ为极小(2’)

为极小

∵δ(x)=a ∴若对给定的x, 选a,使

θ?l(θ,δ(x)) f(x |θ)π(θ) dθ为极小

亦即,

使

1

m x()θ

?l(θ,a) f(x |θ)π(θ) dθ

=

θ?

l(θ,a) π(θ|x) dθ或

θ

i

Θ

l(θ

i

,a)p(θ

i

|x)达极小(3) 达极小,

即可使(1)式为极小.

·结论:

对每个x,选择行动a,使之对给定x时θ的后验分布π(θ|x)的期望损失为极小,即可求得贝叶斯规则。

这种方法叫贝叶斯分析的扩展型,由此确定的贝叶斯规则叫formal Bayesian Rule

——Raiffa Sehlaifer,1961年提出。

·Note

·使(3)式达极小的行动可能不只一个,即可能有多个贝叶斯规则;

·扩展型比正规型更直观,也容易计算,故更常用;

·许多分析人员只承认扩展型,理由是:

1. π(θ|x)描述了试验后的θ的分布,比π(θ)更客观,因此,只要损失函数是由效用理论导出的(即考虑了决策者的价值判断、风险偏好),在评价行动a的优劣时就应当用后验期望损失。

2. r(π,δ)是根据π(θ)求出的,而用先验分布π(θ)来确定行动a并不一定适当。

从根本上讲,这种观点是正确的。

·无论从何种观点来进行贝叶斯分析,从理论上讲,结果是一样的,所以采用何种方法可视具体问题,据计算方便而定。

·已经证明,形式贝叶斯分析对一类非随机性决策规则是成立的,也可以证明它对随机性决策规则同样成立。使所有x上后验期望损失极小的贝叶斯规则也是随机性规则集Δ*中的Bayes规则,因此,总可以找到后验期望损失极小的非随机性规则。

三、例(先看无观察问题)

农民选择作物问题,设某地旱年θ

1占60%,正常年景θ

2

占40%; a

1

种植耐旱作物

a

2

种不耐旱作物,后果矩阵为:

a 1a 2

θ

1

20 0

θ2 60 100 决策人的效用函数 u(y)=10865

.(1-e y

-002.) 解:1.令:l(y)=1-u(y)

2.作决策树:

a 1

a 2

πθ()

1πθ()

1πθ()

260 .81 .19

y u l 20 .38 .62

0 0 1

100 1 0

3. 在无观察时, R=l, r =

=n

i 1

l(θi ,a)π(θi )

r(π, a 1)=l(θ1,a 1)π(θ1)+l(θ2,a 1)π(θ2) =0.62 ×0.6+0.19 ×0.4

=0.448

r(π, a 2)= l(θ1,a 2)π(θ1)+l(θ2,a 2)π(θ2) =1.0 ×0.6+0 ×0.4

=0.6

风险r 小者优, ∴δ=a 1,是贝叶斯规则, 即贝叶斯行动。即应选择耐旱作物。

四、例(续上)

设气象预报的准确性是0.8,即π(x 1|θ1)=0.8,π(x 2|θ2)=0.8, 其中,x 1预报干旱 x 2预报正常年景

则 m(x 1)=π(x 1|θ1)π(θ1)+π(x 1|θ2)π(θ2) =0.8×0.6+0.2×0.4=0.56

m(x 2)=π(x 2|θ1)π(θ1)+π(x 2|θ2)π(θ2)=0.44 π(θ1|x 1)=π(x 1|θ1)π(θ1)m(x 1) =0.8×0.6/0.56 = 0.86 π(θ1|x 2)=π(x 2|θ1)π(θ1)m(x 2) =0.2 ×0.6/0.44=0.27 π(θ2|x 1)=0.14

π(θ2|x 2)=0.73

1. 正规型分析

①策略δ1: δ1(x 1)=a 1,δ1(x 2)=a 2

r(π, δ1)=

i

∑j

l (θi ,δ1(x j ))p(x j |θi )π(θi )

= l (θ1,a 1)p(x 1|θ1)π(θ1)+l (θ1,a 2)p(x 2|θ1)π(θ1) + l (θ2,a 1)p(x 1|θ2)π(θ2)+l (θ2,a 2)p(x 2|θ2)π(θ2) =0.62×0.8×0.6+1.0×0.2×0.6+0.19×0.2×0.4+0.0×0.8×0.4 =0.4328

②策略δ2: 2δ(x 2)=a 1,δ2(x 1)=2a r(π, δ2)=

i

∑j

l (θi ,δ2(x j ))p(x j |θi )π(θi )

= l (θ1,a 1)p(x 2|θ1)π(θ1)+l (θ1,a 2)p(x 1|θ1)π(θ1) + l (θ2,a 1)p(x 2|θ2)π(θ2)+l (θ2,a 2)p(x 1|θ2)π(θ2) = 0.62×0.2×0.6+1.0×0.8×0.6+0.19×0.8×0.4+0.0×0.8×0.4 =0.6152

③策略δ3: 3δ(x 1)=a 1,3δ(x 2)=a 1 r(π, δ3)=0.45

④策略δ4:δ4(x 1)=a 2, δ4(x 2)=a 2 r(π,δ4)=0.6

∵ r(π,δ1)<r(π,δ3)<r(π,δ4)<r(π,δ2) ∴ δ1 δ3 δ4 δ2;δ1是贝叶斯行动。

x 1

a 1 x 2

1

a 1

a

2

a

2

πθ(|)11x

πθ(|)

21x

πθ(|)

21x

πθ(|)

22x πθ(|)

22x

πθ(|)

11x πθ(|)12x

πθ(|)

12x

2. 扩展型之一: 据(2’) :

θ

?

l(θ,δ(x)) f(x |θ)π(θ) d θ 记作r’

①给定x 1(预报干旱):

采用a 1 r‘=

i

l (θi ,a 1)f(x 1|θi )π(θi )

= l (θ1,a 1)p(x 1|θ1)π(θ1) + l (θ2,a 1)p(x 1|θ2)π(θ2) = 0.62×0.8×0.6+0.19×0.2×0.4

=0.3128

采用a 2 r’= l (θ1,a 2)p(x 1|θ1)π(θ1) + l (θ2,a 2)p(x 1|θ2)π(θ2) =0.48

∵风险小者优 ∴给定x 1应选a 1 ②给定x 2(预报天气正常)

采用a 1 r’= l (θ1,a 1)p(x 2|θ1)π(θ1) + l (θ2,a 1)p(x 2|θ2)π(θ2) =0.62×0.2×0.6 + 0.19×0.8×0.4

=0.135

采用a 2 r’= l (θ1,a 2)p(x 1|θ1)π(θ1) + l (θ2,a 2)p(x 1|θ2)π(θ2) =1.0×0.2×0.6 + 0 =0.12 ∴给定x 2应选a 2

由此得形式Bayes 规则 δπ

: δπ

(x 1)=a 1, δπ

(x 2)=a 2

3. 扩展型之二:

据(3)式即

θ?l(θ

i

,a) π(θ

i

|x) dθ或

θ

i

Θ

l(θ

i

,a)π(θ

i

|x)(记作r”)

①给定x

1

,

采用a

1

r”=

θi ∈

Θl(θ

i

,a

1

)π(θ

i

|x

1

)

= l(θ

1,a

1

)π(θ

1

|x

1

) + l(θ

2

,a

1

)π(θ

2

|x

1

)

=0.62 ×0.86 + 0.19×0.14 =0.56

采用a

2r”= l(θ

1

,a

2

)π(θ

1

|x

1

) + l(θ

2

,a

2

)π(θ

2

|x

1

) = 1.0×0.86 + 0×0.14

=0.86

∴给定x

1,应选行动a

1

.

②给定x

2

采用a

1

r”=

θi ∈

Θl(θ

i

,a

1

)π(θ

i

|x

2

)

= l(θ

1,a

1

)π(θ

1

|x

2

) + l(θ

2

,a

1

)π(θ

2

|x

2

)

=0.62×0.27 + 0.19×0.73 = 0.3061 采用a

2

r”=

θi ∈

Θl(θ

i

,a

2

)π(θ

i

|x

2

)

= l(θ

1,a

2

)π(θ

1

|x

2

) + l(θ

2

,a

2

)π(θ

2

|x

2

)

=1.0×0.27 + 0×0.73 =0.27

∴给定x

2应选择行动a

2

.

∴形式Bayes规则δπ: δπ(x1)=a1, δπ(x2)=a2

§4.5 非正常先验与广义贝叶斯规则

一、非正常先验(Improper Prior)

概率测度的三个条件:

i,规范性:P(Ω)=1

ii,非负性:0≤P(A)≤1

iii,可列可加性

在设定先验分布时,若不满足规范性,则称为非正常先验.

二、广义贝叶斯规则(General Bayesian Rule)

1.定义:

决策问题的损失函数为l(θ,a),π(θ)为非正常先验分布,对给定的θ

i

,使

i,

θ

?

l(θ,δ(x)) f(x |θ)π(θ) d θ 为极小,或者

ii, 0<m(x)<-∞时,使

θ

?

l(θ,a)π(θ|x) d θ 为极小的策略(行动),构成广义贝叶斯规则.

2.Note :①在许多重要场合,所有允许的都是GBR ②在无法得到正常先验时,除此别无良策; ③GBR 不一定是最好的决策规则

§4.6 一种具有部分先验信息的贝叶斯分析法

一、概述

1.思路:在部分先验信息难以唯一地确定π(θ)时,抛开唯一性要求,转而确定与已知先验 信息相符的先验分布的集。

2.符号

i, Θ 和A 为有限集:Θ={θ1,θ2,…,θn } A={a 1,a 2,…,a m } 损失矩阵L={l i j }n m ? l i j =l (θi ,a j ) ii,根据贝叶斯分析的扩展型 给定x ,应从集合A 中选一行动 a k ,使 q(a)=

i

l (θi ,a) p(x 1|θi )π(θi ) 为极小,亦即

a k = arg min a A

∈q(a) 或 q(a k )≤q(a j ) j=1,2,…,m (4) 则 a k 为贝叶斯行动.

记p(x 1|θi )为p i (x) , π(θi ) 为πi L k =[l k 1,l k 2,…,l nk ]T

π={π1,π2,…,πn } 则

i

l (θi ,a) p(x 1|θi )π(θi )=L j T

[diag{p i (x) }π]

(4)式可表示成 L k T

[diag{p i (x)}π]≤L j T

[diag{p i (x) }π] i=1,2, …,n (5) j=1,2, …,m (5)式即 [ (L T -1 L k T

) diag{p i (x) }] π ≥0 (5’)

记 (L T

-1 L k T

) diag{p i (x) } 为D k (x), 式(5’)可表示为:

D k (x) π ≥0 (5”) 3. (5”)式的含义

(1)给定x ,先验分布为π时,应选 a k 使5(即5’, 亦即5”)式成立。 (2) 对给定的x ,要使 a k 成为贝叶斯行动,π应满足 5(即5’, 亦即5”)式. 由(2)可以定义

∏k (x)={ π∈Π| D k (x) π ≥0 ;πi

i

=∑

1, πi

≥0 } 式中, Π是先验分布的所有可能的集,

k

(x) 是Π的一个子集,它能i,使a k对给定x为Bayes行动

ii,满足规范性和非负性

二、分析步骤

1. 确定∏k(x)

2. 确定先验信息对先验分布π(θ)的约束:

Q={π∈Π| Aπ≥0, πi

i =

∑1, πi≥0} 式中, Aπ≥0是先验信息对先验分布π(θ)的约束.

3.结论:

当∏k(x) 与Q有非空交集时,a k为Bayes行动. 三、例

已知:i, Q={π∈Π| π1≥0.5,π2≥π3, π3≥104-, πi

i =

∑1} ii, 由已往的统计资料,三种病患者的白血球计数:

f(x|θ

1

)= N( 3000, 10002)

f(x|θ

2

)= N( 7500, 20002)

f(x|θ3)= N( 16000, 40002)

iii, 观察:x=5000

要求判定:患者得什么病

解:p(x|θ

1)= p(5000|θ

1

)

=

4950

5050

?1

2

1

πσ

e-

-

()

σ

2

2

2dx 令x*=

x-μ

σ

1

1

=

195

205

.

.

?1

e--

x*2

2dx

=0.9798 - 0.9744 = 0.0054

同理可得:

p(x| θ

2

)=0.0091

p(x| θ3)=0.0000105

∵L=

011

101

110

?

?

?

?

?

?

?

?

?

?

, 1l T1= []

1

1

1

011

011

011

011

?

?

?

?

?

?

?

?

?

?

=

?

?

?

?

?

?

?

?

?

?

, ∴L T-1l T1=

000

110

101

--

--

--

?

?

?

?

?

?

?

?

?

?

,

diag{p i(x)}=

5410110

0191110

0101017

.

...

..

?

?

?

?

?

?

?

?

?

?

D

1

=

000

54910

540017

-----

---

----

?

?

?

?

?

?

?

?

?

?

..

..

D

1(5000)·π≥0 即

-

-

-

?

?

?

?

?

?

?

?

?

?

5491

540017

12

3

..

..

ππ

ππ

?

?

?

?

?

?

?

?

?

?

浅谈贝叶斯方法

浅谈贝叶斯方法 随着MCMC(马尔可夫链蒙特卡尔理论Markov chain Monte Carlo)的深入研究,贝叶斯(T.Bayes(1702~1761))统计已成为当今国际统计科学研究的热点。翻阅近几年国内外统计学方面的杂志,特别是美国统计学会的JASA(Journal of the American Statistical Association) 、英国皇家学会的统计杂志JRSS(Journal of the Royal Statistical Society)[1]等,几乎每期都有“贝叶斯统计”的论文。贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。托马斯·贝叶斯在18世纪上半叶群雄争霸的欧洲学术界可谓是个重要人物,他首先将归纳推理法应用于概率论,并创立了贝叶斯统计理论,对于统计决策函数、统计推理、统计估算等作出了贡献。贝叶斯所采用的许多概率术语被沿用至今。他的两篇遗作于逝世前4个月,寄给好友普莱斯(R.Price,1723~1791)分别于1764年、1765年刊于英国皇家学会的《哲学学报》。正是在第一篇题为“机会学说中的一个问题的解”(An essay towards solving a problem in the doctrine of chance)的论文中,贝叶斯创立了逆概率思想。统计学家巴纳德赞誉其为“科学史上最著名的论文之一”。 一、第一部分中给出了7个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

浅谈风险决策中的贝叶斯方法.

科技信息2008年第33期 SCIENCE &TECHNOLOGY INFORMATION 所谓决策, 就是决策者为了解决当前或未来可能遇到的各种问题,在若干可供选择的行动方案中,选择一个在某种意义下的最佳方案的过程。决策的正确与否会给企业带来收益或损失。因此,决策者应学会合理的决策分析,避免产生重大损失。由于决策环境中存在大量不确定因素和统计信息的不充分,决策必然带有某种程度的风险。可利用的信息是减少风险的有力手段。一般而言,信息越充分,决策环境的不确定性越小,风险也越小。 贝叶斯统计方法的基本思想就是要充分利用模型信息(假设的数学模型)、数据信息(抽样信息)和先验信息(经验资料),将先验分布和抽样分布整合成后验分布,以后验分布为决策的出发点。如果有新的信息(数据),则更新后验分布,实现递归决策方案。本研究通过实例,详细讨论了风险决策中如何利用贝叶斯公式有效整合相关信息,选择最优策略,并就最优决策进行解释。 1. 贝叶斯决策模型 每个风险决策问题都包括三个要素:自然状态(各种自然状态形成状态集)、决策者采取的行动(构成行动集)、决策者采取某个行动的后果(用收益或损失函数描述)。从这三个要素出发,可以得到不同的风险情景空间。 在通常决策问题中,决策者对自然界(或社会)会积累很多的经验和资料,这些先验信息虽不足以确定自然界(或社会)会出现什么状态,但在很多场合可以在状态集上给出一个先验分布。从中得知各种状态出现的概率估计。这种先验信息在做决策时可以使用,即依据先验概率分布及期望值准则进行最优方案的选择。由于先验概率有较强的主观色彩,不能完全反映客观规律,为了更好地进行决策,就必须进一步补充新信息,取得新数据,从而修正先验概率,得到后验概率。后验概率是根据概率论中贝叶斯公式进行计算,所以称这种决策为贝叶斯决策模型。 2. 实例

贝叶斯算法原理分析

贝叶斯算法原理分析 Bayes法是一种在已知先验概率与条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。 Bayes方法的薄弱环节在于实际情况下,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的。为了获得它们,就要求样本足够大。另外,Bayes法要求表达文本的主题词相互独立,这样的条件在实际文本中一般很难满足,因此该方法往往在效果上难以达到理论上的最大值。 1.贝叶斯法则 机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。 最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。 2.先验概率和后验概率 用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。先验概率反映了关于h是一正确假设的机会的背景知识,如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率。机器学习中,我们关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率。 3.贝叶斯公式 贝叶斯公式提供了从先验概率P(h)、P(D)和P(D|h)计算后验概率P(h|D)的方法:p(h|D)=P(D|H)*P(H)/P(D) ,P(h|D)随着P(h)和P(D|h)的增长而增长,随着P(D)的增长而减少,即如果D独立于h时被观察到的可能性越大,那么D对h的支持度越小。 4.极大后验假设 学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h,h被称为极大后验假设(MAP),确定MAP的方法是用贝叶斯公式计算每个候选假设的后验概率,计算式如下: h_map=argmax P(h|D)=argmax (P(D|h)*P(h))/P(D)=argmax P(D|h)*p(h) (h属于集合H)

贝叶斯公式浅析

说起贝叶斯公式,学过概率论的人肯定学过(如果没学过,那就去了解下"条件概率”),一个条件概率的转换公式,如下: P(A|E)=[ P(E|A)P(A)] / P(E),稍微变形下就是最简单的等式了P(A|E)P(E)= [P(E|A)P(A) 这么一个简单的公式为什么能引起科学上的革命? 这是一个统计学上的公式,但是却被证明是人类唯一能够运用自如的东西。伯克利大学心理学家早在2004年就证明,Bayesian统计法是儿童运用的唯一思考方法,其他方法他们似乎完全不会。 废话不多说,举个例子来说明就很明白了:假设在住所门口看到自己“女朋友or男朋友”(没有的自己找去,这里不负责介绍,还假设她or他在外地)你会产生三种假设(很多人都会这么想): A1=男朋友or女朋友没告诉你就跑来你的城市 A2=自己看模糊了 A3=那个人跟自己男朋友or女朋友确实长得很像 那么这三种假想哪个更有可能? 更准确地说就是,在“事实”(看到了男朋友or女朋友的情况)那种假设更有可能呢?解释成数学语言就是 P(A1|E), P(A2|E), P(A3|E)。哪个更大些? 于是脑子就开始启动贝叶斯程序, 计算比较这三个的概率到底哪个更大: 因为P(E)对于三个式子来说都是一样的,所以贝叶斯公式可以看成P(A|E)正相关于P(E|A)P(A),先看看P(A)是什么? P(h)在这个公式里描述的是你对某个假想h的可信程度。(不用考虑当前的事实是什么) P( A1)=男朋友or女朋友没告诉你就跑来你的城市,可能性比较低 P( A2)=自己看模糊了,可能性比较高 P( A3)=那个人跟自己男朋友or女朋友确实长得很像,可能性比较高 P(E|A)表示的就是假想产生对应的这个事实的可能性多大 P(E| A1)=男朋友or女朋友想给你惊喜,来找你的,当然很高的概率出现在你住所门

贝叶斯分析

第四章贝叶斯分析 Bayesean Analysis §4.0引言 一、决策问题的表格表示——损失矩阵 对无观察(No-data)问题a=δ 可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失): 或 损失矩阵直观、运算方便 二、决策原则 通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。本章在介绍贝叶斯分

析以前先介绍芙他决策原则。 三、决策问题的分类: 1.不确定型(非确定型) 自然状态不确定,且各种状态的概率无法估计. 2.风险型 自然状态不确定,但各种状态的概率可以估计. 四、按状态优于: l ij ≤l ik ?I, 且至少对某个i严格不等式成立, 则称行动a j 按状态优于a k §4.1 不确定型决策问题 一、极小化极大(wald)原则(法则、准则) a 1a 2 a 4 min j max i l (θ i , a j ) 或max j min i u ij 例: 各行动最大损失: 13 16 12 14 其中损失最小的损失对应于行动a 3 . 采用该原则者极端保守, 是悲观主义者, 认为老天总跟自己作对. 二、极小化极小 min j min i l (θ i , a j ) 或max j max i u ij 例:

各行动最小损失: 4 1 7 2 其中损失最小的是行动a 2 . 采用该原则者极端冒险,是乐观主义者,认为总能撞大运。 三、Hurwitz准则 上两法的折衷,取乐观系数入 min j [λmin i l (θ i , a j )+(1-λ〕max i l (θ i , a j )] 例如λ=0.5时 λmin i l ij : 2 0.5 3.5 1 (1-λ〕max i l ij : 6.5 8 6 7 两者之和:8.5 8.5 9.5 8 其中损失最小的是:行动a 4 四、等概率准则(Laplace) 用 i ∑l ij来评价行动a j的优劣 选min j i ∑l ij 上例: i ∑l ij: 33 34 36 35 其中行动a1的损失最小五、后梅值极小化极大准则(svage-Niehans) 定义后梅值s ij =l ij -min k l ik 其中min k l ik 为自然状态为θ i 时采取不同行动时的最小损失.

贝叶斯优化算法全面解析-图文

Bayesian Optimization CSC2541 - Topics in Machine Learning Scalable and Flexible Models of Uncertainty University of Toronto - Fall 2017

Overview 1.Bayesian Optimization of Machine Learning Algorithms 2.Gaussian Process Optimization in the Bandit Setting 3.Exploiting Structure for Bayesian Optimization

Bayesian Optimization of Machine Learning Algorithms J. Snoek, A. Krause, H. Larochelle, and R.P. Adams (2012) Practical Bayesian Optimization of Machine Learning Algorithms J. Snoek et al. (2015) Scalable Bayesian Optimization Using Deep Neural Nets Presentation by: Franco Lin, Tahmid Mehdi, Jason Li

Motivation Performance of Machine Learning algorithms are usually dependent on the choice of hyperparameters Picking the optimal hyperparameter values are hard -Ex. grid search, random search, etc. -Instead could we use a model to select which hyperparameters will be good next?

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

论贝叶斯分类、决策树分类、感知器分类挖掘算法的优势与劣势

论贝叶斯分类、决策树分类、感知器分类挖掘算法的优势与劣势 摘要本文介绍了在数据挖掘中数据分类的几个主要分类方法,包括:贝叶斯分类、决策树分类、感知器分类,及其各自的优势与劣势。并对于分类问题中出现的高维效应,介绍了两种通用的解决办法。 关键词数据分类贝叶斯分类决策树分类感知器分类 引言 数据分类是指按照分析对象的属性、特征,建立不同的组类来描述事物。数据分类是数据挖掘的主要内容之一,主要是通过分析训练数据样本,产生关于类别的精确描述。这种类别通常由分类规则组成,可以用来对未来的数据进行分类和预测。分类技术解决问题的关键是构造分类器。 一.数据分类 数据分类一般是两个步骤的过程: 第1步:建立一个模型,描述给定的数据类集或概念集(简称训练集)。通过分析由属性描述的数据库元组来构造模型。每个元组属于一个预定义的类,由类标号属性确定。用于建立模型的元组集称为训练数据集,其中每个元组称为训练样本。由于给出了类标号属性,因此该步骤又称为有指导的学习。如果训练样本的类标号是未知的,则称为无指导的学习(聚类)。学习模型可用分类规则、决策树和数学公式的形式给出。 第2步:使用模型对数据进行分类。包括评估模型的分类准确性以及对类标号未知的元组按模型进行分类。 常用的分类规则挖掘方法 分类规则挖掘有着广泛的应用前景。对于分类规则的挖掘通常有以下几种方法,不同的方法适用于不同特点的数据:1.贝叶斯方法 2.决策树方法 3.人工神经网络方法 4.约略集方法 5.遗传算法 分类方法的评估标准: 准确率:模型正确预测新数据类标号的能力。 速度:产生和使用模型花费的时间。 健壮性:有噪声数据或空缺值数据时模型正确分类或预测的能力。 伸缩性:对于给定的大量数据,有效地构造模型的能力。 可解释性:学习模型提供的理解和观察的层次。 影响一个分类器错误率的因素 (1) 训练集的记录数量。生成器要利用训练集进行学习,因而训练集越大,分类器也就越可靠。然而,训练集越大,生成器构造分类器的时间也就越长。错误率改善情况随训练集规模的增大而降低。 (2) 属性的数目。更多的属性数目对于生成器而言意味着要计算更多的组合,使得生成器难度增大,需要的时间也更长。有时随机的关系会将生成器引入歧途,结果可能构造出不够准确的分类器(这在技术上被称为过分拟合)。因此,如果我们通过常识可以确认某个属性与目标无关,则将它从训练集中移走。 (3) 属性中的信息。有时生成器不能从属性中获取足够的信息来正确、低错误率地预测标签(如试图根据某人眼睛的颜色来决定他的收入)。加入其他的属性(如职业、每周工作小时数和年龄),可以降低错误率。 (4) 待预测记录的分布。如果待预测记录来自不同于训练集中记录的分布,那么错误率有可能很高。比如如果你从包含家用轿车数据的训练集中构造出分类器,那么试图用它来对包含许多运动用车辆的记录进行分类可能没多大用途,因为数据属性值的分布可能是有很大差别的。 评估方法 有两种方法可以用于对分类器的错误率进行评估,它们都假定待预测记录和训练集取自同样的样本分布。 (1) 保留方法(Holdout):记录集中的一部分(通常是2/3)作为训练集,保留剩余的部分用作测试集。生成器使用2/3 的数据来构造分类器,然后使用这个分类器来对测试集进行分类,得出的错误率就是评估错误率。 虽然这种方法速度快,但由于仅使用2/3 的数据来构造分类器,因此它没有充分利用所有的数据来进行学习。如果使用所有的数据,那么可能构造出更精确的分类器。 (2) 交叉纠错方法(Cross validation):数据集被分成k 个没有交叉数据的子集,所有子集的大小大致相同。生成器训练和测试共k 次;每一次,生成器使用去除一个子集的剩余数据作为训练集,然后在被去除的子集上进行测试。把所有

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

贝叶斯算法

1 贝叶斯算法介绍 1.1 概率论相关背景知识 1) 古典概率公式: 2) 几何概率公式 3) 加法定理 4) 乘法定理 1.2 贝叶斯概率 1) 先验概率根据历史资料或者主观判断所确定的各事件的发生概率,该类概率没经过试验验证,属于检验前的概率。 2) 后验概率 结合调查等方式获取了新的附加信息对先验概率进行修正后得到的概率。 3) 联合概率:任意两个事件的乘积的概率,称之为交事件的概率。 4) 全概率公式 如果影响A 事件的所有因素B1B2,…满足:B i *B j =Φ,(i ≠j )且∑P (B i )=1,p (B i )>0,i =1,2,…. 贝叶斯假设:先验概率 当没有任何以往信息来确定π(θ)的时候,假设其先验分布为均匀分布。这种假设收到经典统计界的批评,因此,推出了经验贝叶斯估计EB (Empirical Bayes estimator ).其原理是:将经典的方法与贝叶斯方法结合,用经典方法获得样本的边缘密度p(x),然后通过∫π(θ)p (x |θ)dθ+∞?∞确定先验分布π(θ)。 5) 6) 贝叶斯定理:后验概率或逆概率 p (θ|x )= π(θ)p(x |θ)p(x)=π(θ)p(x |θ)∫π(θ)p(x |θ)dθ(π(θ)是先验分布) 离散表示方法 1.3 贝叶斯方法解决问题步骤 1) 定义随机变量。将随机参数看成随机变量(或随机向量),记为θ0.将样本x 1,x 2,…x n 的联合分布密度p(x 1,x 2,…x n ;n)看成是x 1,x 2,…x n 对θ的条件分布密度,记为p(x 1,x 2,…x n |θ)或p(D|θ); 2) 确定先验分布密度p(θ)。无信息时采用贝叶斯假设;有信息时采取共轭先验分布。 3) 利用贝叶斯定理计算后验分布密度; 4) 利用后验分布密度对问题做出判断。

朴素贝叶斯、决策树算法学习总结

基础算法学习总结 1. 朴素贝叶斯学习 1.1. 算法简介 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。 从数学角度来说,分类问题可做如下定义: 已知集合:123{,,,...,}n C y y y y =和123{,,,...,}n I x x x x =,确定映射规则()y f x =,使得任意 x i I ∈有且仅有一个y i C ∈使得()i i y f x =成立。(不考虑模糊数学里的模糊集情况)。其中C 叫做类别集合,其中每一个元素是一个类别,而I 叫做项集合,其中每一个元素是一个待分类项,f 叫做分类器。分类算法的任务就是构造分类器f 。 分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。 解决问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:P(B|A)表示事件B 已经发生的前提 贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。 1.2. 算法流程 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

浅谈机器学习中的贝叶斯算法

浅谈机器学习中的贝叶斯分类器 王贤举 摘 要:学习是人工智能研究中非常活跃且范围甚广的一个领域。而机器学习所关注的是:计算机程序如何随着经验积累自动提高性能,让机器完成某些任务,从而使其在某些方面为人类服务。贝叶斯分类器作为机器学习中的一种,在有些方面有着其优越的一面,本文通过对机器学习中贝叶斯分类器的解析,指出了贝叶斯分类器在机器学习中的适用方面和不足之处。 关键词:机器学习 贝叶斯算法 适用 1. 引言 机器学习是计算机问世以来,兴起的一门新兴学科。所谓机器学习是指研究如何使用计算机来模拟人类学习活动的一门学科,研究计算机获得新知识和新技能,识别现有知识,不断改善性能,实现自我完善的方法,从而使计算机能更大性能的为人类服务。 机器学习所适用的范围广阔,在医疗、军事、教育等各个领域都有着广泛的应用,并发挥了积极的作用。而分类是机器学习中的基本问题之一,目前针对不同的分类技术,分类方法有很多,如决策树分类、支持向量机分类、神经网络分类等。贝叶斯分类器作为机器学习分类中的一种,近年来在许多领域也受到了很大的关注,本文对贝叶斯分类器进行总结分析和比较,提出一些针对不同应用对象挑选贝叶斯分类器的方法。 2. 贝叶斯公式与贝叶斯分类器: 2.1 贝叶斯公式: 在概率论方面的贝叶斯公式是在乘法公式和全概率公式的基础上推导出来的,它是指设n B B B ,...,,21是样本空间Ω的一个分割,即n B B B ,...,,21互不相容,且 n i i B 1=Ω=,如果0)(>A P ,0)(>i B P ,n i ,...,2,1=,则 ∑== n j j j i i i B A P B P B A P B P A B p 1)|()() |()()|( ,n i ,...,2,1= 这就是贝叶斯公式,)|(A B p i 称为后验概率,)|(i B A P 为先验概率,一般是已知先验概率来求后验概率,贝叶斯定理提供了“预测”的实用模型,即已知某事实,预测另一个事实发生的可能性大小。

决策树与贝叶斯

一台模铸机用于生产某种铝铸件。根据以前使用这种机器的经验和采用模具的复杂程度,这种机器正确安装的概率估计为0.8.如果机器安装正确,那么生产出合格产品的概率是0.9。如果机器安装不正确,则10个产品中只有3个是可以接受的。现在已铸造出第一个铸件,检验后发现: (a)第一个铸件是次品,根据这个补充资料,求机器正确安装的概率; (b)若第一个铸件是合格品,问机器正确安装的概率是多少? Hackers计算机商店的店主正在考虑如何安排接下来的五年业务。过去两年中它的销售增长势头非常好,但是如果它所属的地区建立一家主营电子产品的公司的话,销售就会充分增长。Hackers店主们有三种选择:第一就是扩张自己现有的商店,第二是转移到一个新的地方,第三种就是干等。扩张或者转移的决策几乎不需要多少时间,因此商店也不会有收入上的损失。如果第一年什么事都不做,但增长还在继续,那么他们就需要重新考虑扩张的路线。如果第一年什么也不做,且销售显著增长,那么就应该考虑扩大店面的决策。如果等待的时间超过一年,就会有竞争者进入,这样扩张就不切实际。 该案例的假设和条件如下 1、由于新建的电子公司而出现了大批的计算机爱好者,由此带来的销售量上浮的概率为55%. 2、在新址开店并且销售量显著增长,销售年收入为195 000美元;若在新址开店而销售量的增长不甚理想,销售年收入为115 000美元。 3、扩大商店现有经营规模且销售显著增长,销售年收入为190 000美元;扩大商店现有经营规模销售量的增长不甚理想,销售年收入为100 000美元。 4、维持现状不变,但销售量显著增长,销售年收入为170 000美元;但若销售量的增长不甚理想,销售年收入为105 000美元。 5、扩大现有商店的规模所需费用为87 000美元。 6、另行选址开设新店的费用为210 000美元。 7、若第一年维持现状不变,但是销售量增长迅速,如果第二年再扩大原店规模的话,费用仍为87 000美元。 8、各种方案的经营成本相等。

贝叶斯分析在风险型决策中的应用

贝叶斯分析在风险型决策中的应用 姓名:王义成 班级:12级数学与应用数学四班 摘要:本文介绍了风险型决策的概念,特点及公式,简述了贝叶斯分析的基本理论,并通过一个具体生活实例,阐明了贝叶斯分析在风险型决策中的应用。 关键词:风险型决策贝叶斯分析期望损失 引言:决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 一、风险型决策 风险决策就是不完全信息下的决策,是根据风险管理的目标,在风险识别和风险衡量的基础上,对各种风险管理方法进行合理的选择和组合,并制定出风险管理的具体方案的过程。风险决策贯穿于整个风险管理过程,它依据对风险和损失的科学分析选择合理的风险处理技术和手段,从若干备选方案中选择一个满意的方案。 风险型决策的特点是:决策人无法确知将来的真实自然状态,但他能给出各种可能出现的自然状态,还可以给出各种状态出现的可能性,即通过设定各种状态的(主观)概率来量化不 确定性。构成一个统计决策有三个基本要素:①可控参数统计结构(Α,Β,{pθ:θ∈Θ}, 其中参数空间中每个元素就是自然界或社会可能处的状态;②行动空间(?,Β?),其中?={a}是为解决某统计决策问题时,人们对自然界(或社会)可能作出的一切行动的全体。?中的每个元素表示一个行动。是?上的某个σ代数,这是为以后扩充概念而假设的;③损失函数L(θ,a),它是定义在Θ×?上的二元函数。从这三个要素出发,可以得到不同的风险情景空间。例如,要开发一种新产品,在市场需求无法准确预测的情况下,要确定生产或不生产,生产多少等问题就是一个风险决策问题。状态集就是市场销售情况,如销路好、销路一般、销路差等,这些状态不受决策者控制,而决策者做出某种决策后,后果也不确定,带有风险。所以,在风险型决策中,准确而又充分地估计信息的价值,合理地在信息的收集上增加投入来获取不断变化的市场信息,及时掌握各种自然状态的发生情况,可以使决策方案的选择更可靠,进而增加经济效益。 二、贝叶斯风险与贝叶斯规则 ⑴风险函数 给定自然状态θ,采取决策规则δ时损失函数L(θ,δ(x)),对随机试验后果x的期望值成为风险函数(risk function),记作R(θ,δ) ⑵贝叶斯风险 当自然状态的先验概率为π(θ),决策人采用策略δ时,风险函数R(δ,θ),关于自然状态θ的期望值称为贝叶斯风险,记作R(π,δ)如果R(π,δ1)< R(π,δ2)则称 记作δ1>δ2 策略δ1优于δ 2, ⑶贝叶斯决策规则 先验分布为π(θ)时,若策略空间?存在某个策略δπ,能够使?δ∈?,有R π,δπ≤ R π,δ ,则称δπ是贝叶斯规则,亦称贝叶斯策略。

贝叶斯语义分析

基于语义特征关联的贝叶斯网络分类 孟宇龙,印桂生,徐东 哈尔滨工程大学计算机科学与技术学院,哈尔滨(150001) E-mail:mengyulong@https://www.360docs.net/doc/e511966990.html, 摘要:为将数据的语义特征体现在数据分类过程中,提出语义特征关联的贝叶斯网络分类法。该方法在分析数据的多语义异构性基础上进行分类学习。与传统贝叶斯网络分类相比,可在不损失分类精度情况下将具有语义特征的数据进行分类。 关键词:语义特征;数据分类;贝叶斯网络 中图分类号:TP391 1.引言 对数据分类而言,数据分类标准以及数据分类精度满意度的评价与所选择的数据分类任务相关。分类后的数据应该具有子类内数据以及类间关系的高度凝聚性。朴素贝叶斯分类器[1](Naive Bayesian Classifier,NBC)是一种基于贝叶斯理论的简单分类方法[2][3]。独立关系是贝叶斯网络中最基本、最重要的理论关系,即在满足独立性的条件下,贝叶斯分类器才能有很好的表现。文献[4]的研究表明,当训练数据集属性间的独立性提高后,应用贝叶斯分类器并不能明显地提高分类效果。即贝叶斯分类模型的表现和独立性是否满足没有必然联系,通过策略降低属性关联关系,提高独立关系,可以降低分类的时间、空间复杂度,同时并不会影响贝叶斯分类器的分类满意度。所以朴素贝叶斯分类器仍然是一种非常实用的分类方法。例如对一个网络安全事件进行评估,显然忽略带宽、传输速率与攻击强度之间的相互关系是错误的。即使在这样一种人为假定下(假定彼此无关),朴素贝叶斯分类器仍然有很满意的分类表现[6][7]。大量研究和实验表明,在不满足条件独立性要求情况下,朴素贝叶斯分类器也能取得比较满意的分类结果。针对此特性,为将数据的语义特征体现在分类过程,本文在研究贝叶斯定理及朴素贝叶斯分类器基础上,引入贝叶斯网络[5],提出一种具有语义特征的基于贝叶斯网络的数据语义分类算法——语义特征关联的贝叶斯网络分类,利用网络节点间的关联表示语义,而其它非语义关联则全部忽略。在不损失分类精度情况下将具有多语义特征的数据进行分类。经仿真实验验证可获得满意的分类精度。 2.贝叶斯网络分类器 2.1朴素贝叶斯分类模型(小四号,宋体,加粗) 朴素贝叶斯分类模型将训练实例I分解为特征向量A和决策类别变量C,该模型根据类独立条件构造,朴素贝叶斯分类模型如图1所示。 图1 朴素贝叶斯分类模型 基金项目:水下机器人国家重点实验室基金

贝叶斯分析(doc 18页)

贝叶斯分析(doc 18页)

第四章贝叶斯分析 Bayesean Analysis §4.0引言 一、决策问题的表格表示——损失矩阵 对无观察(No-data)问题a=δ 可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失): 或 损失矩阵直观、运算方便

二、决策原则 通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。本章在介绍贝叶斯分析以前先介绍芙他决策原则。 三、决策问题的分类: 1.不确定型(非确定型) 自然状态不确定,且各种状态的概率无法估计. 2.风险型 自然状态不确定,但各种状态的概率可以估计. 四、按状态优于: l ij ≤l ik ?I, 且至少对某个i严格不等式成立, 则称行动a j 按状态优于a k §4.1 不确定型决策问题 一、极小化极大(wald)原则(法则、准则) a 1a 2 a 4 min j max i l (θ i , a j ) 或max j min i u ij 例: a 1a 2 a 3 a 4 θ 1 10 8 7 9 θ 2 4 1 9 2 θ 3 13 16 12 14 θ 4 6 9 8 10 各行动最大损失: 13 16 12 14

用 i ∑l ij来评价行动a j的优劣 选min j i ∑l ij 上例: i ∑l ij: 33 34 36 35 其中行动a1的损失最小五、后梅值极小化极大准则(svage-Niehans) 定义后梅值s ij =l ij -min k l ik 其中min k l ik 为自然状态为θ i 时采取不同行动时的最小损失. 构成后梅值(机会成本)矩阵S={s ij } m n ? ,使后梅值极小化极大,即: min max j i s ij 例:损失矩阵同上, 后梅值矩阵为: 3 1 0 2 3 0 8 1 1 4 0 2 0 3 2 4 各种行动的最大后梅值为: 3 4 8 4 其中行动a1 的最大后梅值最小,所以按后梅值极小化极大准则应采取行动1. 六、Krelle准则: 使损失是效用的负数(后果的效用化),再用等概率(Laplace)准则. 七、莫尔诺(Molnor)对理想决策准则的要求(1954) 1.能把方案或行动排居完全序; 2.优劣次序与行动及状态的编号无关; 3.若行动a k 按状态优于a j ,则应有a k 优于a j ; 4.无关方案独立性:已经考虑过的若干行动的优劣不因增加新的行动而改变;

相关文档
最新文档