频率计报告(课程设计).doc

频率计报告(课程设计).doc
频率计报告(课程设计).doc

数字频率计

内容提要:本系统以单片机为控制核心,由信号发生模块、单片机最小系统模块、显示模块组成。测量时,将被测信号送给单片机,通过程序控制计数,所得结果由单片机P0口和P2驱动LED数码管显示频率值。信号发生电路由电容充放电再经非门整形得到一个频率为7100Hz的矩形波信号,作为测试信号送入单片机的P3.4口,再由单片机检测与计算,送入数码管显示。该频率计具有电路结构简单、成本低、测量方便、精度较高等特点,适合测量低频信号。

关键字:单片机 数码管 动态扫描 定时器 二十进制转换

1、 系统功能论述

1、本次设计的意义

在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率计在教学、科研、测量仪器、工业控制等方面都有较广泛的应用。测量频率的方法有多种,其中电子计数测量频率具有精度高、使用方便、测量迅速,以及便于实现测量自动化等优点,是频率测量的重要手段之一。本设计就是用计数的方法,以单片机AT89C51为控制核心,充分利用其软硬件资源,设计并制作了频率计的计数、显示部分。

它能精确测量低频信号的频率,这就是本次设计的意义。

2、系统功能

题目技术指标要求如下:

输入脉冲幅度:0—5V

频率测量范围:100—100000Hz

测量精度:±1%

显示方式:四位数字显示

根据题目要求分析如下:

由于使用电源电压最大不超过5V,而且经74LS00接成的非门整形,所以第一个要求必能满足。信号发生电路要产生频率范围为100—100000Hz的矩形波信号,根据公式只要使电阻电容满足一定的要求即可。测量精度±1%,由于正负1误差的存在,所以最小频率不得低于100Hz,上限频率可以扩大,但也不是无限扩大,根据后面的计算待测信号的频率测量范围可扩大为100—50000Hz。另外显示方式为四位数字显示,所以要将测量频率划分为两段为100——9999Hz和10000——50000Hz。前面一段四位数码管就可以显示了,但后面一段不够显示,就必须进行处理,去掉最后一位,在次高位上加一个小数点,以10000Hz为例,处理后就是10.00,单位变为KHz。

本系统功能就是测量频率,并满足上述指标要求。

3,系统结构框图

图1 系统结构框图

4,工作分配

此次课程设计我主要负责软件的编写与调试。第一个星期主要是收集资料、焊街电路板和熟悉LCA51仿真软件的使用。电路板的焊接工作主要由我同伴负责,电路板的调试是由我们共同完成的,然后共同熟悉软件。第二个星期,我负责写程序,并且各自练习编写一些小程序。经过两个星期的努力,我们终于完成了数字频率计的设计。

2、 硬件电路设计

1, 硬件电路图

图2 硬件管脚图

1)其具体连接方法如下:

P3.4口(即T0)接输入脉冲信号。

XTAL1与XTAL2管脚接两个20pF电容和12 MHz晶振构成时钟电路。 RST管脚接510Ω电阻,10 μF电容及复位开关构成人工复位电路。

P2.4—P2.1接驱动7407的四个输入端,四个输出端接数码管的位选通端。

P0.0—P0.7接数码管的段选线。

2)元件参数如下

R1=R2=510Ω,C1=C2=10uf,C3=C4=20pf。一片74ls00接成非门使

用,用于整形。一片7407用于驱动数码管。四个共阴极数码管,一个8路排阻,阻值为330Ω。

2, 各模块电路的实现及其功能

1) 信号发生模块

参考图2可知,利用电容的充放电,产生近似矩形波的波形,再经非门整形,就可以得到标准的矩形波,若波形不够标准,可多接入几个非门。频率计算公式为:

f=1/2.2*R2*C2 (1)

上述取R2=510Ω, C2=10uf,计算得到f=8900Hz,但由于元件本身并不标准,且有较大误差,以及接入电路后存在的一些干扰,从示波器实测得到的频率为7100Hz。

2) 单片机系统模块

选择单片机是因为有编程灵活、易调试的特点,而且它的引脚较多,利于电路的设计。它内部集成了CPU,RAM,ROM,定时器/计数器和多功能I/0口等一台计算机所需的基本功能部件。晶振由外部接入,各个并行口可直接使用,故直接接数码管的段选线,使得硬件设计易于实现,且简化了程序。单片机的主要功能就是定时一秒钟,统计被测信号的周期个数,在转换、存储、送给单片机的并行口和驱动7407。

3) 数码管显示模块

LED显示器采用动态显示方式。显示时将所有位的段选线相应的并联在一起,由一个8位I/O口即P0口控制,形成段选线的多路复用。驱动器7407连接位选部分,由P2.4—p2.1口控制。由于各位的段选线并联,段选码的输出对各位来说都是相同的。同一时刻,如果各个位选线都处于选通状态的话,四位的LED将显示相同的字符。要各位LDE能够显示出与本位相应的显示字符,就须采用扫描显示方式。即在同一时刻,只让某一位的位选线处于选通状态,而其他各位的位选线处于关闭状态,同时,段选线上输出相应位要显示字型码,这样同一时刻,四位LED中只有选通的那一位显示出字符,而其他三位则是熄灭的。而在下一刻,只让下一位的位选线处于选通状态,而其他各位的位选线处于关闭状态,在段选线上输出相应位将要显示字符的字符码。

这样循环下去,就可以使各位显示出将要显示的字符,虽然这些字符是在不同时刻出现的,而且同一时刻,只有一位显示,其他各位熄灭,但由于人眼有视觉残留现象,只要每位显示间隔足够短,则可造成多位同时亮的效果。所以数码管的作用就是动态显示频率值。

3、 软件设计

1、测频工作原理

1)工作方式选择

对一秒钟内的输入脉冲进行计数,计数的个数即为频率。由此可见

首先要实现一秒定时。在采用12 MHz的晶体振荡器的情况下,一秒的定

时已超过了定时器可提供的最大定时值。为了实现一秒的定时,采用定

时和计数相结合的方法实现。选用定时器T1作定时器,工作于方式1产

生5 ms的定时,再用软件计数方式对它计数200次,就可得到一秒的定时。而将T0设为计数器工作方式,工作于方式1,所以待测输入信号从

P3.4(定时器T0外部计数脉冲输入线)输入。

2)定时器和计数器的初值计算

将定时器/计数器的方式寄存器TMOD,用软件赋初值15H,即00010101B。这时定时器/计数器1作为定时器,则方式选择位C/T设为0,采用工作方式1,即16位定时器;定时器/计数器0作为计数器,则

方式选择位C/T设为1,也采用工作方式1,最大可计到65536。计数器

的初值必然设为0,重要的就是计算定时器T1 的初值。

计算定时器T1初值:设计数初值为X,定时时间为5000us。根据公

式:

X=65536—T*fosc/12 (2)

式中T为定时时间,fosc为晶振频率。本设计采用12 MHz的晶振。则

X=65536—5000*12/12=60536,所以计数初值为60536,用十六进制表示EC78H。则把ECH赋给TH1,把78H赋给TL1。

3)待测信号频率范围计算及占空比要求

当定时器/计数器T0设定为计数方式时,其计数脉冲的来源是T0端

口的外部事件。内部硬件在每个机器周期采样外部引脚的状态,当一个

机器周期采样到高电平,接着的下一个机器周期采样到低电平时计数器

加1,也就是说在外部输入电平发生负跳变时加1。计算机需用两个机器

周期来识别1次计数,因而最大计数速率为振荡频率的1/24。在采用12 MHz晶振的情况下,单片机最大计数速度为0.5 MHz即500 kHz。所以将

待测信号的测量频率范围扩展为100—50000Hz。

另外,此处对外部事件计数脉冲的占空比(即脉冲的持续宽度)无特

殊要求,但必须保证所给出的高电平在其改变之前至少被采样1次,即

至少保持1个完整的机器周期。

2、计数所得数据处理

1)二进制—十进制转换

单片机采集得到的数据是二进制数,要送入数码管显示,就必须转

换为十进制。

转换原理如下:

一个整数的二进制表达式为:(3)

根据多项式计算方法可改写为:

初值:B=0;i=m-1

(4)

(5)

结束条件:i<0。

由这个公式可见,我们只要分别对部分和按十进制数运算方法进行乘2和加bi的运算,就可得到十进制的转换结果,但转换结果是压缩的BCD码。

2)压缩BCD码转换成非压缩BCD码

压缩BCD码R4R5R6,以R5为例,首先赋给A,再将A的低四位清零,高四位保持不变,然后将高低四位调换,就得到了压缩BCD码的高四位,同理再将R5赋给A,A的高四位清零,低四位保持不变,就得到了压缩BCD码的低四位。以此类推,逐个转换为非压缩BCD码。

3)数码管显示

从图2中可看出,P0.0—P0.7对应的分别是数码管的b、a、f、g、e、d、c、h,所以字型码和字符码的对应关系,如表1所示。

表1

字符码字型码字符码字型码077H0.F7H

141H 1.C1H

23BH 2.BBH

36BH 3.EBH

44DH 4.CDH

56EH 5.EEH

67EH 6.FEH

743H7.C3H

87FH8.FFH

96FH9.EFH 共有四个数码管,用扫描的方式显示,每一个时刻只选通一个数码管。P2.4—P2.1分别驱动一个数码管,所以驱动电路的字型码为EFH、F7H、FBH、FDH。定时器每中断一次,就显示一位数码管,但这短暂的时间人眼是无法识别的,所以人眼看到的是静态显示。

3、软件程序框图

1)主程序框图

主程序中包含初始化,二十进制转换程序和压缩BCD码转换成非压缩BCD码程序。其中二十进制转换程序和压缩BCD码转换成非压缩BCD码

程序是循环调用的。

图3 主程序框图

2)数码管显示的调用函数框图

当频率低于10KHz时,调用函数有四个,QIANW调用函数、BAIW调用函数、SHIW调用函数、GEW调用函数,分别对应数码管的从左到右四

位。当频率不低于10KHz时,调用函数也有四个,QIANW1调用函数、

BAIW1调用函数、SHIW1调用函数、GEW1调用函数,分别对应数码管的从

左到右四位。TAB和TAB1是供查表用的。

TAB:DB 77H,41H,3BH,6BH,4DH,6EH,7EH,43H,7FH,6FH

TAB1:DB 0F7H,0C1H,0BBH,0EBH,0CDH,0EEH,0FEH,0C3H,0FFH,0EFH

图4 频率低于10KHz时的数码管显示调用框图

图5 频率不低于10KHz时的数码管显示调用框图

3)中断函数结构框图

动态扫描显示时间是由定时器1决定的,每中断一次,则显示一个数码管,依次从左往右显示。中断函数主要负责调用显示程序和存储计

数得到的频率值。

图6 中断函数结构框图

四,软件源程序代码

数字频率计的程序和解释说明如下:

ORG 0000H ;程序复位入口地址

AJMP MAIN

ORG 001BH ;计时器T0的中断入口

AJMP PTF0 ;跳转到中断程序中

ORG 0033H ;主程序入口地址

MAIN:MOV SP, #60H

MOV TH1, #0ECH

MOV TL1,#78H ;定时5MS

SETB EA ;开放CPU中断

SETB ET1 ;开放定时器中断

MOV TH0,#0

MOV TL0,#0 ;给计数器T0赋初值0

MOV TMOD,#15H ;计时器T1工作在方式1定时模式,计数器T0工作在

方式1 计数模式

MOV 30H,#0C8H ;循环200次,共定时1S

MOV 40H,#0 ;用于判断显示数码管哪一位

SETB TR0 ;启动计数器0

SETB TR1 ;启动定时器1

LOOP1:ACALL ZHUANH ;将二进制数转换为压缩BCD码

ACALL CHAIF ;将压缩BCD码转换为非压缩BCD码

AJMP LOOP1 ; 循环处理计数器T0采集得到的数据

PTF0:MOV TH1, #0ECH

MOV TL1,#78H ;给定时器T1重新赋值

INC 40H ;数码管判断位加1

MOV A,50H

CJNE A,#00H,DAY ;判断50H单元是否为零,若为0继续往下执行,

若不为0,则跳转到子程序DAY中

MOV A,40H ;每5ms显示一位,从最高位开始,到最低位时,返回

高位

CJNE A,#1,LOP1

ACALL QIANW

AJMP TIAO

LOP1:CJNE A,#2,LOP2

ACALL BAIW

AJMP TIAO

LOP2:CJNE A,#3,LOP3

ACALL SHIW

AJMP TIAO

LOP3:ACALL GEW

MOV 40H,#0

AJMP TIAO

DAY: MOV A,40H

CJNE A,#1,LP1

ACALL QIANW1

AJMP TIAO

LP1:CJNE A,#2,LP2

ACALL BAIW1

AJMP TIAO

LP2:CJNE A,#3,LP3

ACALL SHIW1

AJMP TIAO

LP3:ACALL GEW1

MOV 40H,#0

TIAO:DJNZ 30H,PTFR ;判断是否到1S

MOV 20H,TH0

MOV 21H,TL0 ;将计数器T0中的数转移到20H,21H中

MOV TH0,#0

MOV TL0,#0 ;将计数器T0重新赋0

MOV 30H,#0C8H

PTFR:RETI

ZHUANH:MOV R2,20H ;将计数得到的值存入R2和R3中

MOV R3,21H

CLR A

MOV R4 ,A ;将R4、R5、R6清零

MOV R5 ,A

MOV R6,A

MOV R7,#16

LOOP:CLR C ; 将16位二进制数逐位左移一位 ,移得的数据放

入进位C中 MOV A,R3

RLC A

MOV R3,A

MOV A,R2

RLC A

MOV R2,A

MOV A,R6 ;(R4R5R6)+(R4R5R6)+C=(R4R5R6)

*2+C

ADDC A,R6

DA A

MOV R6,A

MOV A,R5

ADDC A,R5

DA A

MOV R5,A

MOV A,R4

ADDC A,R4

DA A

MOV R4,A

DJNZ R7,LOOP

RET

CHAIF:MOV A,R5 ;将压缩BCD码R4R5R6转换为非压缩BCD码 ,从高

到低依次放于50H、51H、52H、53H、54H ANL A,#0F0H

SWAP A

MOV 51H,A

MOV A,R5

ANL A,#0FH

MOV 52H,A

MOV A,R6

ANL A,#0F0H

SWAP A

MOV 53H,A

MOV A,R6

ANL A,#0FH

MOV 54H,A

MOV 50H,R4

RET

QIANW: MOV A,51H ;频率不超过10KHZ时,以HZ为单位,四位显示,最

高位为千位,以此类推 MOV DPTR,#TAB ;千位上显示51H单元中的内容

MOVC A,@A+DPTR

MOV P0,A

MOV P2,#0EFH

RET

BAIW:MOV A,52H ;百位上显示52H单元中的内容

MOV DPTR,#TAB

MOVC A,@A+DPTR

MOV P0,A

MOV P2,#0F7H

RET

SHIW:MOV A,53H ;十位上显示53H单元中的内容

MOV DPTR,#TAB

MOVC A,@A+DPTR

MOV P0,A

MOV P2,#0FBH

RET

GEW:MOV A,54H ;个位上显示54H单元中的内容

MOV DPTR,#TAB

MOVC A,@A+DPTR

MOV P0,A

MOV P2,#0FDH

RET

QIANW1:MOV A,50H ;频率大于10KHZ时,小数点放千位,以KHZ为单

位,省去个位,以四位显示 MOV DPTR,#TAB ;千位上显示50H单元中的内容

MOVC A,@A+DPTR

MOV P0,A

MOV P2,#0EFH

RET

BAIW1:MOV A,51H ;百位上显示51H单元中的内容和显示小

数点

MOV DPTR,#TAB1

MOVC A,@A+DPTR

MOV P0,A

MOV P2,#0F7H

RET

SHIW1: MOV A,52H ;十位上显示52H单元中的内容

MOV DPTR,#TAB

MOVC A,@A+DPTR

MOV P0,A

MOV P2,#0FBH

RET

GEW1:MOV A,53H ;个位上显示53H单元中的内容

MOV DPTR,#TAB

MOVC A,@A+DPTR

MOV P0,A

MOV P2,#0FDH

RET

TAB:DB 77H,41H,3BH,6BH,4DH,6EH,7EH,43H,7FH,6FH ;0—9

TAB1:DB 0F7H,0C1H,0BBH,0EBH,0CDH,0EEH,0FEH,0C3H,0FFH,0EFH

;0.—9.

NOP

END

五、调试与结果分析

1、硬件调试

焊好电路后,首先检查是否有虚焊,如果没有,再上电检测。电源接好后,第一步检测各芯片是否得电;第二步检测信号源是否产生信号、信号是否标准以及频率是多大;第三步检测数码管是否管用以及连线是否正确。

第一步和第二步很简单,只要用万用表和示波器直接观测即可,重点是第三步。首先检测数码管的好坏,由于P2.4—P2.1控制数码管的位选线,P0.0—P0.7接数码管的段选线,而且数码管是共阴的,所以只要将+5V电源的地分别接P2.4—P2.1口,若数码管显示8和小数点,说明是好的,四个都检测完后就检查数码管的接线。

首先+5V电源的地接P2.4口,电源的正端接一个1KΩ的电阻,分别点触P0.0—P0.7,若点触到哪一个口,相对应的二极管熄灭,说明连线是正确的。检测完一个数码管,然后用相同的方法检测完四个数码管。

2、软件调试

本次设计采用的单片机是AEDK51HB仿真机,它具有使用方便灵活,易于调试等特点。所使用的编程软件是LCA51,操作步骤较为简单。

首先打开LCA51软件,测试串口,然后新建文件,在内部编程,编完程序,保存就可以了,后缀名为.ASM。接下来就是编译,若有错误,就点击错误提示,找到错误的地方,进行修改,修改完直到没有警告和错误时,在仿真机电源/运行的指示灯为绿色的情况下,点击确定。下载完成以后,点击全速运行,观察检测结果。一开始并不熟悉此软件,想当然的把频率计的程序全部写进去,但并没有得到想要的结果,由于程序太长,又不知道具体是哪出错,所以比较难检查。后来在老师的指导下,我们先编写一些小程序来熟悉此软件,并达到熟练使用的效果。然后将总程序分为四个部分分别检测。步骤如下:

a) 第一步先编数码管显示程序,看看数码管能不能从0显示到9,每

一位都亮,如果对了,再编写测频的显示程序。利用动态扫描法,逐位显示。

b) 第二步编写压缩BCD码拆为非压缩BCD码的程序,编好后可以先设

定几个压缩BCD码,利用观察项来观察显示结果对不对,如果不对,就修改程序,改对以后再进行第三步。

c) 第三步将二进制—十进制转换程序加到第二步所得程序前面,先

给定一个16位的二进制数,比如04B0H,转换为十进制数就是1200,观察拆分后单元内容是不是00H、01H、02H、00H、00H,如果正确说明第三步对了,若有错误,则肯定是转换程序有问题,修改正确以后,剩下的就是总程序的初始化和中断函数了。

d) 第四步,初始化程序很简单,主要是中断函数。调用主程序,若

没有结果显示,先查看初始化有没有问题,再看中断函数,如果觉得有不对的地方,不妨改一下,在仿真看看,是否能测出结果,就这样一步一步调下去,还可以利用单步跟踪观察。我的程序问题就出在中断函数,因为存储单元没有用对。

3、 测量结果误差分析

测量结果与理论计算存在较大的差距,但与示波器的观测结果很相近。究其原因我认为有以下几点:

1) 使用的信号发生电路的电阻和电容值,与标称值相差较大。

2) 电源波动很大,使得波形不稳定。

3)原理上存在±1误差。由于该设计是在计数门限时间一秒内的频率信号脉冲数,所以定时开始时的第一个脉冲和定时时间

到时的最后一个脉冲信号是否被记录,存在随机性。

4)晶振的准确度会影响一秒定时的准确度,从而引起测量结果误差。

5)当电路整合在一起时,由于后级电路的影响,存在系统误差。

6)定时一秒钟,是由定时器和计数共同完成的,定时5ms,计数200次,由于定时时间短,时间累加存在较大的误差。但由

于硬件电路的要求,必须使用动态显示,且只有一个定时器

可供使用,所以定时时间不能变长。

4、测量结果误差补偿方法

根据以上分析,由于晶振、电阻、电容无法改变,所以我们采用软件的方法来补偿误差。就是多次测量求平均值,我们采用的是8次相加,然后求平均值。

其程序如下:

MOV 41H,#9

MOV 22H,#0

MOV 23H,#0

MOV 24H,#0

DJNZ 41H,JIAF ;判断是否采集满8次

MOV 41H,#9 ;重新赋值

AJMP YIWEI ;采集满8次,跳转到除8程序,即右移3位

JIAf:MOV A,24H ;(24H)+(21H)赋给24H

ADD A,21H

MOV 24H,A

MOV A,23H ;(23H)+(20H)赋给23H

ADDC A,20H

MOV 23H,A

MOV A,22H ;(22H)+C赋给22H

ADDC A,#0

MOV 22H,A

AJMP PTFR

YIWEI:MOV 25H,#3 ;22H23H24H连续三个单元,带进位位右3次

WWW:MOV A,22H

RRC A

MOV 22H,A

MOV A,23H

RRC A

MOV 23H,A

MOV A,24H

RRC A

MOV 24H,A

DJNZ 25H,WWW

MOV 26H,23H

MOV 27H,24H

MOV 22H,#0

MOV 23H,#0

MOV 24H,#0

PTFR:RETI

此程序放在中断函数内,在定时满一秒钟后的地方。而初值的设定放在主程序的初始化中。从程序中可看出此时测量结果保存在26H、27H 两个连续单元内,所以转换程序中 MOV R2,20H ; MOV R3,21H两条指令变为MOV R2,26H ; MOV R3,27H。其他地方基本不需要改动。

5、测量结果

根据示波器读出的频率为7100Hz,用单片机检测并由数码管显示的频率范围为7055—7143Hz,其误差在±1%范围内。所以满足此项要求,其他项要求也已经满足。

六,课程设计体会

经过两个星期的练习,我觉得我的编程能力有了很大的提高,对单片机也有了更加深刻的了解。能够快速的编写一些小程序,对于比较复杂一点的程序,我也知道该如何简化,分步进行编写,不但编起来简

单,而且易于检查。这次课程设计尽管只有两周的时间,但我觉得受益匪浅,他不仅教会我做课程设计的一般流程,而且告诉我做事一定要谨慎,尽量要想的全面,而且要精益求精,不能把意识只停留在表面,粗略的求一个结果,要弄懂每一个细节。我相信这次的课程设计不但是我学习生涯中的一次宝贵经验,更为我以后的学习和工作打下了坚实的基础。当然这次课程设计能完满成功,要感谢老师的谆谆教导和细心解说。我相信有了这次经验,在以后的课程设计中,我一定能完成的更出色。

单片机课程设计报告——智能数字频率计汇总

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

简易数字频率计设计

简易数字频率计设计报告 设计内容: 1、测量信号:方波、正弦波、三角波; 2、测量频率范围: 1Hz~9999Hz; 3、显示方式:4位十进制数显示; 4、时基电路由由555构成的多谐振荡器产生(当标准时间的精度要求较高时,应通过晶体振荡器分频获得); 5、当被测信号的频率超出测量范围时,报警。 设计报告书写格式: 1、选题介绍和设计系统实现的功能; 2、系统设计结构框图及原理; 3、采用芯片简介; 4、设计的完整电路以及仿真结果; 5、Protel绘制的电路原理图; 6、制作的PCB; 7、课程设计过程心得体会(负责了哪些内容、学到了什么、遇到的难题及解决方法等)。 电子课程设计过程: 系统设计→在Multisim2001下仿真→应用Protel 99SE绘制电路原理图→制作PCB →撰写设计报告

简易数字频率计课程设计报告 第一章技术指标 1.1整体功能要求 1.2系统结构要求 1.3电气指标 1.4扩展指标 1.5设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图及原理 第三章单元电路设计 3.1 时基电路设计 3.2闸门电路设计 3.3控制电路设计 3.4 小数点显示电路设计 3.5整体电路图 3.6整机原件清单 第四章测试与调整 4.1 时基电路的调测 4.2 显示电路的调测 4-3 计数电路的调测 4.4 控制电路的调测 4.5 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进

5.3心得体会附录 参考文献

第一章技术指标 1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 数字频率计整体方案结构方框图 3.电气指标 3.1被测信号波形:正弦波、三角波和矩形波。 3.2 测量频率范围:分三档: 1Hz~999Hz 0.01kHz~9.99kHz 0.1kHz~99.9kHz 3.3 测量周期范围:1ms~1s。 3.4 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 3.6当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~99.9kHz的精度均为+1。

电子技术课程设计(数字频率计的设计)

一课程设计题目:数字频率计的设计 二、功能要求 (1)主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。 (2)率范围:分四1Hz~999Hz、01kHz~9.99kHz、1kHz~99.9kHz、10~999KHZ (3)周期范围:1ms~1s。 (4)用3个发光二极管表示单位,分别对应3个高档位。 三频率计设计原理框图 正弦波 数字频率计原理框图 1

测试电路原理:在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s 的闸门信号。改闸门信号控制闸门电路的导通与开断。让被测信号送入闸门电路,当1s闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。测量频率的误差与闸门信号的精度直接相关。 被测信号 频率测量算法对应的方框图 四、各部分电路及仿真 1 整形电路部分 整形电路的目的是将三角波、正弦波变成方便计数的脉冲信号。整形电路可以直接用555定时器构成施密特触发。 本次设计采用555定时器,适当连接若干个电阻就可以构成触发器 图1-1 整形电路 将555定时器的THR和TR1两个输入端连在一起作为信号输入端,则可得到 显示电路 闸门产生 输入电路闸门计数电路

施密特触发器,为了提高其稳定性通常要在要在CON端口接入一个0.01uf左右的滤波电容。但使用555定时器的时候输入的电压应该要大于5V,本次设计直接用信号源来做输入信号,并且信号源的振幅为10V,没有用放大电路将信号放大。 2 时基电路 时基电路时用来控制闸门信号选通的时间,由于本次设计的频率计测试范围是0到999KHz,故时基信号要有1ms 10ms 100ms 1s,基于上述,还需要一个分频器分出不同的频率。设计过程如下:可用一个多谐振电路产生频率为1KHz的脉冲信号(即T=1ms),然后使用分频器产生10ms 100ms 1s。 多谐振电路可以采用555定时器或者晶体振荡器来完成。本次设计采用555定时器实现,本次设计的精确度要求比较低,而且555定时器组成的多谐振荡起的最高振荡频率只能最多1MHz,而我们将用555定时器产生1Kz的频率,满足在该范围之内。分频器采用10分频,可用74LS90或者74LS160。 图2-1555定时器构成的多谐振振荡器 555多谐振振荡器设计参数:设计一个震荡周期为1ms,输出的占空比 2 3 q

基于单片机的简单频率计课程设计报告

《单片机原理与接口技术》课程设计报 告 频率计

1功能分析与设计目标 0 2频率计的硬件电路设计 (3) 2.1 控制、计数电路 (3) 2.2 译码显示电路 (5) 3频率计的软件设计与调试 (6) 3.1软件设计介绍 (6) 3.2程序框图 (8) 3.3功能实现具体过程 (8) 3.4测试数据处理,图表及现象描述 (10) 4讨论 (11) 5心得与建议 (12) 6附录(程序及注释) (13)

1 功能分析与设计目标 背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。 题目要求: 用两种方法检测(△m ,△ T )要求显示单位时间的脉冲数或一个脉冲的周期。 设计分析: 电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M 法),脉冲周期测频法(T 法),脉冲数倍频测频法(AM 法),脉冲数分频测频法(AT 法),脉冲平均周期测频法(M/T 法),多周期同步测频法。下面是几种方案的具体方法介绍。 脉冲数定时测频法(M 法):此法是记录在确定时间Tc 内待测信号的脉冲个数Mx ,则待测频率为: Fx=Mx/ Tc 脉冲周期测频法(T 法):此法是在待测信号的一个周期Tx 内,记录标准频率信号变化次数Mo。这种方法测出的频率是: Fx=Mo/Tx 脉冲数倍频测频法(AM 法):此法是为克服M 法在低频测量时精度不高的缺陷发展起来的。通过A 倍频,把待测信号频率放大A 倍,以提高测量精度。其待测频率为: Fx=Mx/ATo 脉冲数分频测频法(AT 法):此法是为了提高T 法高频测量时的精度形成的。由于T 法测量时要求待测信号的周期不能太短,所以可通过A 分频使待测信号 的周期扩大A倍,所测频率为: Fx=AMo/Tx 脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录

数电课程设计报告-数字频率计

数电课程设计报告:频率计 目录 一、设计指标 二、系统概述 1.设计思想 2.可行性论证 3.工作过程 三、单元电路设计及分析 1.器件选择 2.设计及工作原理分析 四、电路的组构及调试 1.遇到的问题 2.现象记录及原因分析 3.解决及结果 4.功能的测试方法、步骤、设备、记录的数据 五、总结 1.体会 2.电路总图 六、参考文献 一、设计指标 设计指标:要求设计一个测量TTL方波信号频率的数字系统。测试值采用4个LED七段数码管显示,并以发光二极管只是测量对象(频率)的单位:Hz、kHz。

频率的测量范围有四档量程。 1)测量结果显示四位有效数字,测量精度为万分之一。 2)频率测量范围:100.1Hz——999.9kHz,分为: 第一档: 100.0Hz——999.9Hz 第二档: 1.000kHz——9.999kHz 第三档: 10.00kHz——99.99kHz 第四档: 100.0kHz——999.9kHz 3)量程切换可以采用两个按键SWB、SWA手动切换。 扩展要求: 一、当被测频率大于999.9kHz,超出最大值时,设置亮一个警灯,并同时发出报警声音。 二、自动切换量程 提示: 1.计数器计到9999时,产生溢出信号CO,启动量程加档。 2.显示不足4位有效数字时量程减档。 三、各量程输出信号的频率最高位有效数字为1、2、3、4、5、6、7、8、9。 二、系统概述 1.设计思想 周期性信号频率可通过记录信号在1s内的周期数来确定其频率。

累计标准时间Ts中被测信号的脉冲个数Nx,被测信号频率:fx≈Nx/Ts 测量时间Ts选择:由于测量时间Ts需要根据被测信号的频率切换,所以通常对振荡时钟进行分频以获得不同的定时时间。 采样定时、显示锁存、计数器清零的控制时序波形图 2.可行性论证 用计数器实现记录周期数的功能;用时基信号产生计数时间作为采样时间;用四位动态扫描通过数码管显示结果;因为如果计数器直接把数据输入到数码管显示,那么数码管的数据就会不断变化,累计增加的情况,所以采用锁存器,在每个时间信号内,通过一个高电平使能有效,将计数器的数值锁存到寄存器或者锁存器;为了不要让每次锁存的数据会比上次

南京邮电大学课程设计报告-简易数字频率计

目录 第一章技术指标 整体功能要求 系统结构要求 电气指标 扩展指标 设计条件 第二章整体方案设计 算法设计 整体方框图及原理 第三章单元电路设计 时基电路设计 闸门电路设计 控制电路设计 小数点显示电路设计 整体电路图 整机原件清单 第四章测试与调整 时基电路的调测 显示电路的调测 4-3 计数电路的调测 控制电路的调测 整体指标测试 第五章设计小结 设计任务完成情况 问题及改进 心得体会 第一章技术指标

1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 3.电气指标 被测信号波形:正弦波、三角波和矩形波。 测量频率范围:分三档: 1Hz~999Hz ~ ~ 测量周期范围:1ms~1s。 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~的精度均为+1。 5.设计条件 电源条件:+5V。 可供选择的元器件范围如下表

门电路、阻容件、发光二极管和转换开关等原件自定。 第二章 整体方案设计 算法设计 频率是周期信号每秒钟内所含的周期数值。可根据这一定义采用如图2-1所示的算法。图2-2是根据算法构建的方框图。 被测信号

电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。测量频率的误差与闸门信号的精度直接相关,因此,为保证在1s内被测信号的周期量误差在10 3量级,则要求闸门信号的精度为10 量级。例如,当被测信号为1kHz时,在1s的闸门脉冲期间计数器将计数1000次,由于闸门脉冲精度为10 ,闸门信号的误差不大于,固由此造成的计数误差不会超过1,符合5*10 3的误差要求。进一步分析可知,当被测信号频率增高时,在闸门脉冲精度不变的情况下,计数器误差的绝对值会增大,但是相对误差仍在5*10 3范围内。 整体方框图及原理 输入电路:由于输入的信号可以是正弦波,三角波。而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。在整形之前由于不清楚被测信号的强弱的情况。所以在通过整形之前通过放大衰减处理。当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。 频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。时基信号由RC振荡电路构成一个较稳定的多谐振荡器,经4093整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。 周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。方波信号中的脉冲宽度恰好为被测信号的1个周期。将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。计数器累计的结果可以换算出被测信号的周期。用时间Tx来表示:Tx=NTs 式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。

课程设计报告(频率计)

设计题目:数字频率计的设计与制作 一、课程设计的主要内容与目的 1. 主要内容:数字频率计的主要功能是测量周期信号的频率,频率是单位时间内信号 发生周期变化的次数,如果我们能在给定的1S时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来,这就是数字频率计的基本原理。 从数字频率计的基本原理出发,根据设计要求,得到如图1所示的电路框图。 图1 2. 设计目的:(1)掌握数字频率计的工作原理 (2)根据课程设计,熟悉一般产品设计的流程和方法。 (3)重点掌握数字频率计设计的计数部分。 二、主要技术指标 1.频率测量范围:10~9999HZ。 2.输入信号波形:任意周期信号,输入电压幅度>300mv. 3.电源:220V,50HZ。 系统框图中各部分的功能及实现方法 (1)电源与整流稳压电路 框图中的电源采用50Hz的交流市电。市电被降压、整流、稳压后为整个系统提供直流电源。系统对电源的要求不高,可以采用串联式稳压电源电路来实现。 (2)全波整流与波形整形电路 本频率计采用市电频率作为标准频率,以获得稳定的基准时间。按国家标准,市电的频率漂移不能超过0.5Hz,即在1%的范围内。用它作普通频率计的基准信号完全能满足系统的要求。全波整流电路首先对50Hz交流市电进行全波整流,得到如图2(a)所示100Hz的全波整流波形。波形整形电路对100Hz信号进行整形,使之成为如图2(b)所示100Hz的矩形波。波形整形可以采用过零触发电路将全波整流波形变为矩形波,也可采用施密特触发器进行整形。

数字逻辑数字频率计的设计课程设计报告

滁州学院 课程设计报告 课程名称:数字逻辑课程设计 设计题目:数字频率计的设计 系别:网络与通信工程系 专业:网络工程(无线传感器网络方向)组别:第七组 起止日期:2012年5月28日~2012年6 月18日指导教师:姚光顺 计算机与信息工程学院二○一二年制

课程设计任务书

目录 1绪论 (1) 1.1设计背景 (1) 1.2主要工作和方法 (1) 1.3本文结构 (1) 2相关知识 (1) 2.1数字频率计概念...................................................................................................................... .. (1) 2.2数字频率计组成 (1) 3系统设计 (2) 4系统实现 (2) 4.1计数译码显示电路 (2) 4.2控制电路 (3) 5系统测试与数据分析 (5) 6课程设计总结与体会 (8) 6.1设计总结 (8) 6.2设计体会 (8) 结束语 (9) 参考文献 (9) 附录 (10) 致谢 (12)

1绪论 1.1设计背景 数字频率计是一种基础测量仪器,到目前为止已有 30 多年的发展史。早期,设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量数字频率计的技术水平,决定数字频率计价格高低的主要依据。目前这些基本技术日臻完善,成熟。应用现代技术可以轻松地将数字频率计的测频上限扩展到微频段。 随着科学技术的发展,用户对数字频率计也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对于中高档产品,则要求有高分辨率,高精度,高稳定度,高测量速率;除通常通用频率计所具有的功能外,还要有数据处理功能,统计分析功能,时域分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正完美的实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。 随着数字集成电路技术的飞速发展,应用计数法原理制成的数字式频率测量仪器具有精度高、测量范围宽、便于实现测量过程自动化等一系列的突出特点。 1.2主要工作和方法 设计一个数字频率计。要求频率测量范围为1Hz-10kHz。数字显示位数为四位静态十进制计数显示被测信号。先确定好数字频率计的组成部分,然后分部分设计,最后组成电路。 1.3本文结构 本文第1部分前言主要说明频率计的用处和广泛性。第2部分简要说明了本次课程设计的要求。第3部分概要设计大致的勾画出本次设计的原理框架图和电路的工作流程图。第4部分简要说明4位二进制计数器74160的原理和搭建计数译码显示电路的原理,同时分析控制电路的功能,形成控制电路图,及搭建显示电路和控制电路的组合原理图。第5部分调试与操作说明,介绍相关的操作和输入不同频率是电路的显示情况。 2相关知识 2.1数字频率计介绍 2.1.1数字频率计概念 数字频率计是一种直接用十进制数字现设被测信号频率的一种测量装置,它不仅可以测量正弦波、方波、三角波等信号的频率,而且还可以用它来测量被测信号的周期。经过改装,在电路中增加传感器,还可以做成数字脉搏计、电子称、计价器等。因此,数字频率计在测量物理量方面有广泛的应用。 2.1.2数字频率计组成 数字频率计由振荡器、分频器、放大整形电路、控制电路、计数译码显示电路等部分组成。其中的控制脉冲采用时钟信号源替代,待测信号用函数信号发生器产生。数字频结构原理框图如图3.1

数字频率计_课程设计报告

电气与信息工程学院 数字频率计 设计报告书 前言 摘要:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的 测量就显得更为重要。测量频率的方法有多种,其中数字计 数器测量频率具有精度高、使用方便、测量迅速,以及便于 实现测量过程自动化等优点,是频率测量的重要手段之一。 其原理为通过测量一定闸门时间内信号的脉冲个数。本文阐 述了设计了一个简单的数字频率计的过程。 关键词:频率计,闸门,逻辑控制,计数-锁存

目录 第一章设计目的 第二章设计任务和设计要求 2.1 设计任务及基本要求 2.2.系统结构要求 第三章系统概述 3.1概述 3.2设计原理及方案 第四章单元电路设计及分析 4.1 时基电路 4.2逻辑控制电路 4.3计数电路 4.4锁存电路 4.5显示译码电路 4.6 闸门电路 第五章安装与调试过程 5.1 电路的安装过程 5.2 电路的调试过程 5.3 出现的问题及解决办法 第六章结果分析 第七章收获与体会

第八章元件清单 第九章实现结果实物图 附录A 参考文献 第一章 设计目的: 1.了解数字频率计测量频率与测量周期的基本原理; 2.熟练掌握数字频率计的设计与调试方法及减小测量误 差的方法。 3.本设计与制作项目可以进一步加深我们对数字电路应 用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。 4.针对电子线路课程要求,对我们进行实用型电子线路设 计、安装、调试等各环节的综合性训练,培养我们运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。

第二章 设计任务及要求: 2.1设计任务及基本要求: 设计一简易数字频率计,其基本要求是: 1)测量频率范围0~9999Hz; 2)最大读数9999HZ,闸门信号的采样时间为1s;. 3)被测信号可以是正弦波、三角波和方波; 4)显示方式为4位十进制数显示; 5)完成全部设计后,可使用EWB进行仿真,检测试验设计电路的正确性。 2.2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量。 波形 整 形 计 数 器 数 码 显 示 振荡 电 路分 频 器 控 制 门 数 据 锁 存 器 显 示 译 码 器 被测 信 号

电子课程设计——数字频率计

2020/9/14 电子课程设计 ——数字频率计

目录 一 . 设计任务与要求 (2) 二 . 总体框图 (2) 2 . 1 题目分析及总体方案确定 (2) 三 . 选择器件 (4) 3 . 1 元件清单列表 (4) 3 . 2各元器件符号及逻辑功能 (5) 四 . 功能模块 (11) 4 . 1 整形电路 (11) 4 . 2 时基电路 (11) 4 . 3 逻辑控制电路 (12) 4 . 4 计数器、锁存器 (13) 4 . 5 译码显示电路 (15) 五 . 总体设计电路图 (15)

一 . 设计任务与要求 数字频率计是用来测量正弦信号、矩形信号、三角波等波形工作频率的仪器,其测量结果用十进制数字显示。具体要求如下: 1.测量频率范围:1Hz~10KHz; 2.数字显示位数:4位数字显示; 3.测量时间:t≤1.5s; 4.被测信号:方波、三角波、正弦波。 二 . 总体框图 2 . 1 题目分析及总体方案确定 频率的测量总的来说有三种方法:直接测量法、直接与间接测量相结合的方法和多周期同步测量法。直接测量法最简单,但测量误差最大;后两种方法测量精度高,但电路复杂。由于该题目没有对测量误差提出特别要求,为简单起见,采用直接测量法。 数字频率计就是直接用十进制的数字来显示被测信号频率。可以测的方波的频率,通过放大整形处理,它可还以测量正弦波、三角波和尖脉冲信号的频率。所谓频率就是在单位时间(1s)内周期信号的脉冲个数。若在一定时间间隔T内测得周期信号的脉冲个数N,则其频率为f=N Hz。 据此可得数字频率计的组成框图如图1—1(a)所示:

1-1(a) 图中的逻辑控制电路有两个作用:一是产生锁存脉冲,使显示器上的数字稳定;二是产生清零脉冲,使计数器每次测量从零开始计数。各信号之间的时序关系如图1-1(b)所示,图中信号由上而下依次是由放大整形电路得到的脉冲信号、时间基准信号、闸门电路输出、锁存脉冲和清零脉冲。

简易频率计课程设计

目录 1 技术要求及系统结构 (1) 1.1技术要求 (1) 1.2系统结构 (1) 2设计方案及工作原理 (2) 2.1 算法设计 (2) 2.2 工作原理 (3) 3组成电路设计及其原理 (6) 3.1时基电路设计及其工作原理 (6) 3.2闸门电路设计 (7) 3.3控制电路设计 (8) 3.4小数点控制电路 (9) 3.5整体电路 (10) 3.6 元件清单 (10) 4设计总结 (11) 参考文献 (11) 附录1 (12) 附录2 (17)

摘要 简易数字频率计是一种用四位十进制数字显示被测信号频率(1Hz—100KHz)的数字测量仪器.它的基本功能是测量正弦波,方波,三角波信号,有四个档位(×1,×10,×100,×1000),并能使用数码管显示被测信号数据,本课程设计讲述了数字频率计的工作原理以及其各个组成部分,记述了在整个设计过程中对各个部分的设计思路、对各部分电路设计方案的选择、元器件的筛选、以及在设计过程中的分析,以确保设计出的频率计成功测量被测信号。 关键词:简易数字频率计十进制信号频率数码管工作原理 1技术要求及结构 本设计可以采用中、小规模集成芯片设计制作一个具有下列功能的数字频率测量仪。 1.1技术要求 ⑴要求测量频率范围1Hz-100KHz,量程分为4档,即×1、×10、×100、×1000。 ⑵要求被测量信号可以是正弦波、三角波和方波。 ⑶要求测试结果用数码管表示出来,显示方式为4位十进制。 1.2 系统结构 数字频率计的整体结构要求如图1-1所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 图1-1 数字频率计系统结构框图 2 设计方案及工作原理 2.1 算法设计

数字频率计课程设计报告

《数字频率计》技术报告 一、问题的提出 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速地跟踪捕捉到被测信号频率的变化。而频率计则能够快速准确的捕捉到被测信号频率的变化。 在传统的生产制造企业中,频率计被广泛的应用在生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。 数字频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉冲信号的频率,而且还能对其他多种物理量的变化频率进行测量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经过传送带的产品数量等等,这些物理量的变化情况可以由有关传感器先转变成周期变化的信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出来。 二、解决技术问题及指标要求 1、技术指标

被测信号:正弦波、方波或其他连续信号; 采样时间:1秒(0.1秒、10秒); 显示时间:1秒(2秒、3秒......); LED显示; 灵敏度:100mV; 测量误差:±1H z。 数字频率计是一种专门对被测信号频率进行测量的电子测量仪器。其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。一般T=1s,所以应要求定时器尽量输出为1s的稳定脉冲。 2、设计要求 可靠性:系统准确可靠。 稳定性:灵敏度不受环境影响。 经济性:成本低。 重复性:尽量减少电路的调试点。 低功耗:功率小,持续时间长。 三、方案可行性分析(方案结构框图) 1、原理框图

数字频率计课程设计

课程设计任务书 学生姓名:覃朝光 ___________ 专业班级:通信1103 __________ 指导教师: ___________ 工作单位:信息工程学院 题目:数字频率计的设计与实现 初始条件: 本设il?既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形 电路和必要的门电路等,也可以使用单片机系统构建简易频率计。用数码管显示频率汁数值。 要求完成的主要任务:(包括课程设讣工作量及技术要求,以及说明书撰写等具体要求)仁课程设计工作量:1周。 2、技术要求: 1)设计一个频率讣。要求用4位7段数码管显示待测频率,格式为0000Hz. 2)测量频率范围:10~9999HZo 3)测量信号类型:正弦波、方波和三角波。 4)测量信号幅值:0.5~5V° 5)设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1s。 6)确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设讼分电路,画出总体电路原理图,阐述基本原理。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全 文用A4纸打印,图纸应符合绘图规范。 时间安排: 仁2013年5月17日,布宜课设具体实施计划与课程设计报告格式的要求说明。 2、2013年6月18日至2013年6月22日,方案选择和电路设计。 3、2013 年6月22日至2013 年7月1日,电路调试和设计说明书撰写。 4、2013年7月5日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日 word

武汉理匸大学$数字电子电路》课程设讣说明书 目录 摘要 (3) 1电路的设计思路与原理 (4) 1.1电路设计方案的选择 (4) 1.1.1方案一:利用单片机制作频率计 (4) 1.1.2方案二:利用锁存器与计数器制作频率计 (4) 1.1.3方案三:利用定时电路与计数器制作频率计 (5) 1.1.4方案确定 (6) 1.2原理及技术指标 (6) 1.3单元电路设计及参数计算 (8) 1.3.1时基电路 (8) 1.3.2放大整形电路 (9) 1.3.3逻辑控制电路 (9) 1.3.4计数器 (11) 1.3.5锁存器 (12) 1.3.6译码电路 (13) 2仿真结果及分析 (13) 2.1仿其总图 (13) 2.2单个元电路仿真图 (14) 2.3测试结果 (16) 3测试的数据和理论计算的比较分析 (16) 4制作与调试中出现的故障、原因及排除方法 (16) 4.1故障a (17) 4.2故障b (17) 4.3故障c (17) 4.4故障d (17) 4.5故障e (18) 5心得体会 (18) 2

单片机简易频率计课程设计

前言 (3) 一、总体设计 (4) 二、硬件设计 (6) AT89C51单片机及其引脚说明: (6) 显示原理 (8) 技术参数 (10) 电参数表 (10) 时序特性表 (11) 模块引脚功能表 (12) 三、软件设计 (12) 四、调试说明 (15) 五、使用说明 (17) 结论 (17) 参考文献 (18)

附录 (19) Ⅰ、系统电路图 (19) Ⅱ、程序清单 (20)

前言 单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。因此,单片机的学习、开发与应用在生活中至关重要。 随着电子信息产业的不断发展,信号频率的测量在科技研究和实际应用中的作用日益重要。传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行缓慢,而且测量频率的范围比较小.考虑到上述问题,本论文设计一个基于单片机技术的数字频率计。首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。

一、总体设计 用十进制数字显示被测信号频率的一种测量装置。它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量. 所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率f x。时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确地等于1s.闸门电路由标准秒信号进行控制,当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数译码显示电路。秒信号结束时闸门关闭,计数器停止计数。由于计数器计得的脉冲数N是在1秒时间内的累计数,所以被测频率fx=NHz。 本系统采用测量频率法,可将频率脉冲直接连接到AT89C51的T0端,将T/C1用做定时器。T/C0用做计数器。在T/C1定时的时间里,对频率脉冲进行计数。在1S定时内所计脉冲数即是该脉冲的频率。见图1: 图1测量时序图 由于T0并不与T1同步,并且有可能造成脉冲丢失,所以对计数器T0做一定的延时,以矫正误差。具体延时时间根据具体实验确定。 根据频率的定义,频率是单位时间内信号波的个数,因此采用上述各种方案

简易数字频率计课程设计

简易数字频率计课程设计 Prepared on 22 November 2020

简易频率计设计 摘要 在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。在计算机及各种数字仪表中,都得到了广泛的应用。在CMOS电路系列产品中,数字频率计是用量最大、品种很多的产品,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量的测量方案、测量结果都有十分密切的关系,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。本文阐述了用测频法构成的数字频率计 关键字:时序控制频率,数字频率计,555电路 目录

1绪论 课题描述 频率是周期信号每秒钟内所含的周期数值。输入电路:由于输入的信号可以是正弦波,方波。而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。在整形之前由于不清楚被测信号的强弱的情况。所以在通过整形之前通过放大衰减处理。当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。通过时基电路及控制电路锁存器将最终频率稳定的显示在数码管上[1]。 设计任务与要求 1.频率测量范围:10~9999Hz; 2.输入电压幅度>300mV; 3.输入信号波形:任意周期信号; 4.显示位数:4 位; 5.电源: 220V 、 50Hz; 6.对所设计电路进行仿真分析。 7.编写设计报告,写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 基本工作原理及框图 建议频率计电路框图如图1所示。

数字频率计设计报告

数字频率计设计报告 学院: 姓名: 学号: 专业: 指导老师: 2008-11-11

一.内容介绍 数字频率计是用来测量信号频率的装置。它可以测量正弦波、方波、三角波和尖脉冲信号的频率。在进行模拟、数字电路的设计、安装、调试过程中,经常要用到频率计。 由于其用十进制数显示,测量速度、精度高、显示直观,因此频率计得到广泛的应用。 二.设计内容、技术指标及框图 设计内容: 设计只用一只数码管显示结果的数字频率计。 技术指标: 1.被测量信号频率范围:1KHZ-999KHZ 2.测量精度:测量显示3位有效数字 3.时基时间宽度:1ms 4.测试和显示方法: (1)只用一只数码管显示结果。 (2)每2秒钟自动测试一次,按百、十、个、全灭的顺序逐位显示测试结果,每位的显示时间为0.5秒。 数字频率计的框图:如图1。 图1 频率计系统框图

三.单元电路设计 1. 时基产生电路 时基信号的产生电路可用石英晶体振荡器经分频后得到高稳定度的时基信号。图2采用CC4060十四级计数器构成0.5s脉冲(3)和毫秒脉冲1ms时基信号。12脚接地。 图2 秒脉冲和毫秒脉冲时基产生电路 2.节拍信号发生器 设计要求每2秒自动测试一次,按百、十、个、灭的顺序逐位显示测试结果。由此可知,节拍信号发生器需产生四种状态的变化,变化周期为2秒。四种状态信号可以提供给数据选择器的地址端,用来逐位显示百、十、个、灭,2秒的周期信号用来控制计数器计数,保持和清零。如图3。 节拍信号发生器

图3 节拍信号发生器及波形 3.整形电路 将输入的被测信号送入施密特触发器74LS132的输入端,其输入将得到矩形波至闸门输入如图4。 图4 整形电路 4.控制电路(门控电路) 要求控制器每2秒向主闸门输入一个时间为2秒,采样脉宽为1ms的周期信号,如图5。 采用2个D触发器,以时基信号T=1ms作为同步时钟脉冲。

数字频率计课程设计

课程设计任务书 学生姓名:覃朝光专业班级:通信1103 指导教师:工作单位:信息工程学院 题目: 数字频率计的设计与实现 初始条件: 本设计既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形电路和必要的门电路等,也可以使用单片机系统构建简易频率计。用数码管显示频率计数值。 要求完成的主要任务: (包括课程设计工作量及技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: 1)设计一个频率计。要求用4位7段数码管显示待测频率,格式为0000Hz。 2)测量频率范围:10~9999Hz。 3)测量信号类型:正弦波、方波和三角波。 4)测量信号幅值:0.5~5V。 5)设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1s。 6)确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 1、2013年5 月17日,布置课设具体实施计划与课程设计报告格式的要求说明。 2、2013 年 6 月18 日至2013 年6 月22 日,方案选择和电路设计。 3、2013 年6 月22 日至2013 年7 月1 日,电路调试和设计说明书撰写。 4、2013年7月5日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1电路的设计思路与原理 (4) 1.1电路设计方案的选择 (4) 1.1.1方案一:利用单片机制作频率计 (4) 1.1.2方案二:利用锁存器与计数器制作频率计 (5) 1.1.3方案三:利用定时电路与计数器制作频率计 (5) 1.1.4方案确定 (6) 1.2 原理及技术指标 (6) 1.3 单元电路设计及参数计算 (8) 1.3.1时基电路 (8) 1.3.2放大整形电路 (9) 1.3.3逻辑控制电路 (9) 1.3.4计数器 (11) 1.3.5锁存器 (12) 1.3.6译码电路 (13) 2仿真结果及分析 (13) 2.1仿真总图 (13) 2.2单个元电路仿真图 (14) 2.3测试结果 (17) 3测试的数据和理论计算的比较分析 (17) 4制作与调试中出现的故障、原因及排除方法 (17) 4.1故障a (17) 4.2故障b (18) 4.3故障c (18) 4.4故障d (18) 4.5故障e (18) 5 心得体会 (19)

相关文档
最新文档