浅谈一个超越不等式在解高考压轴题中应用 PDF版

浅谈一个超越不等式在解高考压轴题中应用 PDF版
浅谈一个超越不等式在解高考压轴题中应用 PDF版

浅谈一个超越不等式在求解高考压轴题中的应用

摘要:本文介绍一个重要的超越不等式,以及它的导出、推广形式,并详细阐述它们在求解高考压轴题中的重要应用。

关键词:超越不等式;高考;压轴题

一、一个重要超越不等式及其导出、推广形式(一)基本不等式e x

≥x+1,x∈R,当且仅当x=0时等号成立。证明过程如下:

设f(x)=e x -x-1,则f′(x)=e x -1,令f′(x)=0,得x=0。且当x <0时,f′(x)<0;

当x >0时,f′(x)>0,∴f(x)在x=0处取得极小值f(0)=0,即f(x)≥f(0)=0,∴e x ≥x+1

成立。

该不等式的几何意义如图一所示:函数y=e x

所表示的曲线在直线y=x+1的上方且与该直线相切。切点坐标为(0,1),即当x=0时不等式中的等号成立。

(二)基本不等式的变形

上述基本不等式有很多实用

变形,例如:当x>-1时,将不

等式两边取自然对数即得到导出不等式一:

x≥ln(x+1),x∈(-1,+∞)当且仅当x=0时等号成立。

当x >0时,用x-1代替上式

中的x ,又可得到导出不等式二:

x-1≥lnx,x∈(0,+∞)当且仅当x=1时等号成立。其几何意义亦如图一所示。

(三)基本不等式的推广

推论一:若x∈R ,且e x ≥kx+b 恒成立,则必有k≥0且函数y=e x

所表示的曲线在直线y=kx+b 的上方且与该直线至多有一个公共点。

⒈若k=0,则b≤0,此时直线为x 轴(即曲线y=e x 的水平渐近线)或

x 轴下方与x 轴平行的直线。不等式中的“>”成立。

⒉若k>0,则直线与曲线y=e x

相离或相切。相切时可设切点坐标为

),(00x e x ,则有0

0)1(,0x x e x b e k -==(求导后代入直线的点斜式方程即得),当且仅当0x x =时不等式中的等号成立。

y=lnx

y=x-1

y=x y=x+1y=e x

x

(1,0)O (0,1)y 图一

y=me nx (n>0)图二

x

y y=kx+b

y=me nx (n<0)

推论二:若x∈R ,且me nx

≥kx+b(m>0,n≠0)恒成立,则必有n>0,k≥0(或

n<0,k≤0)且函数y=me nx

所表示的曲线在直线y=kx+b 的上方且与该直线至多有一个公共点。

⒈若k=0,则b≤0,此时直线为x 轴(即曲线y=me nx

的水平渐近线)或x 轴下方与x 轴平行的直线。不等式中的“>”成立。

⒉若k>0(或k<0),则直线与曲线y=me nx

相离或相切。相切时可设切点坐标为),(00nx me x ,则有00)1(,0nx nx e nx m b mne k -==,当且仅当0x x =时不等式中的等号成立。

推论一、二的几何意义如图二所示

二、应用举例

例1:(2012年天津理科试卷20)已知函数()=ln (+)f x x x a -的最小值为0,其中>0a .

(Ⅰ)求a 的值;

解析:(Ⅰ)函数()=ln (+)f x x x a -最小值为0,∴x≥ln(x+a),对照导出不等式一,即得a =1。

例2:(2011年湖北理科试卷21)(Ⅰ)已知函数f(x)=lnx-x+1,(0,)x ∈+∞,求函数()f x 的最大值;

解析:(Ⅰ)函数f(x)=lnx-x+1,(0,)x ∈+∞,对照导出不等式二,有lnx≤x-1,∴f(x)的最大值为0。

例3:(2012年辽宁理科试卷21)设为常数b a R b a ,,,∈,函数

b ax x x x f +++++=1)1ln()(,曲线)(x f y =与直线x y 2

3

=

在)0,0(点相切。(I)求b a ,的值;

(II)证明:当20<

9)(+

x f 。解析:(Ⅰ)易求1,0-==b a 。

(II)令x x x x x x f x x g 9]11)1)[ln(6(9)()6()(--++++=-+=,则

9

)

1(2)

12)(6(11)1ln(9)1(2)12)(6()(9)1

2111)(6()(9)(')6()()('-+++++-+++=-+++++

=-+++++=-++=x x x x x x x x x f x x x x f x f x x f x g

由导出不等式一知,当x>0时,ln(x+1)<x ;另外,当x>0时,1+x <1+x 21

这是因为x +1<22)2

1

1(411x x x +=+

+,两边开平方即得。0

)

1(4)

187(9)1(4)6()1(69)1(4)6)(6(239)1(2)21

12)(6(21)(',2x 02<+-=-++++=-++++=-++++++<<<∴x x x x x x x x x x x x x x x x x g 时当故(0,2)x )(∈在x g 上是单调递减函数,又因为00)111(ln 6)0(=--+=g ,所以当

6

9f(x),0)0(g(x),(0,2)x +<

=<∈x x

g 即点评:本题第(II)问证明过程中除用到了导出不等式一外,还用到了另外

一个比较重要的不等式:。0x ,21

11时等号成立当且仅当=+≤+x x 这两个不等

式可以说是这一题目的“题眼”。

例4:(2012年山东理科试卷22)已知函数x

e

k

x x f +=

ln )((k 为常数,c=2.71828……是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x 轴平行。

(Ⅰ)求k 的值;

(Ⅱ)求f(x)的单调区间;

(Ⅲ)设)(')()(2x f x x x g +=,其中'()f x 为f(x)的导函数,证明:对任意

21g(x),),0(-+<+∞∈e x 有。

解析:(Ⅰ)易求得1=k 。(Ⅱ)略。(Ⅲ)因为:

)ln 1(1

)(ln )(11

ln 1

)()(')()(2222x x x e x e x x x x x x e x x x x x f x x x g x x

x --+=+-+-+=

--+=+=由基本不等式e x

≥x+1,得

”成立时“当<>≤+0x 11

,e x x

,故只须证)(1ln 12-+≤--e x x x 。令x x h x ,x x x h ln 2)('ln 1)(--=--=则,令0

)('=x h

得2-=e x 当

单调递增

时)(0)('02x ,h x ,h e x ><<-;当

单调递减时)(0)('2x ,h x ,h e x <>-。故221)(--+=e e x x h 处取得极大值在。

命题得证。

点评:本例中利用基本不等式,使欲证命题得以大大简化,问题迎刃而解。例5:(2012年全国统一命题理科试卷21)已知函数()f x 满足

12

1()(1)(0)2

x f x f e f x x -'=-+

;(Ⅰ)求()f x 的解析式及单调区间;(Ⅱ)若2

1()2

f x x ax b ≥

++,求(1)a b +的最大值。解析:(Ⅰ)易求得221

)()1('1)0(x x e x f e f f x +-===,故,。单调区间易求。

(Ⅱ)由b ax x x f ++≥2

2

1)(得b x a e x ++≥)1(,对R x ∈?成立,由基本不等式推论一知:

0,0)1()1(0)1(>>++≥+b a ,b a ,a 则须最大欲使且直线b x a y ++=)1(与曲线x e y =相切。设切点坐标为),(00x e x ,则过该点切线方程为:

0000)1(),(00x x x x e x x e y x x e e y -+=-=-即,所以00)1(10x x e x ,b e a -==+。

0002000)1()1()()1(x x x e x e x e x h b a -=-?==+,则0

200)21()('x e x x h -=,令0)('0=x h ,得210=

x 。当单调递增时)(0)('2

1

000x ,h x ,

h x ><;当单调递减时)(0)('21000x ,h x ,h x <>,故2

21)(00e

,x x h 取得极大值处在=,此时

2

)211(1121

2

1e e ,b e e a =-=-=-=。

点评:本例是基本不等式推论一的直接应用。

例6:(2012年湖南理科试卷22)已知函数f(x)=e ax

-x,其中a≠0。(Ⅰ)若对一切x∈R,f(x)≥1恒成立,求a 的取值集合。

(Ⅱ)在函数f(x)的图像上取定两点A(x1,f(x 1)),B(x2,f(x 2)(x

1<x2),记直线AB的斜率为K,问:是否存在x 0∈(x 1,x 2)

,使f′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由。

解析:(Ⅰ)f (x )≥1,等价形式为1+≥x e ax ,对一切x ∈R 恒成立,由基本不等式推论二知,令m=1,n=a ,k=1,b=1,知n>0,并有100===ax nx ae mne k ,

a a x a 1ln 1,00=>∴且,及1)1()1(0000=-=-=ax nx e ax e nx

b ,将a a x 1

ln 10=代入得

a a =+ln 1,再由导出不等式二知当且仅当a=1时该等式成立。故a 的取值集合

为{1}。

(Ⅱ)x e x f ax -=)(,在),(+∞-∞上连续且可导,由拉格朗日中值定理知

),(210x x x ∈?使得K x x x f x f x f =--=

1

2120)

()()('成立。又1)('-=ax ae x f ,

0)("2>=ax e a x f ,故)(x f 在),(+∞-∞是下凸函数,则对),(20x x x ∈?,均有K x f x f =>)(')('0成立。而1

2120)

()(1)('120

x x x x e e K ae

x f ax ax ax ----==-=,得

)(ln 112012x x a e e a x ax ax --=,故),)

(ln

1(21201

2x x x a e e a x ax ax --的取值范围为。点评:本试题第(Ⅰ)问是基本不等式推论二和导出不等式二的直接应用。在求解第(Ⅱ)问时笔者用到了拉格朗日中值定理及凸函数的概念,目的在于让读者了解高考压轴题的命题意图和方向,知道熟练掌握该类题目的求解方法在由高中学习向大学学习的过渡中将发挥着重要作用;当然采用一般的讨论方法亦可解决该问题。

三、小结

纵览近些年来的高考数学试卷,无论是全国统一命题,还是各省市自主命题,绝大多数试卷都是以函数及导数应用综合题压轴。而导数及其相关知识作为连接初等数学和高等数学的纽带(确切地说,该部分内容应该划入高等数学的范畴),对相当一部分学生来说,接受起来有一定困难,因此要熟练解决这类问题,一方面要求考生必须牢固掌握相关的基础知识和基本技能,同时还要求考生具备较强的分析推理能力和计算能力。

除本文提到的几个重要不等式外,其它几个不等式及其应用在考试中出现的

频率也较高。例如:①时等号成立当且仅当0x ,21

11=+≤+x x (见例3),并

可推广到一般形式,即时等号成立当且仅当0x ,N ,m 1

11*=∈+

≤+x m

x m ;②时等号成立当且仅当0x ,N ,n 1)1(*=∈+≥+nx x n (设辅助函数或由二项式定理

均可证明);③时等号成立当且仅当0x ,)2,0[,

x sin tan =∈≥≥π

x x x ;④时等号成立当且仅当0x ,),0[,x 2

1cos 12

=+∞∈≤

-x x (2012年辽宁理科试卷12)。上述几个不等式中等号成立的条件均为x=0,实际上,这些不等式均是由高等数学中的几个重要的等价无穷小引申得到的。因此说,对于部分学有余力的高三学生来说,稍加学习掌握一些高等数学的基础知识,不论对于提高高考成绩,还是对于今后大学阶段的学习,都是大有裨益的。例如例6中的问题实际上就涉及到了高等数学中凸函数和中值定理的有关知识,笔者也正是利用这些知识更加方便快捷地解决了这一问题,目的在于起到抛砖引玉的作用。

2012年7月于沈阳

2013年全国高考理科数学试题分类汇编16:不等式选讲

2013年全国高考理科数学试题分类汇编16:不等式选讲 一、填空题 1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若关于实数x 的不等式 53x x a -++<无解,则实数a 的取值范围是_________ 【答案】(],8-∞ 2 .(2013年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则 (am +bn )(bm +an )的最小值为_______. 【答案】2 3 .(2013年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 【答案】[]0,4 4 .(2013年高考湖北卷(理))设 ,,x y z R ∈,且满足:2221x y z ++=,23x y z ++=,则x y z ++=_______. 【答案】 二、解答题 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 【答案】 6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-5:不等式选讲 已知函数()f x x a =-,其中1a >.

(I)当=2a 时,求不等式()44f x x ≥=-的解集; (II)已知关于x 的不等式()(){} 222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值. 【答案】 7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))不等式选讲:设不等式 *2()x a a N -<∈的解集为A ,且32A ∈,12 A ?. (1)求a 的值; (2)求函数()2f x x a x =++-的最小值. 【答案】解:(Ⅰ)因为32A ∈,且12A ?,所以322a -<,且122 a -≥ 解得1322 a <≤,又因为*a N ∈,所以1a = [来源:12999数学网] (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--= 当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3 8 .(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5: 不定式选讲]本小题满分10分. 已知b a ≥>0,求证:b a ab b a 223322-≥- [必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤. 【答案】D 证明:∵=---b a ab b a 223322()=---)(223223b b a ab a () )(22222b a b b a a ---

用基本不等式解决应用题

用基本不等式解决应用题 例1.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35 k p x x = ≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (1)求()f x 的表达式; (2)宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值. 变式:某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室面积为900m 2的矩形温室,在温室划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右墙保留 3m 宽的通道,如图.设矩形温室的室长为x (m ),三块种植植物的矩形区域的总面积...为S (m 2). (1)求S 关于x 的函数关系式; (2)求S 的最大值. 17.解:(1)由题设,得

N T M H G F E D C B A ()9007200822916S x x x x ?? =--=--+ ??? ,()8,450x ∈. ………………………6分 (2)因为8450x << ,所以72002240x x + ≥, ……………………8分 当且仅当60x =时等号成立. ………………………10分 从而676S ≤. ………………………12分 答:当矩形温室的室长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为 676m 2 . ………………………14分 例2.某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中60AD m =,40AB m =,且EFG ?中,90EGF ∠=,经测量得到10,20AE m EF m ==.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点G 作一直线交,AB DF 于N M ,,从而得到五边形MBCDN 的市民健身广场,设()DN x m =. (1)将五边形MBCDN 的面积y 表示为x 的函数; (2)当x 为何值时,市民健身广场的面积最大?并求出最大面积. 变式. 某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

选修4-5不等式高考题汇编

选修4-5不等式选讲高考题汇编 1. (2008广东理) 已知R a ∈,若关于x 的方程04 12=+-++a a x x 有实根, 则a 的取值范围是_______. 2、(2008海南、宁夏理)已知函数|4||8|)(---=x x x f 。(1)作出函数)(x f y =的 图像;(2)解不等式2|4||8|>---x x 。 3、(2008江苏)设a ,b ,c 为正实数,求证:3 3 3 11123a b c + + +abc ≥. 4、(2010辽宁理数)(24)(本小题满分10分)选修4-5:不等式选讲 已知c b a ,,均为正数,证明:3 6)111( 2 2 2 2≥+ + +++c b a c b a ,并确定c b a ,,为何 值时,等号成立。 5、(10年福建)选修4-5:不等式选讲已知函数()||f x x a =-。 (Ⅰ)若不等式()3f x ≤的解集为{}|15x x -≤≤,求实数a 的值; (Ⅱ)在(Ⅰ)的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值 范围。 选修4-5不等式选讲高考题汇编 1、(2008广东理) 已知R a ∈,若关于x 的方程04 12=+-++a a x x 有实根, 则a 的取值范围是_______. 2、(2008海南、宁夏理)已知函数|4||8|)(---=x x x f 。(1)作出函数)(x f y =的 图像;(2)解不等式2|4||8|>---x x 。 3、(2008江苏)设a ,b ,c 为正实数,求证:3 3 3 11123a b c + + +abc ≥. 4、(2010辽宁理数)(24)(本小题满分10分)选修4-5:不等式选讲 已知c b a ,,均为正数,证明:3 6)111( 2 2 2 2≥+ + +++c b a c b a ,并确定c b a ,,为何 值时,等号成立。 5、(10年福建)选修4-5:不等式选讲已知函数()||f x x a =-。 (Ⅰ)若不等式()3f x ≤的解集为{}|15x x -≤≤,求实数a 的值; (Ⅱ)在(Ⅰ)的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值 范围。

用基本不等式解决应用题

1文档来源为:从网络收集整理.word 版本可编辑. N T M H G F E D C B A 用基本不等式解决应用题 例1.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35 k p x x =≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (1)求()f x 的表达式; (2)宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值. 变式:某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为x (m ),三块种植植物的矩形区域的总面积... 为S (m 2). (1)求S 关于x 的函数关系式; (2)求S 的最大值. 17.解:(1)由题设,得 ()9007200822916S x x x x ??=--=--+ ??? ,()8,450x ∈. ………………………6分 (2)因为8 450x <<,所以72002240x x +≥, ……………………8分 当且仅当60x =时等号成立. ………………………10分 从而676S ≤. ………………………12分 答:当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676m 2 . ………………………14分 例2.某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中60AD m =,40AB m =,且EFG ?中,90EGF ∠=,经测量得到10,20AE m EF m ==.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点G 作一直线交,AB DF 于N M ,,从而得到五边形MBCDN 的市民健身广场,设()DN x m =. (1)将五边形MBCDN 的面积y 表示为x 的函数;

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

不等式选讲-近三年高考真题汇编详细答案版

分类汇编:不等式选讲 2014年真题: 1.[2014·卷] 不等式|x -1|+|x +2|≥5的解集为________. 1.(-∞,-3]∪[2,+∞) 2.[2014·卷] 若关于x 的不等式|ax -2|<3的解集为? ????? x -53<x <13,则a =________. 2.-3 3.[2014·卷] A .(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2 的最小值为________. 3.A. 5 4.[2014·卷] 若不等式|2x -1|+|x +2|≥a 2 +12 a +2对任意实数x 恒成立,则实数a 的取值围是________. 4.? ?????-1,12 5.[2014·卷] (1)(不等式选做题)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4 5.(1)C 6.[2014·卷] (Ⅲ)选修4-5:不等式选讲 已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值; (2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2 ≥3. 6. (Ⅲ)解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)由(1)知p +q +r =3,又p ,q ,r 是正实数, 所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2 =9, 即p 2+q 2+r 2 ≥3. 7.[2014·卷] 选修4-5:不等式选讲 设函数f (x )=2|x -1|+x -1,g (x )=16x 2 -8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N . (1)求M ; (2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2 ≤14 . 7.解:(1)f (x )=? ????3x -3,x ∈[1,+∞), 1-x ,x ∈(-∞,1). 当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤4 3 ; 当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1. 所以f (x )≤1的解集M =? ????? x 0≤x ≤43. (2)由g (x )=16x 2 -8x +1≤4得16? ?? ??x -142≤4,解得-14≤x ≤34, 因此N =? ????? x -14≤x ≤34,

均值不等式应用题

均值不等式应用 2为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水中该杂质的质量分数与a 、b 的乘积ab 成反比,现有制箱材料60平方米,问当a 、b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计)? 3..某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造 价20元,求: (1)仓库面积S 的最大允许值是多少? (2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 4. 如图,某海滨浴场的岸边可近似的看成直线,位于岸边A 处的救生员发现海中B 处有人求救,救生员没有直接从A 处游向B 处,而沿岸边自A 跑到距离B 最近的D 处,然后游向B 处,若救生员在岸边的行速为6米/秒,在海中的行进速度为2米/秒, ⑴分析救生员的选择是否正确; ⑵在AD 上找一点C ,是救生员从A 到B 的时间为最短,并求出最短时间。 5. 某工厂去年的某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入 100万元(科技成本),预计产量年递增10万只,第n 次投入后,每只产品的固定成本为 1 )(+= n k n g (k >0,k 为常数,Z ∈n 且n ≥0),若产品销售 价保持不变,第n 次投入后的年利润为 )(n f 万元. (1)求k 的值,并求出 )(n f 的表达式; (2)问从今年算起第几年利润最高?最高利润为多少万元? 6. 已知水渠在过水断面面积为定值的情况下,过水湿周越小,其流量越大. 现有以下两种设计,如图: 图①的过水断面为等腰△ABC ,AB =BC ,过水湿周 BC AB l +=1.图②的过水断面为等腰梯形ABCD ,AB =CD ,AD ∥BC ,∠BAD =60°,过水湿周 CD BC AB l + +=2. 若△ABC 与梯形ABCD 的面积都为S , 图① 图② 米 C D B

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

不等式选讲知识点归纳及近年高考真题

不等式选讲知识点归纳及近年高考真题 考点一:含绝对值不等式的解法 例1.(2011年高考辽宁卷理科24)已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集. 解:(I )3, 2,()|2||5|27,25,3, 5.x f x x x x x x -≤?? =---=-<+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{} 1-≤x x ,求a 的值。

三年中考数学不等式组及应用题精选

华师大版七年级下数学:一元一次不等式(组) 一、知识导航图 一元一次不等式(组)的应用 一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念 不等式的性质 一元一次不等式和一元一次不等式组 二、课标要求 三、知识梳理 1.判断不等式是否成立 判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向. 2.解一元一次不等式(组) 解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a?? >? 的解集是x>b,即“大大取大”. (3) 00a b >??

(4)00a b ? 的解集是空集,即“大大小小取不了”. 一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。 3.求不等式(组)的特殊解 不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想. 4.列不等式(组)解应用题 注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题. 四、题型例析 1.判断不等式是否成立例1 2.在数轴上表示不等式的解集例2 3.求字母的取值范围例3 4.解不等式组例4 5.列不等式(组)解应用题例5 一元一次不等式(组) 【课前热身】 【知识点链接】 1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质: (1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或 c a c b ); (3)若a >b ,c <0则ac bc (或c a c b ). 3.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1. 4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组. 一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <) x a x b ??>? 的解集是x b >,即“大大取大”; x a x b >??

2018年高考备考+均值不等式和柯西不等式+含历年高考真题

1 成立。 5、(2012 福建)已知函数 f(x)=m-| x-2|, m € R,且 f(x+2)》0解集为[-1,1]. 1 丄 丄 (1)求 m 的值; (2)若 a,b,c € R 且a + + 3c =m,求证:a + 2b +3c >9 1、(2008 江苏)设 a , b , c 为正实数,求证: 3 a 11 — 3 + abc 》2*; 3 . c b 3 2、(2010辽宁理数) 已知a,b, c 均为正数,证明: b 2 丄I )2 6.3,并确定a,b,c 为何值时,等号 b c 3、(2012江苏理数) 1 已知实数x , y 满足:|x y| -,|2x 3 y| 5 求证:|y| 18 - 4、( 2013新课标n ) 设a,b,c 均为正数,且a b c 1,证明: 1 (i )ab bc ca 一 3 2 a (n )— b b 2 c 2 1. c a

(n) a b c d 是 a b cd 的充要条件. 6、(2011浙江)设正数x, y, z 满足2x 2y z 1. (i)若 ab cd ,贝U a b c d ; ⑴求3xy yz zx 的最大值; (2)证明: 3 1 xy 1 1 1 yz 1 xz 125 26 7.(2017全国新课标II 卷)已知a 0,b 0,a b 2。证明: (1) (a b)(a 5 b 5) 4 ; (2) a b 2。 8.(2017 天津)若 a,b R , ab 0,则 a 4 4 b 4 1 -的最小值为 9. 【2015咼考新课标 ab 2,理24】设a, b, c, d 均为正数,且a c d ,证明:

近四年全国卷高考试题不等式选讲汇编

近四年全国卷高考试题不等式选讲汇编2016全国一卷理科 (24)(本小题满分10分),选修4 —5 :不等式选讲 已知函数f(x)= I x+1 I - I 2x-3 I . (I)在答题卡第(24)题图中画出y= f(x)的图像; (II)求不等式I f(x) I> 1的解集 2016全国二卷理科 (24)(本小题满分10分),选修4 —5 :不等式选讲 1 1 已知函数f(x)= I x- I + I x+ I, M为不等式f(x) v 2的解集2 2 (I)求M ; (II)证明:当a,b€ M 时,I a+b I vI 1+ab I。 2016全国三卷理科

24.(本小题满分10分)选修4-5:不等式选讲 已知函数f(x) |2x a | a (I)当a=2时,求不等式f(x) 6的解集; (II)设函数g(x) 12x 1|,当x R时,f(x)+g( x)》3求a的取值范围 2015全国一卷理科 (24)(本小题满分10分)选修4—5:不等式选讲 已知函数=|x+1|-2|x-a|, a>0. (I)当a=1时,求不等式f(x)>1的解集; (U)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围2015全国二卷理科24.(本小题满分10分) 选修4 - 5 :不等式选讲 设a, b, c, d均为正数,且 a + b = c + d,证明: (1 )若ab > cd;则Ja . b 、.c Jd ; (2) . a ,;b . c . d 是| a b | | c d | 的充要条件。 2014全国一卷理科 24.(本小题满分10分)选修4—5:不等式选讲

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

均值不等式【高考题】

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21()21(x y y x +++ 的最小值是【 】 A .3B .27C .4D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则 若的最大值为【 】 A. 2B. 23 C. 1D. 2 1 练习1.若0x >,则2x x +的最小值为. 练习2.设,x y 为正数, 则14()()x y x y ++的最小值为【 】 A.6 B.9C. 12D. 15 练习3.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2B .3C .6D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =吨. 练习5.求下列函数的值域: (1)22 213x x y += (2)x x y 1+= 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0B.4C.2D.1 例3、已知0,0,01,a b c a b c >>>++=且则111(1)(1)(1)a b c ---最小值为【 】 A. 5 B.6 C.7 D.8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是. 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为. 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+B .31+C .3D .4 练习1.已知54x <,求函数14245 y x x =-+-的最大值. 练习2.函数1(3)3 x x x +>-的最小值为【 】 A. 2B. 3C. 4D.5 练习3.函数232(0)x x x +>的最小值为【 】 A.39323923952392

相关文档
最新文档