矿山井下全站仪导线测量提高精度的方法探讨

矿山井下全站仪导线测量提高精度的方法探讨
矿山井下全站仪导线测量提高精度的方法探讨

井下导线短边测量误差分析(精)

井下导线短边测量误差分析 谭新民梁树吾 摘要:本文通过对《测量规程》中按短边测量规定达不到相应精度要求的分析,得出了适合特定矿区的短边测量方法及结论。 关键词:导线短边测量误差精度 1.前言 井下导线测量常遇到15米以下的短边,在短边测量中,测量的主要误差是测角误差,因此在《测量规程》中对短边的测角对中次数和测回数都做了规定。在《煤矿测量手册》中指出15″、45″导线遇有15米以下的短边时,按规定进行对中以后,仍可能达不到相应的精度要求。因此有必要结合各矿山自己的具体情况对不同边长的对中和测回数进行分析,到寻找到满足本矿测量精度要求的测角方法。 2.误差分析 测角误差主要包括仪器系统误差、测角方法误差和对中误差。对于J2级以上的仪器,仪器系统误差可采用测量方法减小或忽略不计,测角方法误差和对中误差是测角误差的两大重要误差来源,现对测角方法误差和对中误差分析如下: 2.1测角方法误差

测角方法误差 m i =±n m n m v //022+ ① ①式中: n 为测回数 m v 为照准误差,其值为±100” /望远镜放大率v m 0为读数误差,其值为±()()2205.0/1250t L D +ρ ② ②式中:t 为最小读数值; L 为读盘上最小格值经显后的宽度; D 为读盘最小格值; ρ值为206265; ` 2.2对中误差 对中误差m e =±()3/αρe ) 式中:e 为对中线量误差 α为导线边长 ρ值为206265 设前后视边长相等,对中线量误差e 一样大,则一测回的测角中误差为: m e=± e i m m 22+ 则采用D 次对中C 次测回时水平角平均值中误差为: m β平=± D m C m e i //22+ 3.短边测量误差分析 3.1实测成果 表1为《测量手册》中根据全国多个矿山共计3631条导线的实测资料综合统计的成果,并不适合于每一个矿井使

全站仪具有角度测量

全站仪的使用 全站仪具有角度测量、距离(斜距、平距、高差)测量、三维坐标测量、导线测量、交会定点测量和放样测量等多种用途。内置专用软件后,功能还可进一步拓展。全站仪的基本操作与使用方法: 水平角测量 (1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。(2)设置A方向的水平度盘读数为0°00′00〃。 (3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。距离测量 (1)设置棱镜常数 测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。 (2)设置大气改正值或气温、气压值 光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg是仪器设置的一个标准值,此时的大气改正为0ppm。实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。 (3)量仪器高、棱镜高并输入全站仪。 (4)距离测量 照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。 全站仪的测距模式有精测模式、跟踪模式、粗测模式三种。精测模式是最常用的测距模式,测量时间约2.5S,最小显示单位1mm;跟踪模式,常用于跟踪移动目标或放样时连续测距,最小显示一般为1cm,每次测距时间约0.3S;粗测模式,测量时间约0.7S,最小显示单位1cm或1mm。在距离测量或坐标测量时,可按测距模式(MODE)键选择不同的测距模式。 应注意,有些型号的全站仪在距离测量时不能设定仪器高和棱镜高,显示的高差值是全站仪横轴中心与棱镜中心的高差。 坐标测量 (1)设定测站点的三维坐标。 (2)设定后视点的坐标或设定后视方向的水平度盘读数为其方位角。当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。 (3)设置棱镜常数。 (4)设置大气改正值或气温、气压值。 (5)量仪器高、棱镜高并输入全站仪。 (6)照准目标棱镜,按坐标测量键,全站仪开始测距并计算显示测点的三维坐标。 全站仪的数据通讯 全站仪的数据通讯是指全站仪与电子计算机之间进行的双向数据交换。全站仪与计算机之间的数据通讯的方式主要有两种,一种是利用全站仪配置的PCMCIA (personal computer memory card internation association,个人计算机存储卡

矿山井下全站仪导线测量提高精度的有效策略研究

矿山井下全站仪导线测量提高精度的有效策略研究 发表时间:2018-06-01T10:50:03.277Z 来源:《基层建设》2018年第9期作者:张波[导读] 摘要:文章分析井下全站仪的优点以及井下全站仪导线测量的特点,分先采用全站仪进行井下导线测量时产生误差的类型和原因,并提出减小误差提高井下全站仪导线测量精度的有效方法,以供参考。 根河市森鑫矿业开发有限责任公司内蒙古自治区根河市 022357 摘要:文章分析井下全站仪的优点以及井下全站仪导线测量的特点,分先采用全站仪进行井下导线测量时产生误差的类型和原因,并提出减小误差提高井下全站仪导线测量精度的有效方法,以供参考。 关键词:矿山;全站仪;导线测量;精度 1引言 全站仪导线测量是矿山井下测量的主要方式,其具有精度高的优点,有别于地面测量具有施工环境差、施工面狭窄、测量精度要求高等特点,但是容易受到测量作业环境中多种因素的影响,其测量精度直接决定着矿山的生产安全以及抢险救灾工作的顺利开展,所以在采用全站仪导线测量方法进行矿山井下测量时,需要根据井下全站仪导线测量的特点,分析引起全站仪井下测量误差的原因,寻找提高导线测量精度的有效方法。 2井下全站仪导线测量的特点 2.1全站仪的特点 全站仪是一种由微处理器进行控制,能够进行距离和角度测量,并对水平距离、高差和坐标等进行自动归算,还能进行施工放样和数据自动记录的测量仪器,可以完成常规测量仪器的所有工作,并具有携带和测量操作方便等特点,具体表现为以下几点:一是只需要进行一次照准反射棱镜就可以对水平角、竖直角和斜距的测量,并可以计算出测点的平面坐标和高程;二是便于与其他外围设备之间的数据通讯,可以与其他计算机设备组成一个完整的自动化测量系统;三是可以进行数据计算和处理,并与相应的计算机软件配合可以进行导线测量、碎部测量和施工放样等作业;四是能够对仪器竖轴和水平轴的倾斜误差进行自动测量,还能校正角度观测值。 2.2井下全站仪导线测量的特点 井下全站仪的导线测量与地面测量有着明显的不同,主要表现在以下几点:一是由于井下测量通常位于黑暗潮湿、通视条件差、行人和矿车来往较为频繁的环境中,所以施工环境较差;二是随着井下坑道掘进的进行,通视条件越来越差,而且点位误差会由于不断积累而不断增加;三是井下全站仪测量的作业面较为狭窄,所以通常只能采用导线测量等较为单一的测量形式;四是井下测量的精度不仅对新老巷道及采空区之间关系的确定以及巷道的贯通有较大的影响,而且对矿山的安全生产和抢险救灾也有重要作用,所以对测量精度的要求较高;五是进行高级导线校核的布设,然后进行井下导线测量的方法通常为先继续拧低级导线指示坑道掘进的布设。 3全站仪井下测量误差分析 3.1仪器自身误差 全站仪自身误差主要是由仪器自身的几何关系出现偏差以及检校不完善等原因引起的,其误差形式主要表现为视准轴误差、横轴误差和竖轴误差三种。其中视准轴误差主要是由于仪器的视准轴与横轴不垂直而造成的;横轴误差则主要是由仪器的横轴与竖轴不垂直而造成的;竖轴误差则主要是由仪器的竖轴自身不铅垂而引起的,还与观测方向与垂直轴的倾斜方向的夹角有关系。 3.2测量误差 井下全站仪导线测量的测量误差主要有对中误差、瞄准误差和测距误差等形式,对于对中误差来说,主要是由于井下进行测量的点位与全站仪测站的中心不在同一铅垂线上引起的,根据误差产生的原理以及实际测量作业进行分析可知,对中误差对观测方向值主要产生以下影响:一是与其线量对中误差成正比;二是与距离成反比,而且边长越短,对水平角的影响越大。对于瞄准误差来说,这主要是由于在采用全站仪进行导线测量时,其瞄准的镜站的目标位置与实际位置产生偏差而造成的,瞄准误差对观测方向值主要产生以下影响:一是与瞄准高度、目标倾斜角成正比;二是与边长成反比。对于测距误差来说,其主要是由于全站仪中心到反射镜反射点之间存在一定的距离而引起的误差,主要包括固定误差、比例误差和周期误差等。 3.3作业环境引起的误差 在井下全站仪导线测量过程中,由于井下的湿度、温度、矿尘量、照明度等因素的变化都会对测量工作造成影响而产生测量误差,但是在井下的实际测量过程中,由于测角等测量的时间较短,在此时间内井下的测量环境各种因素较为稳定,不会像地面测量一样容易受到季节和天气等变化的影响,所以在井下测量条件基本稳定的情况下,作业环境引起的误差可以忽略不计。 4矿山井下全站仪导线测量提高精度的有效方法 4.1一测回中采用盘左盘右进行观测 从全站仪导线测量重点视准轴误差、横轴误差的原理可知,其盘左盘右两个位置的大小相等,且符号相反,所以对观测方向值产生影响,为了消除以上误差,可以采用盘左盘右观测时取其平均值的方式,并确保观测过程中的照准部水准器气泡居中,来提高全站仪导线测量的精度。 4.2采用三架法进行测量 根据全站仪导线测量中的对中误差原理和对测量的影响可知,为了消除其对观测方向值的影响,可以采用全站仪三架法进行导线测量,这样可以减小对中误差值,由于观测方向值与对中误差值成正比,所以可以提高导线测量的精度,而且还可以取消了对中整平的操作,提高了测量的速度。 4.3适量调整垂球的质量 根据全站仪导线测量的照准误差原理可知,在井下测量过程中,如果由于气流过大而导致垂球发生摆动,会影响镜站点下对中的精度,所以可以适当增加垂球的质量,降低其发生晃动的幅度,这样可以提高瞄准作业时对垂球线根部的瞄准精度,降低照准误差。 此外,边长测量时,全站仪应注意设置为棱镜激光模式,在气象数据中输入井下气压和温度值,要经常检查常数改正是否与使用的反光镜匹配。还应十分注意镜面不得有水珠或灰尘玷污。井下坑道中有瓦斯时,应采用防爆型全站仪。无论是平巷边长测量还是斜巷三角高程测量,都进行往返测量,来提高井下全站仪导线测量的精度。

第九章 井下控制测量学习目的与要求

第九章井下控制测量 一、学习目的与要求 1.了解井下控制测量的意义。 2.掌握井下经纬仪导线的外业和内业计算。 3.掌握井下高程测量方法。 二、课程内容与知识点 第一节井下平面控制测量 一、概述 (一)井下平面控制测量的目的 井下平面控制测量的主要目的是在井下建立统一的平面坐标系统,为井下生产提供可靠的数据。 (二)井下平面控制测量的特点 井下测量时就不同了,受井下条件所限,只能沿巷道设点,最初只能布设成支导线的形式,随着巷道不断向前延伸及巷道数量的不断增多,逐渐可以布设成闭合导线,符合导线及导线网等。 (三)井下平面控制测量的等级 按照高级控制低级的原则,井下平面控制测量分为基本控制和采区控制两类。基本控制导线精度较高,是矿井的首级控制导线,其精度应能满足一般贯通工程的要求;采区控制导线精度较低,应能满足施工测量和测图的要求。 根据《规程》的规定,基本控制导线分为7″和15″两级,主要敷设在斜井或平硐,井底车场,水平(阶段)运输巷道,矿井总回风巷道,暗斜井,集中上山,下山,集中运输石门等主要巷道内,各矿可根据井田范围的大小,选用其中的一种作为本矿的基本控制导线。 在井田一翼长度小于1km的小型井中,亦可以采用30″作为基本控制导线。 (四)井下经纬仪导线的形状 井下经纬仪导线的形状,也和地面一样有附合导线,闭合导线,支导线及导线网等。一般来说,基本导线在主要巷道时多布设成支导线形式,但当已掘巷道增多时,则可形成闭合导线,附合导线及导线网。 (五)井下经纬仪导线点的分类及编号 井下导线点按其使用时间的长短分为永久点和临时点两类。永久点使用时间较长,应设置在便于使用和便于保存的稳定的碹顶上或巷道顶,底版的岩石内;临时点保存时间较短,一般设在顶板上或牢固的棚梁上。 我国绝大多数矿井都将导线点设置在巷道的顶板上或棚梁上,这是因为点在顶板上不仅使用方便,容易寻找,不易被井下行人或运输车辆破坏,而且用垂球对中时,仪器在点下对中比在点上对中要精确一些。只有当顶板岩石松软、破碎、容易移动或某些特殊的情况下,才将其设置在巷道的底版上。 永久导线点应设置在矿井的主要巷道内,一般每隔300~500m设置一组,每组不得少于

实验八-全站仪导线测量

实验八全站仪导线测量 一、目的和要求 (1)了解导线测量的基本概念、外业的操作方法、内业的计算方法。 (2)以闭合导线为例,使用全站仪完成外业测角、量边等工作;使用手工计算的方式进行内业处理。 二、仪器和工具 全站仪(苏州一光OTS612B)主机1台、三脚架1个、棱镜2个、记录板1个、对讲机2个、记号笔1支、函数计算器1个。 三、方法与步骤 (1)在一块比较开阔的场地上,选择A、1、 2、3四个点,相邻点的距离大于100米。四个 点的相对位置如图所示: (2)在A点架设全站仪,对中整平。 (3)分别在1、3点架设反光棱镜,注意架设 棱镜时,尽量使棱镜杆竖直。 (4)测边。测量直线A3、A1的水平距离。将全站仪的望远镜十字丝中心分别瞄准1、3点的棱镜镜面中心,按【测距】键,等待数秒后,屏幕上显示出平距(可多按几次测距,取平均值),将其结果记录到附表七中。 (5)测角。以测回法测量βA为例,首先,将全站仪架设在A点,对中整平后,盘左位置(注意盘左的识别,以屏幕上显示的罗马字符Ⅰ为准)将望远镜十字丝照准3点的棱镜杆,注意尽量照准棱镜杆与地面接合的尖部,不要照棱镜面。按二次【置零】键,使得水平角读数显示为0°0′00″,并在附表七中记录此时的读数。其次,顺时针转动照准部到1点,记录屏幕上显示的水平角读数。再次,倒转望远镜,切换成盘右位置(注意盘右的识别,以屏幕上显示的罗马字符Ⅱ为准),将望远镜十字丝照准1点的棱镜杆(此时不要置零),并记录下此时的水平角读数,逆时针转动照准部到3点,记录屏幕上显示的水平角读数。最后,计算盘左、盘右角度的平均值。 (6)在A点完成测距、测角任务后,将全站仪依次架设到1、2、3点,分别完成水平角β 、β2、β3测量工作及直线1A、12、23、3A的测距工作。 1 (7)计算各导线点坐标。假定:导线边A1的坐标方位角αA1=120°,A点坐标:X A=500,Y A=500。分别推算1、2、3点的坐标,并填到附表八里。

煤矿井下基本控制导线测量方法的改进

煤矿井下基本控制导线测量方法的改进 随着我国科技水平的不断提高,科技的应用范畴逐渐扩大。近年来,科技应用在煤矿井下基本控制导线测量方面取得的成效较为明显,在一定程度上促进了煤矿井下基本控制导线测量方法的创新与改进,大大提高了煤矿井下基本控制导线测量的精准度以及煤矿井下基本控制导线测量的工作效率。本文将简要分析煤矿井下基本控制导线测量方法的改进与创新的相关内容,旨在促进煤矿井下基本控制导线测量工作效率的进一步提高。 标签:煤矿;控制导线;测量方法;改进 在实际工作中,在传统的煤矿井下测量的过程主要涉及到腰线标定、延伸、导线测量以及高程测量等环节。煤矿生产技术的管理,是实现煤矿企业生产目标的重要途径,必须予以重视。在煤矿井下发生的任何疏忽,都可能成为引发煤矿安全事故的导火线,造成煤矿企业重大的经济损失。煤矿井下测量工作对于实现煤矿高效、安全生产的目标,有重大的现实意义。因此,煤矿井下测量的工作被作为一项技术性且难度较大的工作,一直是煤礦生产企业的非常重视的一项工作。近几年,煤矿井下基本控制导线测量的方法不断得到发展与改进,在一定程度上提高了煤矿井下测量工作的精准度以及效率。 1 关于三连架在基本控制导线测量中应用的分析 由于受煤矿井下环境条件的限制,一直以来,传统的煤矿井下基本控制导线的测量方法都是采用逐站整平对中的形式,选择比长的钢尺(或光电测距仪)进行量边的工作。整个测量的过程中,需要耗费大量的时间以及精力,而且无法保证测量的精准度,并且在测量过程中容易产生误差。煤矿井下基本控制导线的测量工作效率的低下,直接导致煤矿企业的生产效率以及工作效率无法保持相对较高的水平。随着科技的发展水平不断提高,随着防爆全站仪在井下测量中的应用,很多煤矿生产企业开始采用三连架法进行煤矿井下基本控制导线测量的工作,以弥补传统的测量方法产生的误差。采用三连架法进行煤矿井下基本控制导线的测量工作的过程中,利用全站仪配套的棱镜、基座等相关设备,可以减少测量工作中过渡点的对中误差,在确保煤矿井下基本控制导线测量精准度的前提下,提高煤矿井下测量的工作效率。但是我们在燕子山矿的实际测量工作中,采用三连架法进行测量还是存在着一定的局限性。 (1)在煤矿井下测量工作中采用三连架法,在测量路线确定后,需要煤矿企业停止在测量线路上的一切生产运输活动,占用巷道时间长,需要与多个部门协调工作。 (2)三连架法测量的环节,常常要对各个测量过渡点进行对中的处理工序,以减小对中误差对各个测量点精准度带来的不利影响。 (3)另外,还需要注意处理煤矿井下隧道中雾气以及风流对边长光测量产

井下全站仪经验整理

井下全站仪经验整理 煤矿井下以往主要是使用经纬仪测角、钢尺量边来进行导线测量。随着先进测量仪器的出现测量工作也发生了很大的变化。目前全站仪在地面测量工作中已得到了广泛的应用但在井下测量中由于受井下条件的影响其应用受到了一定的限制。本人通过几年来对全站仪在井下测量中的使用掌握了一定的测量方法和技巧现与大家交流。 l井下测量的特点 井下测量受环境的影响与地面测量有很多不同之处其主要特点是:(1)井下测量的主要对象是巷道其主要任务是确定巷道、硐室及回采工作面的平面位置与高程为煤矿建设与生产提供数据与图纸资料;(2)井下巷道测量的方式主要是导线测量导线的布设形式一般有闭合导线、符合导线和支导线三种但井下巷道施工测量中一般以支导线为主当巷道贯通以后进行联测时才可布设闭合导线或符合导线; (3)在巷道测量中工作环境黑暗、潮湿、视野狭窄行人、车辆较多巷道内又有各种管线障碍这些因素都会对测量工作带来一定的影响;(4)井下巷道测量对精度要求很高在井下平面控制测量及井下巷道贯通测量中导线测量精度的高低将对确定新老巷道及采空区之问的关系、巷道的贯通等产生直接影响在煤矿的安全生产及抢险救灾工作中也起着重要作用; (5)井下导线测量方法一般采用“后前前后”的测量方法导线点一般都布设在巷道顶板上对点号吊挂线绳进行对中测量。

2全站仪的特点全站仪又名电子速测仪它集测角量边为一体由微处理器控制自动进行测距、测角自动归算水平距离、高差和坐标等还能进行施工放样自动记录数据使用极为方便它几乎可以完成各种常规测量仪器所做的工作。全站仪的工作原理与传统的经纬仪类似但它又具有以下特点: (1)只需一次照准反射棱镜就能测得水平角、竖直角和斜距算出测点的平面坐标和高程并记录下测量和计算的数据。 (2)通过全站仪的主机或电子手簿的标准通讯接口,可实现全站仪与计算机或其他外围设备问的数据通讯,从而使测量数据的获取、管理和计算机绘图形成一个完整的自动化测量系统。 (3)利用全站仪的微处理器来控制全站仪的测量和计算,配合相应的应用软件可实现导线测量、前后方交会、碎部测量和施工放样等计算任务。(4)全站仪内部有双轴补偿系统,可自动测量仪器竖轴和水平轴的倾斜误差,并对角度观测值加以改正。 3全站仪在井下测量中的应用 3.1井下四架法传递,三架法导线测量在井下平面控制测量中,为了提高控制测量的精度,一般都要进行7”级导线测量。在以往的测量过程中,都是采用经纬仪测角、钢尺量边的测量方法,使用这种方法,对于一些长边来讲,在丈量距离时,为了保证量距的精度,即要将边分成几段来量,又要几个人同时配合,对某一段进行多次量取,还要对钢尺进行垂曲改正、温度改正、尺长改正等多项改正,这样既废时又废力,工作效率极低,而且精度不能得到很好的保证。在井下平面控制测量中,若采用

全站仪导线测量方法

全站仪导线测量 在地面上选择一条适宜的路线,在其中的一些点上设置测站,采取测边和测角方式来测定这些点的水平位置的方法。它是几何大地测量学中建立国家大地控制网的主要方法之一,也是为地形测图、城市测量和各种工程测量建立控制点的常用方法。 为导线测量选择的测量路线称为导线。它应当尽可能直伸,但由于地形限制,导线一般成一条折线。导线上设置测站的点称为导线点。测量每相邻两点间的距离,并在每一点上观测相邻两边之间的夹角,从一起始点坐标和方位角出发,利用测量的距离和角度,便可依次推算各导线点的水平位置。 为建立国家大地网以及某些城市测量和工程测量所实施的导线测量,称为精密导线测量。其等级和精度要求与三角测量相同。这些等级以下的导线测量,分为经纬仪导线测量、视距导线测量和视差导线测量,其精度、使用的仪器和测量方法各不相同。 传统的精密导线测量用基线尺在地面上直接丈量每相邻两点间的距离。由于距离测量的精度高,导线中不存在尺度误差积累;而方位误差积累则比三角测量严重。因此,导线上每隔一定距离要测定天文经纬度和方位角。由于导线以单线扩展,无其他几何校核,故必须闭合成环,或布设在高级控制点之间。当测区较大时,则构成导线网。 在一般地区,由于地面不平,难于用基线尺直接丈量距离,故传统的精密导线测量不及三角测量优越。但在平坦的森林地区,为了实施三角测量,必须建造过高的测量觇标,又为了清除通视障碍,还要砍伐树木,这样将使作业进展迟缓,用费较大。若改用导线测量,沿道路、林区分界地带或河流推进,利用平坦地势丈量距离,则可降低觇标高度,减少辅助工作,达到较好的经济效果。英国曾在非洲赤道附近平坦的森林地区,广泛采用传统的精密导线测量以代替三角测量。除了这些特殊地区之外,传统的精密导线测量则很少应用。 电磁波导线测量自电磁波测距仪于20世纪50年代出现后,导线测量受到了重视。用电磁波测距仪测定距离,所受地形限制较小,作业迅速,精度随着仪器的不断改进而越来越高。因此,电磁波导线测量得到日益广泛的应用,有逐渐取代三角测量之势。60年代初,中国利用电磁波测距仪在自然条件极其困难的青藏高原实施了精密导线测量,构成了包括10个闭合环的导线网。 美国从60年代初开始,用高精度电磁波测距仪实施了横贯大陆的高精度导线测量,现在已经完成,全长达22000公里。导线上每条边的方位角都直接观测,因而不存在尺度误差和方位误差的积累。高精度导线测量的质量优于一等三角测量,称为零等控制测量。美国正以这

井下导线测量方法的应用研究

技术革新成果报告井下导线测量方法的应用研究 杨 柳 煤 业 小 春 湾 煤 矿 二〇一三年十二月

井下导线测量方法的应用研究 一、矿井导线测量概述 矿山测量是矿山建设时期和生产时期的重要一环,测量工作及测量成果是为矿山生产服务的。随着测绘科学技术迅速发展,矿山测量也不断创新和发展,面对各种挑战和机遇同在的关键时代,广大测量科技工作者肩负着历史的责任,有必要对矿山测量走过的艰苦历程及其未来作一些回顾和认识,分析面临的形势、探讨新时期矿山测量面临的任务。 二、井下导线测量的意义 井下导线测量是矿井测量的重中之重,为各个工作面支导线提供准确的起算数据,是井巷贯通的重要依据。我们看到的各种作业方法、测量办法创新,都是围绕着导线测量精度展开的。随着科技的发展和进步,煤矿测量工作也需要不断的完善和创新。只有关注测量工作中的每一个细小环境,才能得出一个准确的测量结果,只有更加精确的完成每一项测量工作才能更好的为煤矿生产运营保驾护航。 三、传统的测量方法在矿山测量中的应用 (1)一般测量:全站仪作为当前应用最为广泛的测绘仪器,是电子技术与光学技术发展结合的光电测量仪器,也是集测距仪、电子经纬仪的优点于一体的、应用前途广泛的仪器,智能化的全站仪是目前销量最大的测绘仪器,也是今后发展的主要方向。智能型全站仪是

集光、电、磁、机的最新科学成果,集测距、测角为一体的先进仪器。国际上先进的全站仪均以存储卡、内部存储器或电子手簿的方式记录数据,具有双路传输的通讯功能,能接收外部计算机的指令,由计算机输入数据,也能向外部计算机输出数据。全站仪已在工程测量、矿山测量、地籍测量等领域得到了广泛的应用,其发展及应用正处在飞速发展之中。全站仪由于兼具有经纬仪和测距仪的优点,且以数字形式提供测量成果,其操作简便、性能稳定、数据可通过电子手簿与计算机进行通讯等优点使其在矿山测量中得到了广泛的应用。地面控制测量、地形测量、工程测量均可利用全站仪进行,联系测量、井下测量工作也可用全站仪进行。以全站仪为代表的智能化、数字化仪器是矿山测量仪器今后的发展方向之一。基于全站仪和现代计算机技术可建立矿山三维数据自动采集、传输、处理的矿山测量数据处理系统,取代传统的手簿记录、手工录入、繁琐计算等大量的重复性的工作。此外,全站仪在矿山地表移动监测、矿区土地复垦工程实施、矿区施工等方面也都得到应用,各大矿的测量机构正在以全站仪取代传统的仪器进行日常的测量工作,既提高了效益,加快了速度,又减少了开发,保证了精度。利用全站仪在井下进行一般测量时,为了加快测量速度,可直接设置后视方位、测站坐标及高程,并设置好仪器高及镜站高,直接读取、记录所测点的坐标及高程,从而及时了解掘进进度,指导井下工程按设计进行施工,保证安全作业。为便于检查,须同时记录所测点的方位、平距、高差、垂直角、斜距。井下定中线、腰线时,由于全站仪可直接调出方位和读出距离,省去了很多辅助工作,

井下导线联测及效果分析

井下导线联测及效果分析 文章主要论述在井下导线联测中,导线的布设方式和选择适合的测量方法,提高测角精度,优化测量方案。在满足矿山生产要求的前提下,采取什么样的措施和方法来弥补测量过程中出现的误差,及对导线的精度进行分析,是否满足井下生产的需要,为以后工作积累一点经验。 标签:导线布设;控制测量;测量方法;误差分析 前言 某厂位于个旧市东南17公里处,海拔2330米,整个厂区占地面积21.7平方公里。下设四个采矿工区,由于历史的原因、资产重组,井下控制测量系统不统一,系统之间存在一定的系统误差。为保证区域内各项工程的顺利实施,根据实际情况,按测量规范的要求,对井下导线进行系统性联系控制测量,理论性了解各测量系统之间存在的误差值,更好为生产服务,优化测量方案,保证区域各项工程顺利贯通。 1 井下导线的布设方式 由于受井下巷道条件的影响,井下平面控制均以导线的形式沿巷道布设,不能像地面控制网有测角网、测边网等。布设的原则按照“高级控制低级”进行,主要敷设成闭(附)合导线和复测支导线。点与点之间的距离基本相等,避免较大的长短边。 本次由于是对井下导线进行系统性联测,为以后工程的实施提供具体的参数,导线网的布设相对要容易些,所以,导线网基本敷设成闭(附)合导线,从而减小误差的积累。 井下测量控制网的建立,是依据地面2250中段坑口平面GPS卫星定位点H1和H2为已知加强边来敷设井下控制网。用H1和H2已知边形成闭合环,闭合环导线总长5392.480m,平均边长117.228m,闭合点位误差△X+0.460m、△Y+0.108m、△Z-0.146m,方位角闭合差44.5″,导线全长闭合差±0.210m,闭合精度1/25000。对闭合导线进行简易的初级平差,用闭合环中已知坐标为起算坐标来进行井下导线的布设,敷设导线和各中段形成闭(附)合路线,对各条导线进行相应的精度评定。 2 测量设备、校准参数和测量方法 仪器型号:nivo2.m测角精度2″角度显示1″/5″/10″测距精度:棱镜模式±2mm+2ppm免棱镜模式±3mm+2ppm,测程:免棱镜300m单棱镜3000m。(井下)小棱镜校准值5mm,(地面)大棱镜校准值30mm。采用测量方法及实测时超限参数:全圆观测法、2C值控制在10″、水平角观测值闭合差值10″。

试析煤矿井下基本控制导线测量方法的改革策略

试析煤矿井下基本控制导线测量方法的改革策略 本文主要对井下基本控制导线测量三连架方法的应用及其局限进行了探讨,并就实践操作中的一些改进措施进行了分析,结合工程实例印证煤矿井下基本控制导线测量方法改革的实际成效。 标签:煤矿井下基本控制导线测量改革 煤矿井下测量工作的技术性与困难度较大,测量是否准确直接影响着煤矿的高效与安全生产,因此煤矿的井下测量工作是煤矿企业必须重视的一项工作。煤矿井下测量工作包括了腰线、标定、延伸、导线测量与高程测量等工作,为了避免因各种疏忽造成的煤矿安全事故,提高生产的效率,煤矿井下基本控制测量方法进行了不断地改进与创新。 1井下导线控制测量 1.1井下基本控制导线测量 地下导线测量是以必要的精度建立起地下的控制系统,然后根据控制系统进行坑道或者轨道中线、衬砌位置放样,并掘进方向。与地面的导线测量比较而言具有四个方面的特点。第一,坑道具有一定的限制,形状通常为延伸状,而导线的布置不能够一次完成,需要沿着坑道的开挖而向前延伸;第二,当导线点摄于坑道顶板时,需要进行点下对中;第三,沿着坑道的延伸进行导线的敷设,首先敷设精度低、边长段的导线作为坑道掘进的指示,然后敷设高等级的导线用于检查和校正低等级的导线;第四,井下的工作环境较差,导线测量受到较大的干扰。其中地下导线等级是由地下工程类型、范围、精度要求决定的,各个部门有着不同的规定,《煤矿测量规程》中就规定:井下平面控制测量包括了两个方面,即基本控制与采区控制,其中基本控制测量导线测角精度为±7″、±15″,一般沿井主要坑道进行敷设,每300-500m延伸一次;采区则为±15″、±30″,每30-100米延伸一次。表1为基本控制导线主要技术指标。 1.2三连架基本控制导线测量的应用及其局限性 由于煤矿井下测量环境受到限制,因此煤矿井下基本控制导线测量方法的形式均采用逐站整平对中,量边则采用光电测距仪或者比长钢尺来进行,这就使得整个测量工作将耗费大量的时间与精力,而测量的精确度却无法得到保证,易产生误差。而较低的基本控制导线测量效率及精确度将降低煤矿企业的生产效率与安全性。目前,随着全站仪在井下测量中的应用,大部分的煤矿企业都采用了三连架法来进行井下基本控制导线测量工作,该方法在测量中利用全站仪的配套棱镜与基座等能够减少过渡点测量误差,保证基本控制导线测量的精确度,提高煤矿井下测量效率,但是在许多的煤矿井下基本控制导线测量的实际工作中,三连架方法也存在一定的局限性,主要包括了四个方面:第一,采用三连架方法进行测量,确定测量路线后测量路线上的所有生产活动均停止,并且该测量方法占用

井下导线测量1

井下导线测量 隧道内(井下)平面控制测量通常有两种形式:当直线隧道长度小于1000m。曲线长度小于500m时,可不做洞内平面控制测量,而是直接以洞口控制桩为依据,向洞内直接引测隧道中线,作为平面控制。但当隧道长度较长时,必须建立洞内紧密地下导线作为洞内平面控制。 地下导线的起始点通常设在隧道(矿井)的洞口、平坑口、斜井口,而这些点的坐标是通过联系测量或直接由地面控制测量确定的。地下导线等级的确定取决于隧道的长度和形状, 第一节实习安排 一、实习任务: 熟悉井下测量的测量环境,完成井下一条导线的测量 二、实习时间: 2008—2009学年12月8日----15日 三、实习地点: 学院模拟矿井内 四、组员: 贾石虎、崔洋、蒲秀娟、徐佳、刘祥、张黄星、向淼 五、实习仪器: 拓扑康(330)全战仪(一台)、棱镜(两个)、脚架(三副)、 卷尺(三把)、矿灯(7个) 第二节井下导线测量 一、地下导线的特点 1.地下导线由隧道洞口等处定向点开始,按坑道开挖形状布设,在隧道施工期间,只能布设成支导线形式,随隧道的开挖而逐渐向前延伸。 2.地下导线一般采用分级布设的方法:先布设精度较低、边长较短(边长为25~50m)的施工导线;当隧道开挖到一定距离后,布设边长为50~100m的基本导线;随着隧道开挖延伸,还可布设边长为150~180m的主要导线,如图11-3示。三种导线的点位可以重合,有时基本导线这一级可以根据情况舍去,即直接在施工导线的基础上布设长边主要导线。长边主要导线的边长在直线段不宜短于200m,曲线段不短于70m,导线点力求沿隧道中线方向布设。对于大断面的长隧道,可布设成多边形闭合导线或主副到导线环,如图11-4示。由平行到导坑时,应将平行导坑单导线与正洞导线联测,以资检核。

井下短边导线测量误差分析

井下短边导线测量误差分析 发表时间:2017-03-17T14:17:16.893Z 来源:《科技中国》2016年12期作者:王有生 [导读] 井下测量时,受井下条件的限制,所以会产生很多的短边导线,这些短边导线很大程度上影响了测量精度。 云南楚雄矿冶有限公司云南楚雄 675501 【摘要】井下测量时,受井下条件的限制,所以会产生很多的短边导线,这些短边导线很大程度上影响了测量精度。井下照明度、粉尘、温度、气压、湿度等复杂的环境条件,同样也会影响测量精度。本文就井下测量产生误差的原因进行了分析和总结,并就分析提出了改进方式。 【关键词】导线测量;误差分析;改进方式 在进行井下导线测量工作时,由于条件的限制导线布设经常会出现短边的情况发生。进行短边测量时采用延伸三角形法,可以有效的消除这些误差对测量精度的影响。外界环境影响也会给测量带来误差,可根据实际情况设置仪器参数来消除影响。 1产生测量误差的原因分析 1.1仪器误差 仪器误差是指由于使用不完好的仪器以及校验不完善而产生的误差。竖轴倾斜误差、水平轴倾斜误差以及视轴误差是主要的仪器误差。 1.2对中误差 仪器对中误差是仪器中心点和导线点没有在同一条铅垂线上而产生的误差。水平角测量受对中误差的影响很大,导线边长越短,受到的影响越大。 1.3瞄准误差 瞄准误差是指在使用测量仪器(全站仪)瞄准目标时因为瞄准位置偏离了实际目标位置而造成的误差。测角受瞄准误差的影响存在以下规律:与测量边长距离成反比;与目标位置倾斜角度、仪器照准高度成正比。 1.4外界环境影响 井下导线测量受环境影响。第一,由于井下阴暗潮湿、采光条件差等原因,一般为提高检测精度把导线点设置在坑道顶部,且导线长短不一;第二,由于坑道工作面窄、通光条件等原因,随坑道掘进深度的增长,测量点位误差增大;第三,井下导线测量形式的选用受井下前后通视情况、施工面积等因素制约;第四,井下导线测量顺序通常为在布设高级导线校核前,先布设低级导线指示坑道掘进。 2克服误差的改进方式 2.1仪器放置和点位的合理的合理选择 井下导线测量时,仪器应选择在巷道顶板条件稳固的地方放置,光线要明亮,通视要良好,并且仪器不易受矿车和来往工人等外部因素的影响。而如果顶板条件达不到标准的要求,在合适的边长范围里适合设置导线点的地方又没有时,在远处找一个位置比较温度的点来安置导线,以避免因导线点位移引起测量误差。实践证明,合理控制导线边长可以减少测量误差。因为边长过长时,在巷道环境条件的影响尤其是空气质量的影响下,觇标成像不清,很大程度上降低了照准精度。而边长过短时,仪器对测角的精度受到影响,增加了测站数,加大了误差累积。 2.2规范的要求 按照《冶金矿山测量规范》的要求,使用不同仪器对等级不同的导线进行测量时,根据边长变化采用增加测回数和对中次数的方式来降低误差。因为线量偏差在完成一次对中后是固定的,按照《规范》规定,对中线量偏差在遇到短边时应小于0.4毫米,这是在现场没办法直接检查的。由于对中观测取平均值的方法观测次数有限,观测误差有可能减小,也有可能增大,虽不能确保出现最好的结果,但可防止发生最坏的情况。 2.3测量方法 2.3.1采用延伸三角形法提高测量精度 采用延伸三角形法可提升短边导线测量精度。延伸三角形法的测量原理:以下图为例,进行短边测量时,选取合适位置C、C'为连接点,形成三角形ABC和ABC',两个三角形以c为共用边。在C、C'架设仪器,观测DCA、γ、γ'、DCB,实测边长a、b、a'、b',则可通过求解三角形的方法解出角α、β、α'、β'和c边的边长,进而解出边c的方位角和点A、B的坐标。 2.3.2边角分测法 边角分测法在测角时,尽量放远视线,来降低测角误差,而采用普通钢尺分段测量短边的方法量边来降低工作量。按照规程规定,为保证贯通,要设置高级导线,将尽量放长导线边。而实际工作中,通常使用50米钢尺,因此在分段测量时需加一个或更多中间点,工作量大,并且常发生往返测量凑数的现象,不但工作量增大,而且精度受到影响。边长丈量是先将经纬仪远镜调节在水平位置,瞄准前视点的垂线,在和十字丝所切的地方,在垂线上做好标记,启动盘后测量原导线各边的水平边长。 2.4特殊环境下产生的误差及改进方式 2.4.1电磁干扰。井下的所有巷道都存在如电缆、电机等机电设备,其产生的磁场和电场都会对测量精度产生影响。由于产生的干扰小,一般常被忽略。但当仪器被架设在大型电机等设备或变电所附近时,会对测量距离造成非常大的误差。此时应该尽量将电机设备关掉或是选择与以上设施距离较远的线路来测量。 2.4.2仪器离巷道顶底板或设备不能过近。通常情况下,为使光波折返正常,仪器视线与巷道顶底板或其他障碍物的距离应维持在1.5米以上。 2.4.3风流过大。在风流很大的巷道内进行测量时,锤球选择时要用较大重量的,进行瞄准时要尽可能瞄准目标垂线的根部。仪器对中过程中,为减小锤球晃动要采取挡风措施。 2.4.4粉尘较多、湿度过大等能见度低的情况。这种情况下,巷道内光波最容易被反射,出现全站仪提前接收光波或是距离反射不回来的情形而使测量无法进行。同时,这种情况下测角,由于视线不好而产生折射,使目标的观测位置偏离实际位置,进而粗差直接产生。这

全站仪闭合导线方位角及距离计算方法步骤

闭合导线测量计算方法 ①?方位角计算(左角) 已知A,B两点坐标,且AB的方位角为30°即a AB = 30°,可求出其它方位角如下: a BC = a AB +Z B ±180 ° = 30 +°60 + 180 =270 a CD = a BC +Z C士180 °= 270+ °70 - 180 = 160 ° a DE = a CD +Z D士180 ° =160 + 100 - 180 =°80 ° a EB = a DE +Z E 士180 °= 80 + 130 - °180 =° 30 °

②?方位角计算(右角) 已知A,B两点坐标,且AB的方位角为30°即a AB = 30°,可求出其 它方位角如下: a BC = a AB + Z B ±180 ° = 30 +°60 + 180 =270 a CD = a BC - Z C 士180 =270 -°290 +°180= °160 a DE = a CD - Z D 士180 ° =160 - 260 - 180 =° 80 a EB = a DE - Z E 士180 ° = 80 -230 - 180 =°30 ° 总结:角在左边用加法,角在右边用减法(左加右减);在求方位角时,两个角相加或相减得出来的得数大于180°则减去180°若小于 180°则加上180° (大减小加)。 ③?坐标与距离计算方法

同理可以得到D 点与E 点坐标 已知 A,B 两点坐标 A(Xa,Ya),B(Xb,Yb), 1.求AB 方位角及距离 a AB = (Y A )/(X B -X A ) = Tan a x YB-Y A A / 注意:测量中坐标系x , y 与数学中坐标系x , y 相反 X B-X A 一甘 — I Y D AB = v {(X B -X A ) 2+(Y B -Y A ) 2} 2.求C 点坐标C (Xc,Yc ) Xc = XB + D AB ? COSk AB Y C = YB + D AB- Sin a AB

井下巷道贯通测量精度分析及技术方法

井下巷道贯通测量精度分析及技术方法 发表时间:2019-11-07T14:23:23.807Z 来源:《基层建设》2019年第23期作者:耿梓健 [导读] 摘要:结合实际矿井运输大巷贯通工程,对贯通后的测量数据误差进行预计分析,找出影响贯通精度的主要因素,提出建立地面专用控制网和提高井下导线测量精度的方法。 冀中股份公司邢台矿地测科河北省邢台市 054000 摘要:结合实际矿井运输大巷贯通工程,对贯通后的测量数据误差进行预计分析,找出影响贯通精度的主要因素,提出建立地面专用控制网和提高井下导线测量精度的方法。 关键词:井下巷道;贯通测量;精度;方法 一、贯通工程概况及要求 中部在副立井与北二斜井中间,贯距6173m;北部在北二斜井与北三斜井中间,贯距2998m。整个贯通测量设1个小三角网,井下导线9803m,井下一级水准7400m。根据寺河煤矿(东区)3号煤层巷道贯通工程的实际情况,对贯通测量工作提出了以下要求:①贯通测量精度必须满足该项贯通工程的实际需要;②贯通测量中应积极采用新技术,做到有效把控测量精确度;③贯通测量过程中要规范操作,尽量减少人为误差;④要求测量完毕采取抽检方式进行校验。 二、贯通精度分析 2.1中部段贯通精度 在分析中部段贯通精度时,首先对贯通误差进行预计分析。误差预计方法有很多种,根据井巷施工具体情况,中部段贯通误差分析采用立井定向投递点传递高程的方法,投递使用工具为钢丝绳;同时,在井下使用陀螺边进行加测,斜井和平巷的测量使用全站仪观测。考虑到井下巷道距离较长,在设置井下导线边长时进一步加设短边,长边设置长度约为200m,而短边设置长度控制在80m~100m,陀螺边设置在距离贯通点1/3位置。在此细化测量方案基础上,预计中部段在水平方向和高程方向的贯通误差分别为366mm和160mm,而实际误差分别为123mm和115mm,误差预计准确度较高。 2.2北部段贯通精度 由于北部段贯通工程主要是两个斜井之间的贯通,因此北二斜井和北三斜井测量方案为红外测距导线方法。具体在测量过程中,标高由三角高程导入,在平巷中设置一等水准。北部段水平方向和高程方向的预计误差分别为286mm188mm,而实际贯通误差分别为15mm和13mm。副立井到北二斜井、北二斜井到北三斜井之间的各项闭合误差。 2.3误差分析 +870m水平运输大巷的中部贯通工程是一个非常典型的贯通施工项目,测量工程任务量大、项目多,包括地面连接、立井定向、标高导入、测距导线、陀螺定向等内容。中部段巷道贯通之后,对此次贯通测量误差进行分析,在参考其他煤矿资料的基础上,确定地面连接误差、定向误差和井下导线测量误差的比例为1∶3∶4,三项误差占贯通总误差比例分别为1/8、3/8和1/2。由于巷道贯通测量中实际测量中线误差为115mm,按照上述误差比例,地面连接误差、定向误差和井下导线测量误差对贯通误差的影响分别为14mm、43mm和58mm。井下导线测量误差还包括两部分内容,即测角误差、量边误差,由于+870m水平运输大巷大部分巷道段较为顺直,导线主要为直伸形导线,测距边误差非常小,因此测角误差是井下导线误差的主要因素,测角误差影响贯通精度为58mm。 三、贯通测量中使用的技术 3.1陀螺定向技术 陀螺定向技术在贯通工程测量过程中,测量精确度基本不受矿井深度变化的影响,很大程度上保障了贯通工程的精确度。其作用主要体现在以下几方面:一是深井定向测量。当矿井深度过大时,井下的低温环境和大深度会对传统测量技术和仪器产生很大影响,直接影响测量的准确度,而陀螺定向技术得出的测量结果不会受矿井深度的影响,测量结果稳定而精确;二是控制井下平面。在巷道贯通工程中,对井下平面的稳定性提出了较高要求。传统的测量方式是使用单支导线测量,测量结果精度较差,而陀螺定向技术能有效提升方位角等参数的测量精度;三是协助井筒安装。在巷道施工过程中,以陀螺定向技术为核心的陀螺仪,可以测量井下基点的情况,依据获得的测量结果能够帮助井筒定位合理的安装位置,辅助井筒快速、精确地安装; 全站仪在煤矿井下巷道贯通测量中具有举足轻重的作用。首先,全站仪可以在巷道贯通测量中实现三维测量,使测量工作更加便捷,其次,全站仪充分结合计算机运算能力和现场多种测绘能力,可以实现三维立体数据建立及自动化处理。最后,全站仪能够通过多种方式与计算机进行数据双向传输,将测绘所得的数据及时发送给计算机等终端,在提高工作效率的同时使数据的储存更加安全可靠。 3.3三维激光扫描技术 三维激光扫描技术是融汇了众多先进装备后发展而来的,它通常由全球定位系统、升降机构以及高清摄像头等部分组成,三维空间内的测量精确度更高、更便于控制,可以对工程实时进展实行详细检测及全面的覆盖。因此,把这项技术与其他测量装备相结合,可以形成更加强大、精确的测量系统并广泛应用于现代矿山工程。 四、提高贯通精度的技术措施 4.1建立地面专用控制网 该矿井地面资料一直使用20世纪70年代的勘测结果,但随着地下煤炭不断采出,煤层上覆岩层出现不同程度的扰动,致使原先设定的三角点位置出现变动,因此地面控制网的可靠性会比较低。为解决这一问题,在本次+870m运输大巷贯通工程前,首先重新布设地面控制系统。在新设计的地面控制系统中,井田北部有11个点的地面小三角网,中部布设1条测距闭合导线。地面小三角网控制点经平差后,各个控制点位的权中误差在20″,最弱边相对误差和最弱点点位误差分别为1/62000、21mm。测距闭合导线近井点的点位误差在水平方向、竖直方向和高程方向值分别为1210mm、1520mm、1009mm。此次重新布设地面控制系统,能够有效消除地面控制疑点,同时可保证控制网的统一性和地下贯通工程的高精度。预计中部段和北部段贯通误差时,地面控制网的多年测量平均测角误差选择3.4″,地面连接预计误差 65mm,而实际测量得到的地面连接误差是15mm,这也充分证明提高地面控制网精度对保障贯通精度有重要影响。 4.2提高井下导线测量精度 由于本次井下运输大巷线路较长,为提高工程施工质量,在测量控制中设置数量较多的导线测量点,工程导线测量任务非常重。在此

相关文档
最新文档