量子力学习题

量子力学习题
量子力学习题

量子力学习题

(三年级用)

山东师范大学物理与电子科学学院

二O O七年

第一部分 量子力学的诞生

1、计算下列情况的Broglie d e

-波长,指出那种情况要用量子力学处理:

(1)能量为eV .0250的慢中子

()

克2410671-?=μ

.n

;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-?=μ.a

(3)飞行速度为100米/秒,质量为40克的子弹。

2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?

3、利用Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原子能

量可能值。

第二部分 波函数与Schr?dinger 方程

1、设()()

为常数a Ae x x a 222

1

-=

?

(1)求归一化常数 (2).?p ?,x

x ==

2、求ikr

ikr e r

e r -=?=?1121和的几率流密度。

3、若()

,Be e A kx kx -+=?

求其几率流密度,你从结果中能得到什么样的

结论?(其中k 为实数)

4、一维运动的粒子处于

()?

?

?<>=?λ-0

00x x Axe x x

的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。

5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证

0=υ??

其中ρ=

υ/j

6、一维自由运动粒子,在0=t 时,波函数为 ()()x ,x δ=?0

求:

?)t ,x (=?2

第三部分 一维定态问题

1、粒子处于位场

()00

0000

???

?≥?=V x V x V

中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动)

2、一粒子在一维势场

??

???>∞≤≤<∞=0

000x a x x V )

x ( 中运动。

(1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ?态,证明:,/a x 2=

()

.n a x x ??

? ??π-=-2222

6112

3、若在x 轴的有限区域,有一位势,在区域外的波函数为

D

S A S B D S A S C 22211211+=+=

这即“出射”波和“入射”波之间的关系,

证明:0

1

1222112112

22

2

21

212211

=+=+=+**S S S S S S S S

这表明S 是么正矩阵

4、试求在半壁无限高位垒中粒子的束缚态能级和波函数

()?????>≤≤<∞=a

x V a x x V X 0

00

0 5、求粒子在下列位场中运动的能级

()???

??>μω≤∞=0

2

102

2x x x V X

6、粒子以动能E 入射,受到双δ势垒作用

()[])a x ()x (V V x -δ+δ=0

求反射几率和透射几率,以及发生完全透射的条件。

7、质量为m 的粒子处于一维谐振子势场)(1x V 的基态,

02

1

2

1>=k kx V )x (

(1)若弹性系数k 突然变为k 2,即势场变为

22kx V )X (=

随即测量粒子的能量,求发现粒子处于新势场2V 基态几率;

(2)势场1V 突然变成2V 后,不进行测量,经过一段时间τ后,势场又恢复成1V ,问τ取什么值时,粒子仍恢复到原来1V 场的基态。

8、设一维谐振子处于基态,求它的22

x p ,x ??,并验证测不准关系。

第四部分 力学量用算符表示

1、

若()

)z ,y ,x (z y x V p p p H

+++μ

=

2

2221 证明:,x

V

i ]P ,H [x ??=

,p i ]x ,H [x

μ

-= 2、设

[]q )q (f ,i p ,q 是 =的可微函数,证明

(1)

[],ihpf )q (f p ,q 22

=

(2)[];f p i

)q (f p ,p '=2

2

3、证明

0≡++]]B ?,A ?[,C ?[]]A ?,C ?[,B ?[]]C ?,B ?[,A

?[ 4、如果,B A ?,?是厄密算符 (1)证明

(

)[]B ?,A

?i ,B ?A ?n

+是厄密算符;

(2)求出B ?A

?是厄密算符的条件。 5、证明:

[][][][]][[] ++++=-A ?,L ?,L ?,L ?!,A ?,L ?,L ?!A ?,L ?A e A ?e L ?L

3121

6、如果B ,A 与它们的对易子[]B ?,A

?都对易,证明 []

B ?,A ?B A ?B ?A e e e 21++=?

(提示,考虑(

),e

e

e

)(f B ?A

?B

?A

?+λ-λλ??=λ证明[]f B ,A d df

λ=λ

然后积分)

7、设λ是一小量,算符1

-A ?A

?和存在,求证

+λ+λ+λ+=λ---------1112121111A ?B ?A ?B ?A ?A ?A ?B ?A ?A ?)B ?A

?( 8、如ni u 是能量n E 的本征函数(为简并指标i ),证明

()?=+*

0d x u x p xp u nj x x ni

从而证明:?δ=τij nj x ni d xu p u i 2

9、一维谐振子处在基态

()2

2

122/x a /e

a x -π

=

?

求: (1)势能的平均值;X m A

222

1

ω=

(2)动能的平均值;m /P T x 22=

(3)动量的几率分布函数

其中

ω

=m a

10、若证明,iL L L y x ±=±

(1)

±

±±=L ?]L ?,L ?[z 022==-

+]L ?,L ?[]L ?,L ?[ (2)

11++=lm lm Y C Y L ?

12--=lm lm Y C Y L ?

(3)

()-

-+++=-L ?L ?L ?L ?L ?L ?y x 2

122

11、设粒子处于),(Y lm ?θ状态,利用上题结果求2

2

y x l ,l ??

12、利用力学量的平均值随时间的变化,求证一维自由运动的2X ?随时间的

变化为:

()()

()()()()

222

0000

2

21212t P p x X p XP X X x t x X X t

?μ+??????-+μ+

?=? (注:自由粒子2

x x P ,P 与时间无关)。

第五部分 变量可分离型的波动方程

1、求三维各向异性的谐振子的波函数和能级。

2、对于球方位势

(){

000><=

r V a r r V

试给出有0=l

n 个的束缚态条件。

3、设氢原子处于状态

()()()()()?θ-?θ=

?θ?-,Y r R ,Y r R ,,r 112110212

321 求氢原子能量,角动量平方和角动量分量的可能值,以及这些可能值出现的几率和这些力学量的平均量。 4、证明

[]

r r r ,??+=?1212 []

?=?r ,2

2

1 5、设氢原子处于基态,求电子处于经典力学不允许区域()0?=-T V E 的

几率。

6、设()022>+=B ,A ,r /A Br r V

其中,求粒子的能量本征值。

7、设粒子在半径为a ,高为h 的园筒中运动,在筒内位能为0,筒壁和筒外

位能为无穷大,求粒子的能量本征值和本征函数。

8、碱金属原子和类碱金属原子的最外层电子在原子实电场中运动,原子实电场近似地可用下面的电势表示:

()2r

A r e Z r +'=φ

其中,e Z '表示原子实的电荷,0>A ,证明,电子在原子实电场中的能量为

()

2

2

241

2l nl n z e E δ+'μ-

=

而l δ为l 的函数,讨论l δ何时较小,求出l δ小时,nl E 公式,并讨论能级的简并度。

9、粒子作一维运动,其哈密顿量

()x x V m

p H +=22

的能级为)

(n E 0,试用H ellm ann

F eynm en

-定理,求 m

P H H x

λ+

=0

的能级n E 。

10、设有两个一维势阱

()()x V x V 21≤

若粒子在两势阱中都存在束缚能级,分别为() 2121,n E ,E n

n =

(1)证明n n E E 21≤

(提示:令()()211V V x ,V

λ+λ-=λ

(2)若粒子的势场

?????=<>b

x KX b

x Kb )

X (V 22212

1

中运动,试估计其束缚能总数的上、下限

11、证明在规范变换下

?*?=ρ

()

?*?μ-??-?*?μ=* A ?c

q P ?P ?j 21 ???

?

?-=υμA ?c q P ??

不变。

12、计算氢原子中P D 23→的三条塞曼线的波长。

13.带电粒子在外磁场()B ,,B 00=

中运动,如选

??

? ??-=02121,xB ,yB A ?或),xB ,(A 00= 试求其本征函数和本征值,并对结果进行讨论。

14、设带电粒子在相互垂直的均匀电场E 及均匀磁场B 中运动,求其能谱和波函数(取磁场方向为Z 轴方向,电场方向为X 轴方向)。

第六部分 量子力学的矩阵形式及表象理论

1、列出下列波函数在动量表象中的表示

(1)一维谐振子基态:()t i

x a e

a t ,x ω--π

=

ψ

222122

(2)氢原子基态:()t E i a r n

e

a t ,r 2031

--

π=

ψ

2、求一维无限深位阱(0≤x ≤a )中粒子的坐标和动量在能量表象中的矩阵元。

3、求在动量表象中角动量x L

?的矩阵表示。 4、在(z l ,l

2

)表象中,求1=l 的空间中的x L

?的可能值及相应几率。 5、设)r (V p H +μ

=22

,试用纯矩阵的方法,证明下列求和规则

()∑μ

=-n

nm

m n x E E 22

2

(提示:求

[][][]X ,X ,H ,X ,H 然后求矩阵元[][]>m X ,X ,H m )

6、若矩阵A ,B ,C 满足iA CB BC ,I C B A 2222

=-===

(1)证明:0=+=+CA AC BA

AB ;

(2)在A 表象中,求B 和C 矩阵表示。

7、设),x (V p H x

+=μ

22分别写出x 表象和x P 表象中x p ,x 及H 的矩阵表示。

8、在正交基矢21ψψ,和3ψ展开的态空间中,某力学量??

?

?

??????=010100002a A

求在态32121

212

1ψ+ψ+ψ=

ψ中测量A 的可能值,几率和平均值。

第七部分 自 旋

1、设λ为常数,证明λσ+λ=λσsin i cos e

z i z

2、若()

,i y x σ±σ=σ±2

1

证明02=σ±

3、在z σ表象中,求n

?σ的本征态,()θ?θ?θcos ,sin sin ,con sin n 是

),(?θ方向的单位矢。

4、证明恒等式:()()()()

B A i B A B A ??σ+?=?σ?σ其中B ,A 都与σ

易。

5、已知原子

c 12

的电子填布为22

020221j )p ()s ()s (,试给出

(1)简并度;

(2)给出jj 耦合的组态形式; (3)给出LS 耦合的组态形式;

6、电子的磁矩算符S e l e 0

02μ-μ-=μ,电子处于z j ,j ,l 22的本征态>j j m l 中,求磁矩μ。

j m j j z j j j m l m l =>μ=<μ

7、对于自旋为

2

1的体系,求y x S ?S ?+的本征值和本征态,在具有较小的本征值所相应的态中,测量2

=z s

?的几率是多大? 8、自旋为2

1

的体系,在0=t 时处于本征值为2/ 的x S 的本征态,将其置于()B ..B 00=

的磁场中,求t 时刻,测量x S 取2/ 的几率。

9、某个自旋为21/的体系,磁矩00<σμ=μt ,时,处于均匀磁场0B 中,

0B 指向Z 方向,0≥t 时,再加上一个旋转磁场)t (B 1,其方向和Z 轴垂直。

201102122e ?t sin B e

?t cos B )t (B ω-ω=

其中c /B 000

μ=ω

已知0≤t

时,体系处于2/s z =的本征态21/κ,求0>t 时,体系的自

旋波函数,以及自旋反向所需要的时间。

10、有三个全同粒子,可以处于

321ψψψ,,三个单粒子态上,当

1213213211======n ,n ;n n n ;n 三种情形下的对称或反对称波函

数如何写?

11、两个全同费米子体系处于一个二维方势阱中,假设两粒子间无相互作用,

求体系最低两上能级的能量和波函数。

??

???<><>∞<<<<=0

0000

y ,

L y x ,L x L y ,L x V )

y ,x (

12、设有两个全同粒子,处于一维谐振子势中,彼此间还有与相互距离成正比的作用力,即位能为

02

1212212

32121>-++=k ,a ,

)x x (a )x x (k )x ,x (V

求体系的能量本征值及本征函数,按波函数的交换对称性分别讨论之。

第八部分 量子力学中的近似方法

一、定态微扰论

1、设一体系未受微扰作用时只有两个能级:01E 及02E 现在受到微扰H

?'的作用,微扰矩阵元为b ,a ,b H H ,a H H ==='='22112112

都是实数,用微

扰公式求能量至二级修正值。

2、一个一维线性谐振子受一恒力作用,设力的方向沿x 方向: (1)用微扰法求能量至二级修正;

(2)求能量的精确值,并与(1)所得结果比较。

3、设在0H 表象中,H 矩阵表示为

???????

???

????**)()()(E b a b E a

E 03020100

试用微扰论求能量的二级修正。

4、设自由粒子在长度为L 的一维区域中运动,波函数满足周期性边条件

)L ()L (2

2ψ=-ψ

波函数的形式可取为

21022

200,,n L

n k kx sin L

,kx cos L

)

()

(=π=

=ψ=

ψ-+

设粒子还受到一个“陷阱”的作用

L a e

V H a /x )

x (<<-=-2

201

试用简并微扰论计算能量一级修正。

5、一体系在无微扰时有两条能级,其中一条是二重简并的,在0H 表象中

)()()()

()(E E E E E 0201020101000000

????

???

????

在计及微扰后,哈密顿量为

???

????

???????**)()()(E b a b E a E 02010100

(1)用微扰论求H 本征值,准到二级近似;

(2)把H 严格对角化,求H 的精确本征值,然后进行比较。 二. 变分法

1、试用变分法求一维谐振子的基态波函数和能量(试探波函数取2

x e λ-,λ

为特定参数)。

2、设氢原子的基态试探波函数取为

2

)a /r (Ne

)r ,(λ-=λψ

22e /a μ=

N 为归一化常数,λ为变分参数,求基态能量,并与精确解比较。

3、粒子在一维势场中运动0<)

x (V (当)V ,x )x (0→±∞→,试证明:

至少存在一个束缚态,E 0<取试探波函数。

2

4

122/x e

)x ,(λ-π

λ=

λψ

三、量子跃迁

1、氢原子处于基态,受到脉冲电场作用

00εδε=ε

)t ()t (是常数

试用微扰论计算电子跃迁到各激发态的几率以及仍停留在基态的几率。

2、具有电荷q 的离子,在其平衡位置附近作一维简谐运动。在光的照射下发

生跃迁,入射光能量密度分布为)(ωρ,波长较长,求 (1)跃迁选择定则;

(2)设离原来处于基态,求跃迁到第一激发态的几率。

3、设把处于基态的氢原子放在平板电容器中,取平板法线方向为Z 轴方向,

电场沿Z 轴方向可视为均匀,设电容器突然充电,然后放电,电势随时间变化为

???>ε<=ετ

-0

000t e

t )t (/t (τ为常数)

求充分长的时间之后,氢原子跃迁到S 2态及p 2态的几率。

4、有一自旋2/ ,磁矩μ,电荷为零的粒子,置于磁场B

中,开始时

)B ,,(B B ,t 00000=== ,粒子处于z ?σ的本征态)(0

1,即0

1>-=σ。t z 时,再加上沿x 方向较弱的磁场),,,B (B 001=

从而)B ,,B (B B B 01100=+=

,求0>t 时,粒子的自旋态,以及测得自旋“向

上”)(z

1=σ的几率。

四、散射问题 1、用玻恩近似法,求在下列势中的散射微分截面 (1))a (e

V )r (V ar 02

0>=- (2))a (e V )

r (V ar

00>=-

2、用分波法公式,证明光学定量

T k

)(f Im σπ

=40

3、设势场,r /V )

r (V 20=用分波法求l 分波的相移。

4、质量为μ的粒子束,被球壳δ势场散射。

)a r (V )r (V -δ=0

在高能近似下,用玻恩近似法计算散射振幅和微分截面。 5、求各分波相移l δ,并和刚球散射的结果比较。

6、求中子一中子低能S )E (0→波散射截面,设两中子间的作用为

?

?

?>≤σ?σ=0

0210r a r V V

其中2100σσ>,,V 是两中子的pauli 自旋算符,

入射中子和靶中子都是未极化的。

7、实验发现,中子一质子低能S 波散射的散射振幅和散射截面与中子一质

子体系的自旋状态有关。对于自旋单态和自旋三重态,散射振幅分别为

cm

.f cm .f 12

212110

538010372--?=?-=

(1)分别求自旋单态和三重态的总散射截面;

(2)如入射中子)n (和质子)p (都是未极化的,求总截面;

(3)如入射中子自旋“向上”,质子靶自旋“向下”,求总截面,以及散射后,

p n 、自旋均转向相反方向的几率。

曾量子力学题库(网用).

曾谨言量子力学题库 一简述题: 1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别 2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以?为单位) 3. (1)试用Einstein 光量子假说解释光电效应 4. (1)试简述Bohr 的量子理论 5. (1)简述波尔-索末菲的量子化条件 6. (1)试述de Broglie 物质波假设 7. (2)写出态的叠加原理 8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。 9. (2)按照波函数的统计解释,试给出波函数应满足的条件 10.(2)已知粒子波函数在球坐标中为),,(?θψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(?θ方向的立体角元?θθΩd d d sin =中找到粒子的几率。 11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikr e r 1=ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。 15.(3)简述和解释隧道效应 16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。 17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念 20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值? 21.(4)若算符A ?、B ?均与算符C ?对易,即0]?,?[]?,?[==C B C A ,A ?、B ?、C ?是否可同时取得确定值?为什么?并举例说明。 22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。 23.(4)微观粒子x 方向的动量x p ?和x 方向的角动量x L ?是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式 25.(4)简述幺正变换的性质 26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在222 1)(x x V μω=的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ?dinger 方程。 28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。 29.(4)如果C B A ?,?,?均为厄米算符,下列算符是否也为厄米算符?

喀兴林高等量子力学习题6、7、8

练习 6.1 在ψ按A 的本征矢量{}i a 展开的(6.1)式中,证明若ψ 是归一化的,则 1=∑*i i i c c ,即A 取各值的概率也是归一化的。(杜花伟) 证明:若ψ是归一化的,则1=ψψ。根据(6.1)式 ∑=i i i c a ψ, ψi i a c = 可得 1===∑∑* ψψψψ i i i i i i a a c c 即A 取各值的概率是归一化的。 # 练习6.2 (1) 证明在定态中,所有物理量取各可能值的概率都不随时间变化,因而,所有物理量的平均值也不随时间改变. (2) 两个定态的叠加是不是定态? (杜花伟 核对:王俊美) (1)证明:在定态中i E i H i = , Λ3,2,1=i 则 ()t E i i i i t η -=ψ 所以 i A i e i A e A t E i t E i i i ==-η η ψψ. 即所有物理量的平均值不随时间变化. (2)两个定态的叠加不一定是定态.例如 ()()()t E i t E i e x v e x u t x 21,η η --+=ψ 当21E E =时,叠加后()t x ,ψ是定态;当21E E ≠时, 叠加后()t x ,ψ不是定态. # 6.3证明:当函数)(x f 可以写成x 的多项式时,下列形式上含有对算符求导的公式成立: ) (]),([)()](,[X f X i P X f P f P i P f X ?? =?? =ηη (解答:玉辉 核对:项朋) 证明:(1)

) ()()()()()()()()](,[P f P i P i P f P i P f P f P i P i P f P f P i X P f P Xf P f X ??=??-??+??=??-??=-=ηηηηηηψψ ψψψ ψψ ψψ 所以 )()](,[P f P i P f X ?? =η (2) ) () ()())(())(()()())(()()(]),([X f X i X f X i X i X f X i X f X f X i X i X f X Pf P X f P X f ??=?? --??--??-=?? --??-=-=ηηηηηηψψψψψ ψψ ψψ 所以 )(]),([X f X i P X f ?? =η # 练习6.4 下面公式是否正确?(解答:玉辉 核对:项朋) ),()],(,[P X f P i P X f X ?? =η 解:不正确。 因为),(P X f 是X 的函数,所以)],(,[P X f X =0 # 练习6.5 试利用Civita Levi -符号,证明:(孟祥海) (1)00=?=?L X ,L P (2)[]0=?P X L, (3)()()P X X P P X P X L ?-??-=ηi 22 2 2 证明: (1)∑∑∑∑=== ?ijk k j i ijk k j jk ijk i i i i i P X P P X P L P εε L P

量子力学习题集及解答

量子力学习题集及解答

目录 第一章量子理论基础 (1) 第二章波函数和薛定谔方程 (5) 第三章力学量的算符表示 (28) 第四章表象理论 (48) 第五章近似方法 (60) 第六章碰撞理论 (94) 第七章自旋和角动量 (102) 第八章多体问题 (116) 第九章相对论波动方程 (128)

第一章 量子理论基础 1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000 A (可见光),1 A (x 射线)以及0.001 A (γ射线)时,加速电子所需的电势差是多少? [解] 电子在电势差V 加速下,得到的能量是eV m =22 1 υ这个能量全部转化为一个光子的能量,即 λ νυhc h eV m ===221 ) (1024.1106.11031063.64 19834 A e hc V λλλ?=?????==∴--(伏) 当 A 50001=λ时, 48.21=V (伏) A 12=λ时 421024.1?=V (伏) A 001.03=λ时 731024.1?=V (伏) 2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。 [解] 普朗克公式为 1 8/33-?=kT hv v e dv c hv d πνρ 单位体积辐射的总能量为 ? ?∞∞-==0 0/331 3T hv v e dv v c h dv U κπρ 令kT hv y = ,则 4 40333418T T e dy y c h k U y σπ=? ??? ??-=?∞ (★) 其中 ?∞-=033341 8y e dy y c h k πσ (★★) (★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。这个公式就是斯忒蕃——玻耳兹曼公式。其中σ是比例常数,可求出如下: 因为 )1()1(1 121 +++=-=-------y y y y y y e e e e e e

周世勋 量子力学 卷一 第三版课后习题解答

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86' =? ??? ? ??-?+--?=-kT hc kT hc e kT hc e hc λλλλλπρ ? 011 5=-?+--kT hc e kT hc λλ ? kT hc e kT hc λλ=--)1(5 如果令x=kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ

把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ nm m m E c hc E h e e 71.01071.031051.021024.12296 6 2=?=????= ==--μμ 在这里,利用了 m eV hc ??=-61024.1 以及 eV c e 621051.0?=μ 最后,对 E c hc e 2 2μλ= 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。 1.3 氦原子的动能是kT E 2 3 = (k 为玻耳兹曼常数),求T=1K 时,氦原子的德布罗意波长。 解 根据 eV K k 3101-=?,

量子力学习题.(DOC)

量子力学习题 (三年级用) 山东师范大学物理与电子科学学院 二O O七年

第一部分 量子力学的诞生 1、计算下列情况的Broglie d e -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子 () 克2410671-?=μ .n ;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-?=μ.a ; (3)飞行速度为100米/秒,质量为40克的子弹。 2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 3、利用Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原子能 量可能值。

第二部分 波函数与Schr?dinger 方程 1、设()() 为常数a Ae x x a 222 1 -= ? (1)求归一化常数 (2).?p ?,x x == 2、求ikr ikr e r e r -=?=?1121和的几率流密度。 3、若() ,Be e A kx kx -+=? 求其几率流密度,你从结果中能得到什么样的 结论?(其中k 为实数) 4、一维运动的粒子处于 ()? ? ?<>=?λ-0 00x x Axe x x 的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。 5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证 0=υ?? 其中ρ= υ/j 6、一维自由运动粒子,在0=t 时,波函数为 ()()x ,x δ=?0 求: ?)t ,x (=?2

第三部分 一维定态问题 1、粒子处于位场 ()00 0000 ??? ?≥?=V x V x V 中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动) 2、一粒子在一维势场 ?? ???>∞≤≤<∞=0 000x a x x V ) x ( 中运动。 (1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ?态,证明:,/a x 2= () .n a x x ?? ? ??π-=-2222 6112 3、若在x 轴的有限区域,有一位势,在区域外的波函数为 如 D S A S B D S A S C 22211211+=+=

量子力学导论习题答案(曾谨言)

第五章 力学量随时间的变化与对称性 5.1)设力学量A 不显含t ,H 为本体系的Hamilton 量,证明 [][]H H A A dt d ,,2 2 2 =- 证.若力学量A 不显含t ,则有[]H A i dt dA ,1 =, 令[]C H A =, 则 [][]H C H C i dt C d i dt A d ,1 ,112 22 -===, [][]H H A A dt d ,, 2 2 2 =-∴ 5.2)设力学量A 不显含t ,证明束缚定态,0=dt dA 证:束缚定态为::() () t iE n n n e t -=ψψ,。 在束缚定态()t n ,ψ,有()()()t E t t i t H n n n n ,,,ψψψ=?? = 。 其复共轭为()()()t r E e r t i t r H n n t iE n n n ,,** * * ψψψ=?? -= 。 ??? ??=n n dt dA dt dA ψψ,()??? ??-??? ??-=??n n n n n n A A A dt d ψψψψψψ,,, ?? ? ??-??? ??-= n n n n H i A A H i dt dA ψψψψ 1,,1 []()()n n n n AH i HA i H A i t A ψψψψ,1 ,1,1 -++??= []()()n n HA AH i H A i ψψ--= ,1,1 [][]() 0,,1=-=A H H A i 。 5.3)(){} x x iaP x a a D -=? ?? ??? ??-=exp exp 表示沿x 方向平移距离a 算符.证明下列形式波函数(Bloch 波函数)()()x e x k ikx φψ=,()()x a x k k φφ=+ 是()a D x 的本征态,相应的本征值为ika e - 证:()()()() ()a x e a x x a D k a x ik x +=+=+φψψ ()()x e x e e ika k ikx ika ψφ=?=,证毕。

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

量子力学习题集及答案

09光信息量子力学习题集 一、填空题 1. 设电子能量为4电子伏,其德布罗意波长为( 6.125ο A )。 2. 索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振 子的能级=n E ( ηωn )。 3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍 射实验所证实,德布罗意关系(公式)为( ηω=E )和( k p ρηρ = )。 4. 三维空间自由粒子的归一化波函数为()r p ρ ρψ=( r p i e ρ ρη η?2 /3) 2(1π ), () ()=? +∞ ∞ -*'τψψd r r p p ρρρρ( )(p p ρ ρ-'δ )。 5. 动量算符的归一化本征态=)(r p ρ ρψ( r p i e ρ ρηη?2/3)2(1π ),=' ∞ ?τψψd r r p p )()(*ρρρρ( )(p p ρ ρ-'δ )。 6. t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 522 0)(2)(--+ )。 7. 按照量子力学理论,微观粒子的几率密度w =2 ),几率流密度= ( () ** 2ψ?ψ-ψ?ψμ ηi )。 8. 设)(r ρψ描写粒子的状态,2)(r ρψ是( 粒子的几率密度 ),在)(r ρψ中F ?的平均值为F =( ??dx dx F ψψψψ* *? ) 。 9. 波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ), δi e 不影响波函数ψ1=δi )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为 零)的状态。 11. )i exp()()i exp()(),(2211t E x t E x t x η η-+-=ψψψ是定态的条件是 ( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。 12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。 13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。 14. 3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 732 0)()(--+ )。 15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为

量子力学练习题

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E= kT 2 3(k 为 玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能 量E n = ,相应的波函数=)(x n ψ() a x a x n a n <<=0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6.132 -=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() ) +-'+'+∑ ≠0 2 0m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+ ∑ ≠00 2 0m m n n m mn n E E H ψ ψ , 其中微扰矩阵元 ' mn H =()() ?'τψψ d H n m 00?; 而 ' nn H 表示的物理意义是 。该方法的适用条件是 本征值, 。

曾量子力学题库网用

曾谨言量子力学题库 一简述题: 1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问 题上的差别 2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以?为单位) 3. (1)试用Einstein 光量子假说解释光电效应 4. (1)试简述Bohr 的量子理论 5. (1)简述波尔-索末菲的量子化条件 6. (1)试述de Broglie 物质波假设 7. (2)写出态的叠加原理 8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。 9. (2)按照波函数的统计解释,试给出波函数应满足的条件 10.(2)已知粒子波函数在球坐标中为),,(?θψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在 ),(?θ方向的立体角元?θθΩd d d sin =中找到粒子的几率。 11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikr e r 1= ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。 15.(3)简述和解释隧道效应 16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。 17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念 20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值? 21.(4)若算符A ?、B ?均与算符C ?对易,即0]?,?[]?,?[==C B C A ,A ?、B ?、C ?是否可同时取得确定值?为什么?并举例说明。 22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。 23.(4)微观粒子x 方向的动量x p ?和x 方向的角动量x L ?是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式 25.(4)简述幺正变换的性质 26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在222 1 )(x x V μω= 的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ?dinger 方程。 28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。 29.(4)如果C B A ?,?,?均为厄米算符,下列算符是否也为厄米算符?

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

最新量子力学导论习题答案(曾谨言)(1)

第九章 力学量本征值问题的代数解法 9—1) 在8.2节式(21)中给出了自旋(2 1)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于2 1,21===s j l j 的耦合。试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121 解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j j j ljm φ???? ??-+++=+11121 lm lm Y m l Y m l l () ????? ??-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-= j l j ljm φ???? ??++---=+11121 lm lm Y m l Y m l l () ????? ??+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b ) ()21++j l 此二式中的l 相当于CG 系数中的1j ,而2 12==s j ,21,~,,~21±=m m m m j 。 因此,(21a )式可重写为 jm ∑=222112 211m jm m j m j m j m j 2 12121212121212111111111--+=m j jm m j m j jm m j ??????? ? ??-???? ??++-???? ??++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 , 21111112212121??? ? ??++=+j m j jm m j 而2 12-=m 时,

高等量子力学习题.

高等量子力学习题 1、 对于一维问题,定义平移算符()a D x ,它对波函数的作用是() ()()a x x a D x -=ψψ,其中a 为实数。设()x ψ的各阶导数存在,试证明()dx d a x e i p a a D -=?? ? ??= ?exp 。 2、 当体系具有空间平移不变性时,证明动量为守恒量。 3、 若算符()x f 与平移算符()a D x 对易,试讨论()x f 的性质。 4、 给定算符B A ,,证明[][][]....,,! 21 ,++ +=-B A A B A B Be e A A ξξ。 5、 给定算符C B A 和、,存在对易关系[]C B A =,,同时[][]0,,0,==C B C A 。证明Glauber 公式C A B C B A B A e e e e e e e 2 12 1 ==-+。 6、 设U 为幺正算符,证明U 必可分解成iB A U +=,其中A 和B 为厄密算符,并满足 122=+B A 和[]0,=B A 。试找出A 和B ,并证明U 可以表示为iH e U =,H 为厄密 算符。 7、 已知二阶矩阵A 和B 满足下列关系:02 =A ,1=+++AA A A ,A A B + =。试证明 B B =2,并在B 表象中求出矩阵A 、B 。 8、 对于一维谐振子,求湮灭算符a ?的本征态,将其表示为谐振子各能量本征态n 的线性叠加。已知1?-=n n n a 。 9、 从谐振子对易关系[ ]1,=+ a a 出发,证明a e ae e a a a a λλλ--=+ +。 10、 证明谐振子相干态可以表示为 0*a a e ααα-+=。 11、 谐振子的产生和湮灭算符用a 和+ a 表示,经线性变换得+ +=va ua b 和 ++=ua va b ,其中u 和v 为实数,并满足关系122=-v u 。试证明:对于算符b 的任 何一个本征态,2 =???p x 。 12、 某量子体系的哈密顿量为,() 223 2 35++++= a a a a H ,其中对易关系[]1,=-≡++ + a a aa a a 。试求该体系的能量本征值。 13、 用+ a ?和a ?表示费米子体系的某个单粒子态的产生和湮灭算符,满足基本对易式

量子力学习题答案

量子力学习题答案

2.1 如图所示 左右 0 x 设粒子的能量为,下面就和两种情况来讨论 (一)的情形 此时,粒子的波函数所满足的定态薛定谔方程为 其中 其解分别为 (1)粒子从左向右运动 右边只有透射波无反射波,所以为零 由波函数的连续性 得 得 解得 由概率流密度公式 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得两个方程 解 反射系数 透射系数 (二)的情形 令,不变 此时,粒子的波函数所满足的定态薛定谔方程为 其解分别为

由在右边波函数的有界性得为零 (1)粒子从左向右运动 得 得 解得 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得方程 由于全部透射过去,所以 反射系数 透射系数 2.2 如图所示 E 0 x 在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为 总透射系数 2.3 以势阱底为零势能参考点,如图所示 (1) ∞∞ 左中右 0 a x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得

∴ ∴ 相应的 因为正负号不影响其幅度特性可直接写成由波函数归一化条件得 所以波函数 (2) ∞∞ 左 中右 0 x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得 当,为任意整数, 则 当,为任意整数, 则 综合得 ∴ 当时,, 波函数 归一化后 当时,, 波函数 归一化后 2.4 如图所示∞ 左右 0 a 显然 在中间和右边粒子的波函数所满足的定态薛定谔方程为 其中

量子力学习题汇集

第一章习题 1.证明下列算符等式 [][][][][][][][][][][][][][][]0 ,,,,,,,,,,,,,,,=+++=+=+=+B A C A C B C B A B C A C B A C AB C B A C A B BC A C A B A C B A 2.设粒子波函数为),,(z y x ψ,求在()dx x x +, 范围内找到粒子的几率. 3.在球坐标中,粒子波函数为()??ψ,,r ,试求: 1)在球壳(r,r+dr)中找到粒子的几率; 2)在()??,方向的立体角Ωd 中找到粒子的几率. 4.已知力学量F 的本征方程为 n n n F ?λ?= 求在状态波函数 332211???ψc c c ++= 下测力学量F 的可能值,相应的几率及平均值(假设波函数ψ已归一或不归一的情况). 第二章习题 1.一粒子在二维势场

???∞=,,0),(y x V 其它b y a x <<<<0,0 中运动,求粒子的能级和波函数.能级是否简并 2.由哈密顿算符 () 2232 22221222 2z y x m m H ωωω+++?-=η 所描述的体系,称各向异性谐振子.求其本征态和本征值. 3.利用递推关系 ??? ? ??--=+-1121 2)(n n n n n x dx d ψψαψ 证明 ( ) 222 22)2)(1()12()1(2 +-++++--=n n n n n n n n n dx d ψψψαψ 并由此证明在n ψ态下 2 ,0n E T P = = 第 四 章 习 题 1. 证明 )cos sin (cos ???i A +=ψ 为2L 和y L 的共同本征态,并求相应的本征值。说明当体系处在此状态时, z L 没有确定值。

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ?) ,故: 2e E P /(2)=μ 69h /p h /hc /1.2410/0.7110m 0.71nm --λ====?=?= 1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 102.07K 1K J 10381.12 3 2323123---?=????== kT E 于是有 一维谐振子处于22 /2 ()x x Ae αψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ= ==α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 22 2222 2222 2222 2 *2x /2 x /2 2 22 x /2 x /2 2 2x /2 2x /22 2 2 2 x 2 x /2 2 2 2 4 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞ -∞ ∞-α-α-∞∞-α-α-∞ ∞∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=-μ=--αμ =--α- -αμ = α = μ μ ? ? ? ? ? ? =()==2222 22 4x 22 2 4 x x 2 2 2 2 22 242 1()xd (e )21A (){xe e dx} 221A A ()242∞-α-∞∞∞-α-α-∞ -∞ α-α =α--- μαππααα--μμ α ?? 若α,则该态为谐振子的基态,T 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 222d 1 H x 2dx 2 =-+μω μ 它的基态能量01 E 2 = ω选择为参量,则: 0dE 1d 2=ω;22 2dH d 2d 2 ()T d dx 2dx =-=-=μμ dH 2 0T d = 由F-H 定理知:0dE dH 21 00T d d 2 ===ω 可得: 1 T 4 =ω

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

喀兴林高等量子力学习题EX2.算符教学提纲

喀兴林高等量子力学习题E X2.算符

EX2.算符 2.1证明下列常用公式 (陈玉辉解答 项鹏核对 ) (1)C B A C A B BC A ],[],[],[+= 证明: C B A C A B C BA AB CA AC B BAC ABC BCA BAC BCA ABC BC A ],[],[][][] ,[+=-+-=-+-=-= (2)B C A C B A C AB ],[],[],[+= 证明: B C A C B A B CA AC CB BC A CAB ACB ACB ABC CAB ABC C AB ],[],[][][],[+=-+-=-+-=-= 2.2 若算符B 与],[B A 对易,证明: (陈玉辉解答 项鹏核对 ) ],[],[1B A nB B A n n -= 证明:],[],[],[],[111---+=?=n n n n B A B B B A B B A B A 将n 换成(n-1),就有 ],[],[],[221---+=n n n B A B B B A B A ],[],[2],[],[],[],[2212211-----+=++=?n n n n n n B A B B B A B A B B B A B B A B A 重复这种递推过程(n-1)次,即得 ] ,[],[],)[1(] ,[],)[1(],[111)1(11B A nB B A B B B A n B A B B B A n B A n n n n n n n n -------=+-=+-= #

练习2.3 证明: (输入人:杜花伟 核对人:王俊美) (1)若A 有逆,a ≠0,则aA 也有逆,且1 11)(--= A a aA ; (2)若A,B 都有逆,则AB 也有逆,且111)(---=A B AB ; (3)})(1{)(111---+-=+B A B A B A ; (4)???+++=--------11121111)(BA BA A BA A A B A λλλ.(λ为复数); 证明:(1)若A 有逆,a ≠0,满足1,111==--aa AA ,则 11111==----AA aa A aAa 所以aA 有逆,且111)(--= A a aA . (2) 若A,B 都有逆,满足1,111==--BB AA ,则 1111==---AA A ABB 所以AB 有逆,且111)(---=A B AB . (3) } )(1{})())({(}))({(})({)()(111111 1 11111 ------------+-=+-++=+-+=+=+=+B A B A B A B B A B A A B A B B A A B A A A B A A A B A (4) 由于1)1(--χ(x 极小,即x →0时)展为级数: ???++++=--3211)1(χχχχ 故(? ??+++=???+++=-=-=----------------111211********* 11 )1() 1()]1([)(BA BA A BA A A BA BA BA A BA A BA A B A λλλλλλλ #

相关文档
最新文档