ARIMA模型-自回归移动平均模型

ARIMA模型-自回归移动平均模型
ARIMA模型-自回归移动平均模型

自回归AR模型、移动平均MA模型及自回归移动平均ARMA模型的比较分析

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析 系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。(自变量不直接含有时间变量,但隐含时间因素) 1.自回归AR(p)模型 (R:模型的名称P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素) (1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响) yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt 式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关; εt不同时刻互不相关,εt与yt历史序列不相关。 式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系; yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值; φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt依赖于过去的程度,且这种依赖关系恒定不变; εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通

过估计指定的模型获得。 (2)识别条件 当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。 实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。(3)平稳条件 一阶:|φ1|<1。二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。φ越大,自回归过程的波动影响越持久。 (4)模型意义 仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。 2.移动平均MA(q)模型 (1)模型形式 yt=εt-θ1εt-1-θ2εt-2-……-θpεt-p (2)模型含义 用过去各个时期的随机干扰或预测误差的线性组合来表达当前预测值。 AR(p)的假设条件不满足时可以考虑用此形式。

移动自回归平均模型分析中国股市价格走势

利用自回归移动平均模型分析中国股市价格走势 摘要:股市可以广泛地动员,积聚和集中社会的闲散资金,为国家经济建设发展服务,扩大生产建设规模,推动经济的发展,并收到“利用内资不借内债”的效果。也可以促进我国经济体制改革的深化发展,可以扩大我国利用外资的渠道和方式,增强对外的吸纳能力。 改革开放以来,经济发展为广大的投资者和人民大众带来很大的财富,因此投身股市的股民与机构越来越多。维持我国股市的正常运行,保障广大股民的利益,探究股票市场的发展规律,我们选取上海证券交易所的开盘价作为研究对象,通过建立ARMA 模型和GARCH 模型,对数据进行研究分析,研究股市价格走势与其前期的价格之间的联系。其结果对于引导投资者理性投资,认真分析股市走势具有一定的指导意义。 关键词:股票市场 自回归移动平均模型 价格走势 一、前言 改革开放以来,中国经济增长获得了令世人瞩目的成就。许多中外学者对中国经济增长的源泉进行了深入的研究,但是迄今为止各类研究多是侧重于各个时期投资水平或投资效率对经济增长的贡献,忽略了金融发展在经济增长中的作用,而金融部门对时间经济部门的影响举足轻重。众多学者从理论分析和实证检验的角度针对个体国家和多个国家以及不同行业和企业,并采用各种数据分析方法对金融发展与经济增长之间的关系进行深入和广泛的研究。 作为金融发展重要组成部分之一的股票市场自上世纪八十年代以来在全球范围内得到了日新月异的发展。我国证券市场从九十年代初建立以来也获得长足发展。股市发展对经济增长的促进作用大于传统的金融机构——银行的作用。本论文根据最近一段时间上证指数的收盘价(P )为数据来源,通过建立ARMA 模型和GARCH 模型,对数据进行研究分析,研究我国股票价格走势。这对于引导投资者理性投资具有一定的指导意义。 二、建立模型 首先要建立自回归移动平均模型,将上海证券交易所近日的收盘价作为时间序列数据,建立ARMA (p,q )模型为: t 11 22 1122 Y ... ... t t p t p t t q t q t c Y Y Y 建立的GARCH (p,q )模型为: 2 2222 2201122q 1122 p =+u u +u + t t t q t t t p …… 通过登录上海证券交易所网站,查询到上证指数连续交易日的每日收盘价(P ),从中选取自2012年2月15日到2012年4月27日之间共50个交易日的收盘价的相关数据,见表1-1所示。将数据导入Eviews 中,对数据进行相关分

基于ARIMA模型下的时间序列分析与预测

龙源期刊网 https://www.360docs.net/doc/e515424901.html, 基于ARIMA模型下的时间序列分析与预测 作者:万艳苹 来源:《金融经济·学术版》2008年第09期 摘要:大多数的时间序列存在着惯性,或者说具有迟缓性。通过对这种惯性的分析,可以由时间序列的当前值对其未来值进行估计。本文以1949年到2004年江苏省社会消费品零售总额数据为研究对象,将这些数据平稳化并做分析,发现ARIMA(1,1,2)模型能比较好的对江苏省社会消费品零售总额进行市时间序列分析和预测,。 关键词:ARIMA;江苏省消费品零售总额;时间序列分析 一、引言 江苏省是一个经济大省,经济一直保持平稳较快增长,城乡居民收入都位于全国前茅,消费品需求旺盛,人们生活水平比较高。其中社会消费品零售总额是反映人民生活水平提高的一个很好的指标。所以对社会消费品零售总额做分析就比较重要。但是影响社会消费品零售总额的因素有很多,包括收入、住房、医疗、教育以及人们的预期等很多因素,而且这些因素之间又保持着错综复杂的联系。因此运用数理经济模型来分析和预测较为困难。所以本文采用ARIMA模型对江苏省的社会消费品零售总额进行分析,得出其规律性,并预测其未来值。 二、ARIMA模型的说明和构建 ARIMA模型又称为博克斯-詹金斯模型。ARIMA模型是由三个过程组成:自回归过程(AR(p));单整(I(d));移动平均过程(MA(q))。AR(p)即自回归过程,是指一个过程的当前值是过去值的线性函数。如:如果当前观测值仅与上期(滞后一期)的观测值有显著的线性函数关系,则我们就说这是一阶自回归过程,记作AR(1)。推广之,如果当前值与滞后p期的观测值都有线性关系则称p阶自回归过程,记作AR(p)。MA(q),即移动平均过程,是指模型值可以表示为过去残差项(即过去的模型拟合值与过去观测值的差)的线性函数。如:MA(1)过程,说明时间序列受到滞后一期残差项的影响。推广之,MA(q)是指时间序列受到滞后q期残差项的

自回归移动平均模型

第二章 自回归移动平均模型 一些金融时间序列的变动往往呈现出一定的平稳特征,由Box 和Jenkins 创立的ARMA 模型就是借助时间序列的随机性来描述平稳序列的相关性信息,并由此对时间序列的变化进行建模和预测。 第一节 ARMA 模型的基本原理 ARMA 模型由三种基本的模型构成:自回归模型(AR ,Auto-regressive Model ),移动平均模型(MA ,Moving Average Model )以及自回归移动平均模型(ARMA ,Auto-regressive Moving Average Model )。 2.1.1 自回归模型的基本原理 1.AR 模型的基本形式 AR 模型的一般形式如下: t p t p t t t y y y y εφφφ+++++=---Λ2211c 其中,c 为常数项, p φφφΛ21, 模型的系数,t ε为白噪声序列。我们称上述方程为p 阶自回归模型,记为AR(p )。 2.AR 模型的平稳性 此处的平稳性是指宽平稳,即时间序列的均值,方差和自协方差均与时刻无关。即若时间序列}{t y 是平稳的,即μ= )(t y E ,2)(σ=t y Var ,2),(s s t t y y Cov σ=-。 为了描述的方便,对式(2.1)的滞后项引入滞后算子。若1-=t t x y ,定义算子“L ”,使得1 -==t t t x Lx y , L 称为滞后算子。由此可知,k t t k x x L -=。 对于式子(2.1),可利用滞后算子改写为: t t p p t t t y L y L Ly y εφφφ+++++=Λ221c 移项整理,可得: t t p p y L L L εφφφ+=----c )1(221Λ AR(p )的平稳性条件为方程012 21=----p p L L L φφφΛ的解均位于单位圆外。 3.AR 模型的统计性质 (1)AR 模型的均值。 假设AR(p )模型是平稳的,对AR(p )模型两边取期望可得: ) c (E )(Ε2211t p t p t t t y y y y εφφφ+++++=---Λ 根据平稳序列的定义知,μ=)(E t y ,由于随即干扰项为白噪声序列,所以0)(E =t ε,因此上式可化简为: 021)1(φμφφφ=----p Λ 所以,p φφφφμ----= Λ210 1

实验三:ARIMA模型建模与预测实验报告

课程论文 (2016 / 2017学年第 1 学期) 课程名称应用时间序列分析 指导单位经济学院 指导教师易莹莹 学生姓名班级学号 学院(系) 经济学院专业经济统计学

实验三ARIMA 模型建模与预测实验指导 一、实验目的: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念: 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验任务: 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验要求: 实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。 实验题:对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。

移动平均法简单应用

移动平均法 移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。 1. 移动平均法的基本理论①简单移动平均法 设有一时间序列,则按数据点的顺序逐点推移求出N个数的平均数,即可得到一次移动平均数: 式中为第t周期的一次移动平均数;为第t周期的观测值;N为移动平均的项数,即求每一移动平均数使用的观察值的个数。 这个公式表明当t向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数。由于它不断地“吐故纳新”,逐期向前移动,所以称为移动平均法。 由于移动平均可以平滑数据,消除周期变动和不规则变动的影响,使得长期趋势显示出来,因而可以用于预测。其预测公式为: 即以第t周期的一次移动平均数作为第t+1周期的预测值。 ②趋势移动平均法当时间序列没有明显的趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期的一次移动平均数就可预测第t+1周期之值。但当时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。因此,需要进行修正,修正的方法是在一次移动平均的基础上再做二次移动平均,利用移动平均滞后偏差的规律找出曲线的发展方向和发展趋势,然后才建立直线趋势的预测模型。故称为趋势移动平均法。 设一次移动平均数为,则二次移动平均数的计算公式为: 再设时间序列从某时期开始具有直线趋势,且认为未来时期亦按此直线趋势变化,则可设此直线趋势预测模型为: 式中t为当前时期数;T为由当前0时期数t到预测期的时期数,即t以后模型外推 的时间;为第t+T期的预测值;为截距;为斜率。,又称为平滑系数。

季节ARIMA模型建模与预测实验指导

季节ARIMA模型建模与预测实验指导

————————————————————————————————作者: ————————————————————————————————日期: ?

实验六季节ARIMA模型建模与预测实验指导 学号:20131363038 姓名:阙丹凤班级:金融工程1班 一、实验目的 学会识别时间序列的季节变动,能看出其季节波动趋势。学会剔除季节因素的方法,了解ARIMA模型的特点和建模过程,掌握利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。 二、实验内容及要求 1、实验内容: 根据美国国家安全委员会统计的1973-1978年美国月度事故死亡率数据,请选择适当模型拟合该序列的发展。 2、实验要求: (1)深刻理解季节非平稳时间序列的概念和季节ARIMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测; (3)熟练掌握相关Eviews操作。 三、实验步骤 第一步:导入数据 第二步:画出时序图

6,000 7,000 8,000 9,000 10,000 11,000 12,000 510152025303540455055 606570 SIWANGRENSHU 由时序图可知,死亡人数虽然没有上升或者下降趋势,但由季节变动因素影响。 第三步:季节差分法消除季节变动 由时序图可知,波动的周期大约为12,所以对原序列作12步差分,得到新序列如下图所示。

3移动平均法

第二节移动平均法 移动平均法是根据时间序列资料,逐项推移,依次计算包含二定项数的序时平均数,以反映长期趋势的方法。当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析,预测序列的长期趋势。 移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法,分别介绍如下: 一简单移动平均法 设时间序列为Y1,Y2,……YT……;简单移动平均法公式为: 式中:Mt为t期移动平均数;N为移动平均数的项数. 这公式表明:当T向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数. ∴t-1+ M t=M t-1 这是它的递堆公式。当N较大时,利用递堆公式可以大大减少计算量。 由于移动平均可以平滑数据,消除周期变动和不规则变动的影响使长期趋势显示出来,因而可以用于预测: 预测公式为:y t+1=M t 即以第t期移动平均数作为第t+1期的预测值。 例1:某市汽车配件销售公司,某年1月至12月的化油器销量如表4-1所示。试用简单移动平均法,预测下年1月的销售量。 解:分别取N=3和N=5按列预公式 y t = y t+1= 计算3个月和5个月移动平均预测值,其结果如表: y t-y t-N y t-y t-N ^ ^ y t+y t-1+y t-2 3 y t+y t-1+y t-2+y t-3+y t-4 ^ 5

1002003004005006001 2 3 4 5 6 7 8 9101112 实际销售量3个月移动平均预测值 5个月移动平均预测值 由图可以看出,实际销售量的随机波动比较大,经过移动平均法计算以后,随即波动显著减小,即消除随机干扰。而且求取平均值所用的月数越多,即N 越大,修匀的程度也越大,波动也越小。但是,在这种情况下,对实际销售量真实的变化趋势反应也越迟钝。 反之,如果N 取的越小,对销售量真实变化趋势反应越灵敏,但修匀性越差,从而把随机干扰作为趋势反映出来。 因此,N 的选择甚为重要,N 应取多大,应根据具体情况作出抉择,当N 等于周期变动的周期时,则可消除周期变动影响。 在实用上,一个有效的方法是:取几个N 值进行试算,比较它们的平均预测误差,从中选择最优的。 如:在本例中,要确定化油器销售量预测,究竟是取3合适还是取5合适,可通过计算这两个预测公式的均方误差MSE ,选择MSE 较小的那个N 。

股票预测模型【运用ARIMA模型预测股票价格】

股票预测模型【运用ARIMA模型预测股票价格】 [摘要]ARIMA模型是时间序列中十分常见和常用的一种模型,应用与经济的各个领域。本文基于ARIMA模型,采用了莱宝高科近67个交易日的数据,对历史数据进行分析,并且在此基础上做出一定的预测,试图为现实的投资提供一些参考信息。[关键字]ARIMA模型;股价预测;莱宝高科一、引言时间序列分析是从一段时间上的一组属性值数据中发现模式并预测未来值的过程。ARIMA模型是目前最常用的用于拟合非平稳序列的模型,对于满足有限参数线形模型的平稳时间序列的分析,ARIMA在理论上已趋成熟,它用有限参数线形模型描述时间序列的自相关结构,便于进行统计分析与数学处理。有限参数线形模型能描述的随机现象相当广泛,模型拟合的精度能达到实际工程的要求,而且由有限参数的线形模型结构可推导出适用的线形预报理论。利用ARIMA 模型描述的时间序列预报问题在金融,股票等领域具有重要的理论意义。本文将利用ARIMA模型结合莱宝高科的数据建立模型,并运用该模型对莱宝的股票日收盘价进行预测。二、ARIMA模型的建立 2.1ARIMA模型简介ARIMA是自回归移动平均结合模型的简写形式,用于平稳序列或通过差分而平稳的序列分析,简记为ARIMA(p,d,q)用公式表示为:△dZt=Xt=ψ1Xt-1+ψ2Xt-2+?+ψpXt-p+at-θ1at-1-θ2at-2-?-θqat-q 其中,p、d、q分别是自回归阶数、差分阶数和滑动平均阶数;Zt是时间序列;Xt是经过d阶差分后的时间序列值;at-q是时间为t-q的随机扰动项;ψp、θq分别是对应项前的系数。 2.2模型建立流程(1)平稳性检验以2010-3-4到2010-6-10的“莱宝高科”(002106)股票的收盘价作为模型的数据进行建立时间序列模型:做出折线图观察数据的特征:进行单位根检验,判别序列是否为平稳序列;若一阶差分后的数据为平稳序列,可以建立时间序列模型。说明原数据为一阶单整。(2)模型的选择和参数的估计根据数据的平稳性特征,初步确定建立ARIMA模型。观察一阶差分以后的序列的自相关函数和偏自相关

自回归分布滞后模型

案例六自回归分布滞后模型(ADL)的运用实验指 导 一、实验目的 理解ADL模型的原理与应用条件,学会运用ADL模型来估计变量之间长期稳定关系。理解从经济理论上来说,两个经济变量之间的确有长期关系采用使用该模型进行估计。理解ADL模型的优点:不管回归项是不是1阶单整或平稳都可以进行检验和估计。而进行标准的协整分析前,必须把变量分类成 和 。 二、基本概念 Jorgenson(1966)提出的( )阶自回归分布滞后模型ADL(autoregressive distributed lag): ,其中 是滞后 期的外生变量向量(维数与变量个数相同),且每个外生变量的最大滞后阶数为 , 是参数向量。当不存在外生变量时,模型就退化为一般ARMA( )模型。 如果模型中不含有移动平均项,可以采用OLS方法估计参数,若模型中含有移动平均项,线性OLS估计将是非一致性估计,应采用非线性最小二乘估计。

三、实验内容及要求 (1)实验内容 运用ADL模型研究1992年1月到1998年12月我国城镇居民月对数人均生活费支出yt和对数可支配收入xt之间的长期稳定关系。 (2)实验要求 在认真理解模型应用条件的基础上,通过实验掌握ADL模型的实际应用方法,并熟悉Eniews的具体操作过程。 四、实验指导 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated-regular frequency”,在“Data specification”栏中“Frequency”中选择“Monthly”即月份数据,起始时间输入1992m1即1992年1月份,止于1998m12,点击ok,见图6-1,这样就建立了一个工作文件。 图6-1 建立工作文件窗口

R 语言环境下用ARIMA模型做时间序列预测

R 语言环境下使用ARIMA模型做时间序列预测 1.序列平稳性检验 通过趋势线、自相关(ACF)与偏自相关(PACF)图、假设检验和因素分解等方法确定序列平稳性,识别周期性,从而为选择适当的模型提供依据。 1.1绘制趋势线 图1 序列趋势线图 从图1很难判断出序列的平稳性。 1.2绘制自相关和偏自相关图

图2 序列的自相关和偏自相关图

从图2可以看出,ACF拖尾,PACF1步截尾(p=1),说明该现金流时间序列可能是平稳性时间序列。 1.3 ADF、PP和KPSS 检验平稳性 图3 ADF、PP和KPSS检验结果 通过ADF检验,说明该现金流时间序列是平稳性时间序列(p-value for ADF test <0.02,拒绝零假设).pp test和kpss test 结果中的警告信息说明这两种检验在这里不可用。但是这些检验没有充分考虑趋势、周期和季节性等因素。下面对该序列进行趋势、季节性和不确定性因素分解来进一步确认序列的平稳性。 1.4 趋势、季节性和不确定性因素分解 R 提供了两种方法来分解时间序列中的趋势、季节性和不确定性因素。第一种是使用简单的对称过滤法,把相应时期内经趋势调整后的观察值进行平均,通过decompose()函数实现,如图4。第二种方法更为精确,它通过平滑增大规模后的观察值来寻找趋势、季节和不确定因素,利用stl()函数实现。如图5。

图4 decompose()函数分解法 图5 stl()函数分解法 两种方法得到的结果非常相似。从上图可以看出,该现金流时间序列没有很明显的长期趋势。但是有明显的季节性或周期性趋势,经分解后的不确定因素明显减少。

自回归移动平均模型

第二章 自回归移动平均模型 一些金融时间序列的变动往往呈现出一定的平稳特征,由Box 和Jenkins 创立的ARMA 模型就是借助时间序列的随机性来描述平稳序列的相关性信息,并由此对时间序列的变化进行建模和预测。 第一节 ARMA 模型的基本原理 ARMA 模型由三种基本的模型构成:自回归模型(AR ,Auto-regressive Model ),移动平均模型(MA ,Moving Average Model )以及自回归移动平均模型(ARMA ,Auto-regressive Moving Average Model )。 2.1.1 自回归模型的基本原理 1.AR 模型的基本形式 AR 模型的一般形式如下: t p t p t t t y y y y εφφφ+++++=---Λ2211c 其中,c 为常数项, p φφφΛ21, 模型的系数,t ε为白噪声序列。我们称上述方程为p 阶自回归模型,记为AR(p )。 2.AR 模型的平稳性 此处的平稳性是指宽平稳,即时间序列的均值,方差和自协方差均与时刻无关。即若时间序列}{t y 是平稳的,即μ= )(t y E ,2)(σ=t y Var ,2),(s s t t y y Cov σ=-。 为了描述的方便,对式(2.1)的滞后项引入滞后算子。若1-=t t x y ,定义算子“L ”,使得1 -==t t t x Lx y , L 称为滞后算子。由此可知,k t t k x x L -=。 对于式子(2.1),可利用滞后算子改写为: t t p p t t t y L y L Ly y εφφφ+++++=Λ221c 移项整理,可得: t t p p y L L L εφφφ+=----c )1(221Λ

一次移动平均法

一次移动平均法 一次移动平均法(Single moving average) [编辑] 什么是一次移动平均法 一次移动平均方法是收集一组观察值,计算这组观察值的均值,利用这一均值作为下一期的预测值。是对时间序列的数据按一定跨越期进行移动,逐个计算其移动平均值,取最后一个移动平均值作为预测值的方法。 一次移动平均法是直接以本期(t期)移动平均值作为下期(t+1期)预测值的方法。在移动平均值的计算中包括的过去观察值的实际个数,必须一开始就明确规定。每出现一个新观察值,就要从移动平均中减去一个最早观察值,再加上一个最新观察值,计算移动平均值,这一新的移动平均值就作为下一期的预测值。 一次移动平均法一般适用于时间序列数据是水平型变动的预测。不适用于明显的长期变动趋势和循环型变动趋势的时间序列预测。 [编辑] 一次移动平均法的特点 一次移动平均法有三个特点: ①预测值是离预测期最近的一组历史数据(实际值)平均的结果;

②参加平均的历史数据的个数(即跨越期数)是固定不变的; ③参加平均的一组历史数据是随着预测期的向前推进而不断更新的,每当吸收一个新的历史数据参加平均的同时,就剔除原来一组历史数据中离预测期最远的那个历史数据。 [编辑] 一次移动平均法的预测模型 一次移动平均法的预测模型为: 式中:x t + 1:为t+1期的预测值; :为第t期一次移动平均值; n:跨越期数,即参加移动平均的历史数据的个数。 [编辑] 一次移动平均法的两种极端情况 1、在移动平均值的计算中包括的过去观察值的实际个数N=1,这时利用最新的观察值作为下一期的预测值; 2、N=n,这时利用全部n个观察值的算术平均值作为预测值。 当数据的随机因素较大时,宜选用较大的N,这样有利于较大限度地平滑由随机性所带来的严重偏差;反之,当数据的随机因素较小时,宜选用较小的N,这有利于跟踪数据的变化,并且预测值滞后的期数也少。 设时间序列为:X 1,X2,...,移动平均法可以表示: 式中: X_t为最新观察值;

AR,MA,ARIMA模型介绍及案例分析

BOX-JENKINS 预测法 1 适用于平稳时序的三种基本模型 (1)()AR p 模型(Auto regression Model )——自回归模型 p 阶自回归模型: 式中,为时间序列第时刻的观察值,即为因变量或称被解释变量;, 为时序的滞后序列,这里作为自变量或称为解释变量;是随机误 差项;,,,为待估的自回归参数。 (2)()MA q 模型(Moving Average Model )——移动平均模型 q 阶移动平均模型: 式中,μ为时间序列的平均数,但当{}t y 序列在0上下变动时,显然μ=0,可删除此项;t e ,1t e -,2t e -,…,t q e -为模型在第t 期,第1t -期,…,第t q -期 的误差;1θ,2θ,…,q θ为待估的移动平均参数。 (3)(,)ARMA p q 模型——自回归移动平均模型(Auto regression Moving Average Model ) 模型的形式为: 显然,(,)ARMA p q 模型为自回归模型和移动平均模型的混合模型。当q =0,时,退化为纯自回归模型()AR p ;当p =0时,退化为移动平均模型()MA q 。 2 改进的ARMA 模型 (1)(,,)ARIMA p d q 模型 这里的d 是对原时序进行逐期差分的阶数,差分的目的是为了让某些非平稳(具有一定趋势的)序列变换为平稳的,通常来说d 的取值一般为0,1,2。 对于具有趋势性非平稳时序,不能直接建立ARMA 模型,只能对经过平稳化处理,而后对新的平稳时序建立(,)ARMA p q 模型。这里的平文化处理可以是差分处理,也可以是对数变换,也可以是两者相结合,先对数变换再进行差分处理。 (2)(,,)(,,)s ARIMA p d q P D Q 模型 对于具有季节性的非平稳时序(如冰箱的销售量,羽绒服的销售量),也同样需要进行季节差分,从而得到平稳时序。这里的D 即为进行季节差分的阶数; ,P Q 分别是季节性自回归阶数和季节性移动平均阶数;S 为季节周期的长度, 如时序为月度数据,则S =12,时序为季度数据,则S =4。 在SPSS19.0中的操作如下

实验指导书ARIMA模型建模与预测范本

实验指导书ARIMA 模型建模与预测

实验指导书(ARIMA模型建模与预测) 例:中国1952- 的进出口总额数据建模及预测 1、模型识别和定阶 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1952,终止年输入,文件名输入“im_ex”,点击ok,见下图,这样就建立了一个工作文件。 在workfile中新建序列im_ex,并录入数据(点击File/Import/Read Text-Lotus-Excel…, 找到相应的Excel数据集,打开数据集,出现如下图的窗口,

在“Data order”选项中选择“By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,因此在“Upper-left data cell”中输入B15,本例只有一列数据,在“Names for series or number if named in file”中输入序列的名字im_ex,点击ok,则录入了数据): (2)时序图判断平稳性 双击序列im_ex,点击view/Graph/line,得到下列对话框:

得到如下该序列的时序图,由图形能够看出该序列呈指数上升趋势,直观来看,显著非平稳。 IM_EX 240,000 200,000 160,000 120,000 80,000 40,000 556065707580859095000510 (3 因为数据有指数上升趋势,为了减小波动,对其对数化,在Eviews命令框中输入相应的命令“series y=log(im_ex)”就得到对数序列,其时序图见下图,对数化后的序列远没有原始序列波动剧烈:

实验指导书(ARIMA模型建模与预测)

实验指导书(ARIMA 模型建模与预测) 例:我国1952-2011年的进出口总额数据建模及预测 1、模型识别和定阶 (1)数据录入 打开 Eviews 软件,选择"File ”菜单中的"New--Workfile ”选项,在"Workfile structure type ”栏选择"Dated -regular frequency ”,在"Date specification ”栏中 分别选择“ Annual ” (年数据),分别在起始年输入 1952,终止年输入 2011,文件名输入 “im_ex ”,点击ok ,见下图,这样就建立了一个工作文件。 在 workfile 中新建序列im_ex , 并录入数据 (点击 File/Import/Read Text-Lotus-Excel …, File | Edit Object View 卩 iroc Quick Options Window Help New ? □pen i Save Fetch from DB... T5D Fi le Im port-. DRI Bask Economics Database... Read Text-Lctu s-Excel... 找到相应的Excel 数据集,打开数据集,出现如下图的窗口,在“ Data order ”选项中 选择“ By observation-series in columns ”即按照观察值顺序录入,第一个数据是从 B15 开始的,所以在“ Upper-left data cell ”中输入B15,本例只有一列数据,在“ Namesfor series or number if named in file ”中输入序列的名字 im_ex ,点击ok ,则录入了数据): import Ex port Print PtFrtl Setup-.,.

时间序列上机实验-ARIMA模型的建立(季节乘积模型)

实验二 ARIMA 模型的建立 一、实验目的 熟悉ARIMA 模型,掌握利用ARIMA 模型建模过程,学会利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及学会利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念 ARIMA 模型,即将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容 (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的2000年1月到2011年10月美国的失业率数据建立ARIMA (,,p d q )模型,并利用此模型进行失业率的预测。 四、实验要求: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。 五、实验步骤 (1) 输入原始数据 打开Eviews 软件,选择“File ”菜单中的“New--Workfile ”选项,在“Workfile structure type ”栏中选择“Dated-regular frequency ”,在“Frequency ”栏中选择“Monthly ”,分别在起始月输入1991.01,终止月输入2010.12,点击ok ,见图1。再建立一个New object ,将选取的x 的月度数据复制进去 。

R语言计算移动平均的方法

R计算移动平均的方法 移动平均可以使时间序列变平滑,是典型的有序计算问题,其基本算法是:将N个连续的时间序列成员作为一个集合,计算该集合的平均值,并逐项推移该集合。下面用一个例子来说明R计算移动平均的方法。 案例描述: 数据框sales有两个字段:日期和当日销售额,需要计算三日移动平均值。具体算法是:求出前一日、当日、后一日的销售额平均值,并逐日推移。部分源数据如下: filter(sales$Amount/3, rep(1, 3)) R语言可以用函数filter计算移动平均值,代码简短,非常方便。 函数filter虽然很方便,但初学者却不易理解。比如sales$Amount/3的本意是将Amount 字段中的当前值除以3,但用在filter函数里却能将前后三个值相加再除以三。表达式rep(1,3)的值为[1,1,1],用在这里却能指定取数范围。另外,filter的函数名和参数名中既没有“平均”,也没有“移动”,许多R语言开发者都不知道它可以用来计算移动平均值。 事实上,函数filter是个通用的线性过滤器,它的作用不止计算移动平均值这么简单。其完整的函数说明如下:filter(x, filter, method = c("convolution", "recursive"),sides = 2, circular = FALSE, init)。 如果想改动一下算法,代码就会更难理解,比如要计算当日、前一日、前两日这三天的移动平均值,不能写成:filter(sales$Amount/3, rep(0,2)),而应该是filter(sales$Amount/3, rep(1,3), sides = 1)。 总结: R语言可以计算移动平均值,但代码难理解。 第三方解决方案 本案例也可以用Python、集算器、Perl等语言来实现。和R语言一样,这几种语言都可以进行数据的统计分析,都可以计算移动平均值,下面简单介绍Python和集算器的解决方案。 Python(pandas)

ARIMA模型预测GDP 刘春锋的论文请勿作抄袭使用

基于ARIMA模型对河南省2010年GDP预 测 摘要:ARIMA模型是对ARMA模型的差分得到的平稳时间序列模型,具有序列相关性,本文收集了1978-2009年河南省GDP数据,根据ARIMA模型的性质、利用统计软件对河南省2010年GDP进行预测。 关键字:平稳性、ARMA模型、ARIMA模型 由于2008年金融海啸的全面性的爆发,我国的整体经济水平难免呈现不良的发展趋势,4万亿的救市计划,终于达到2009年的保八目标。在这个时候如果对我国GDP进行预测,难免有些偏差,因此本文选择受金融危机影响较小、地处中原、经济持续平稳增长的河南省为例,收集改革开放30年来的数据对2010年的GDP进行预测。GDP时间序列具有明显的增长趋势,因此ARMA模型显然的不稳定的,基于ARMA模型进行差分,发现二次差分的结果不仅稳定,而且表示出良好的序列相关性,所以能用ARMIMA模型对为例GDP 进行预测。比较原始值GDP和预测值GDPF,两曲线吻合的比较好。 一、ARIMA模型的建立 时间序列模型有四种:自回归模型AR、移动平均模型MA、自回归移动平均模型ARMA、自回归差分移动平均模型ARIMA,可以

说前三种都是ARIMA 模型的特殊形式。 1. 自回归模型AR(p) p 阶自回归模型记作AR(p),满足下面的方程: t p t p t t t y y y c y εφφφ+++++=--- 2211 其中:参数 c 为常数;1,2 ,…,p 是自回归模型系数;p 为自回归模型阶数;t ε是均值为0方差为 2σ 的白噪声序列。 2. 移动平均模型MA(q) q 阶移动平均模型记作MA(q) ,满足下面的方程: q t q t t t y ---+++=εθεθεθμ 2211 其中:参数μ为常数;q θθθ,,,21 是 q 阶移动平均模型的系数; t ε是均值为0,方差为2σ 的白噪声序列。 3. ARMA(p,q)模型 q t q t t p t p t t y y c y ----++++++=εθεθεφφ 1111 显然此模型是模型AR(p)与MA(q)的组合形式,称为混合模型,常记作ARMA(p,q)。当 p=0 时,ARMA(0, q) = MA(q);当q = 0时,ARMA(p, 0) = AR(p)。 4. ARIMA (p,d,q )模型 对于非平稳序列,经过几次差分后,如果能得到平稳的时间序列,就称这样的序列为单整序列。设t y 是 d 阶单整序列,记作:t y ~ I(d),则 t d t d t y L y w )1(-=?= t w 为平稳序列,即t w ~ I(0) ,于是可以对t w 建立ARMA(p,q) 模

自回归综合移动平均预测模型

自回归综合移动平均预测模型 数据采集 本文选取了2011年某省电力系统从1月1日开始之后80天的电力负荷观测,如表一。 第n天 负荷量第n天负荷量第n天负荷量第n天负荷量 1 2565957.38 21 2705368.6 41 2429907.99 61 2743833.56 2 2588923.0 3 22 2677964.55 42 2476962.26 62 2736933.52 3 2595037.39 23 2667444.01 43 2576255. 4 63 2773791.8 4 2621899.1 5 24 2659986.34 44 2614097.2 64 2748178.37 5 2605604.4 25 2646095.54 45 2680843.85 65 2737334.22 6 2597404.13 26 2652315.14 46 2775056.43 66 2720053.61 7 2363386.42 27 2641570.43 47 2728907.25 67 2700061.15 8 2620185.38 28 2584430.88 48 2611172.72 68 2709553.04 9 2615940.83 29 2474001.24 49 2601989.82 69 2681309.47 10 2615480.96 30 2396095.97 50 2668757.4 70 2683185.56 11 2612348.58 31 2288598.13 51 2677390.06 71 2661837.7 12 2610054.23 32 2166399.62 52 2695802.63 72 2644097.64 13 2610964.36 33 2062979.7 53 2689571.21 73 2685694.93 14 2637653.21 34 1997281.18 54 2654423.52 74 2702991.02 15 2633388.14 35 1925136.26 55 2642984.00 5 75 2687024.37 5 16 2640311.3 36 1970438.06 56 2712142.78 76 2680354.45 17 2678530.11 37 1976557.67 8 57 2754918.32 77 2682596.37 18 2687189.9 38 2050309.54 58 2758839.28 78 2695560.6 19 2694733.01 39 2154488.52 59 2817728.94 79 2674342.97 20 2709637.21 8 40 2384011.84 60 2759327.72 80 2685891.98 表1 数据处理 利用spass绘制时间序列原始数据的散点图

相关文档
最新文档