氢氧化镁阻燃剂的现状和发展_杨华明

氢氧化镁阻燃剂的现状和发展_杨华明
氢氧化镁阻燃剂的现状和发展_杨华明

氢氧化镁阻燃剂的现状和发展

杨华明1,周灿伟1,李云龙2,杨武国1,杜春芳1

(1.中南大学资源生物学院,湖南 长沙 410083;2.长沙大学,湖南 长沙 410003)

 

[摘 要] 本文讨论了无机阻燃剂的特点和存在的问题,分析了氢氧化镁阻燃剂的特性、阻燃机理,综述了氢氧化镁的国内外应用标准,详细分析了氢氧化镁针对应用于聚合物特点的改性技术,指出了氢氧化镁阻燃剂的发展前景。

[关键词] 氢氧化镁;阻燃剂;阻燃机理;改性

[中图分类号] TB383 [文献标识码] A [文章编号] 1007-9386(2004)05-0081-04

1 前言 

聚合物材料目前已广泛应用于交通、运输、建筑、电子电气、化工等领域,在国民经济建设中发挥着巨大作用。但是,绝大多数高聚物都是易燃品,它们在燃烧过程中产生的热量大、温度高、燃烧不完全生成的黑烟、释放出的有毒的腐蚀性气体给消防和救生工作带来困难。为了解决和消除这一隐患,阻燃剂应运而生。聚合物的阻燃技术,除直接选用氧指数高、发热量小的聚合物材料之外,目前最直接的办法是添加阻燃剂。无机阻燃剂中氧化锑类开发最早,但价格较高。从阻燃剂发展趋势来看,以高效、价廉、无污染为特征的无机类阻燃剂符合世界各国环保型材料发展的要求。无机阻燃剂的研究方向是:①非卤化,含卤阻燃剂燃烧时会释放出对人体有害的气体;②超细化,阻燃剂颗粒越细,对材料的物理机械性能影响越小;③对阻燃剂进行表面处理,以增强它们与一些高聚物的亲和力;④阻燃剂的协同效应,将阻燃剂复配以降低同一阻燃效果下阻燃剂用量。

氢氧化镁是近年来开发的一种新型无机阻燃剂,它具有热稳定性好、不挥发、不产生有毒气体、不腐蚀加工设备、价格便宜等优点。由于火灾中有80%由烟窒息死亡,因此阻燃剂技术中“抑烟”比“阻燃”更为重要。氢氧化镁属于添加型无机阻燃剂,与同类无机阻燃剂相比,具有更好的抑烟效果。氢氧化镁在生产、使用和废弃过程中均无有害物质排放,而且还能中和燃烧过程中产生的酸性与腐蚀性气体,又是一种环保型绿色阻燃剂;氢氧化镁热分解温度高,比目前常用的无机阻燃剂氢氧化铝高出140℃,可以使添加氢氧化镁的合成材料能承受更高的加工温度,有利于加快挤塑速度,缩短模塑时间,同时亦有助于提高阻燃效率,是目前最有发展前途、环境友好的无机阻燃剂,成为近几年各国研究的热点。本文介绍其物理化学特性、阻燃机理、应用现状、改性研究及发展趋势[1-3]。

2 氢氧化镁的特性

氢氧化镁的极性很强,其晶体在(101)方向有微观内应变,晶体表面带有正电荷、具有亲水性,和亲油性的聚合物分子的亲和力欠佳,晶粒趋向于二次凝聚;同时,氢氧化镁与聚合物的界面产生空隙,导致分散性很差。

普通氢氧化镁多为六方晶形或无定形晶体,X-衍射在(101)方位晶粒尺寸<7×10-8m,比表面积大,一般在20~100m2/g,因而氢氧化镁晶粒间有很强的凝聚成团性。晶粒趋向于二次凝聚,以10~100μm的二次粒子分散,在树脂中分散性很差。此外,普通氢氧化镁晶体用X-光测定在(101)方位的微观内应变(扭歪值)大约在3.0×10-3~10×10-3,晶体微观内应变大意味着其表面极大,这使得当它作为阻燃剂填充到塑料中去时,对材料的机械强度影响很大,尤其是使材料的冲击强度明显下降,而且加到树脂中后由于相容性差使得整个树脂混合物的加工性能恶化[4]。

作为阻燃剂氢氧化镁是一种富含结晶水的化工原料,受热分解释放大量结晶水的同时,吸收大量热能从而降低受热体的温度阻止火焰产生或蔓延。而其生成的氧化镁本身是良好的耐火材料,这就是其能做为阻燃原料的原因。目前世界上利用天然镁石生产氢氧化镁阻燃剂是十分理想的选择,产品不仅成本低廉,且用途广泛,用量大,比人工合成的氢氧化镁具有不可比的价格优势。与同类无机阻燃剂相比,氢氧化镁具有更好的抑烟效果。普通氢氧化镁多为六方晶形或无定形晶体,比表面积大,晶粒间有很强的凝聚成团性,在树脂中分散性很差,因而难以和塑料相容,用作阻燃剂时需经过特殊处理,使之具备特殊的结构[5]。

[收稿日期] 2004-08-01

[作者简介]

 

杨华明,男,36岁,教授。

[基金项目] 国家自然科学基金资助项目(No.50304014),中南大学研究生教育创新工程资助项目(No.030702)和长沙大学科学技术研究基金资助项目(No.SF030302)

81

82

表2 中国工业粉状氢氧化镁行业标准

3 氢氧化镁的阻燃机理

氢氧化镁是被广泛应用于填充聚合物材料的金属氢氧化物阻燃剂

[6-10]

。物质的燃烧必须同时具备三个条件:可燃、

氧气和一定的温度,氢氧化镁的分解机理如下:

Mg(OH)2 → MgO+H2O△G°=-49.8kJ/mol

氢氧化镁发生脱水反应的温度与吸收热量分别为340~490℃、0.77kJ/g,氢氧化镁优点在于热稳定性好,在340℃时才开始分解反应并缓慢吸热,到430℃左右达到高峰,至490℃时反应完全,变成氧化镁。实验证实,氢氧化镁的热分解反应受多种条件的影响,其中氢氧化镁的来源及粒度也是影响分解温度和分解速度的主要因素。氢氧化镁的分解温度主要决定于晶体的完整性。结晶性好的水镁石是由晶体内Mg2+

、OH-

、O2-

的扩散控速的,而合成氢氧化镁是由分解产物水的扩散控速的。氢氧化镁的来源不同,其分解机理不同,即随着氢氧化镁结晶性的降低,由内部离子扩散向产物水分子扩散转变。

Halikia和Neou-Syngouna用热重数据对氢氧化镁热分解进行等温动力学分析认为[11]:在350℃氢氧化镁的分解是由大量的微晶随机成核系统所控制,它符合动力学方程式-ln(1-α)=kt,在400、450、500℃成核和核的长大的控制机理符合[-ln(1-α)]1/2=kt。根据氢氧化镁的性质和分解特性,氢氧化镁的阻燃机理可总结如下[12-16]:①受热分解释放出结晶水同时从燃烧区吸收大量的热量,从而抑制聚合物材料温度上升,延缓其热分解并降低燃烧速度;②分解产生的稳定的氧化镁覆盖可燃物表面,起到一定的隔热作用、切断氧气的供给,阻止可燃气体的流动,起到阻燃作用;③高温下产生的大量水蒸汽降低了气相燃烧区中可燃物的浓度,稀释可燃性气体,因而起到阻燃作用;④水蒸汽不参与增强CO释放的水汽反应。4 氢氧化镁的国内外应用标准

由于氢氧化镁产品无论是固体粉状还是料浆状均于近10多年才商品化,因此,在ASA或ASTM中均未检索到有关国家级或学会级的标准。但各有关生产厂家为了便于营销,让众多用户了解掌握产品性能,均制定了企业标准。现将美国、日本和我国氢氧化镁企业标准列于表1、表2、表3[17-19]。5 氢氧化镁的改性技术与应用

由于无机阻燃剂毒性低,因而完全符合当今阻燃剂向环保型发展的大趋势。但由于无机阻燃剂(如氢氧化铝、氢氧化镁、硼酸锌等)是填料型的,在树脂中添加量较大,往往会不同程度地影响材料的加工性能和机械力学性能。因此,对传统的无机阻燃剂进行改性研究已成为目前比较热门的研

究课题[20-21]。无机阻燃剂的微胶囊化、表面改性、少尘或无尘化和协同效应等,已成为解决这一问题的良策。

氢氧化镁的吸热量小于高分子材料的燃烧热,为了达到理想的阻燃效果,必须有较大的填充量。单独使用时添加量需要在50%以上时才具有较好的阻燃效果。往往会不同程度地影响材料的加工性能和机械力学性能。氢氧化镁是一种极性很强的无机化合物,其晶体在(101)方向有微观内应变,晶体表面带有正电荷、具有亲水性,和亲油性的聚合物分子的亲和力欠佳,晶粒趋向于二次凝聚;同时,氢氧化镁与聚合物的界面产生空隙,导致分散性很差,与其他材料的相容性也差,因此在高填充量的情况下混合料的断面常会出现弥散度差和亲和性不好而引起的“夹生”现象。为此必须对氢氧化镁表面改性、以及和其他阻燃剂的协同效应,以改善它在高分子材料中的分散性和相容性。

表面改性剂是一种具有两性结构的物质,其分子中的一部分基团可与无机填料表面上的各种官能团反应,形成强有力的化学键合,另一部分基团可与有机高分子发生化学反应或物理缠绕,使两种表面性质差异很大的材料紧密结合,从

杨华明等:氢氧化镁阻燃剂的现状和发展

而形成新型复合材料。目前国内用得较多的表面改性剂是硬脂酸钠或油酸钠,也可用其他阴离子表面活性剂,如烷基硫酸盐类和磺化丁二酸酯盐类,此外,钛酸酯、硅烷类表面活性剂也适用。Wang等人用乙烯基三氧硅烷和二月桂酸丁基锡表面处理的氢氧化镁填充线性低密度聚乙烯材料,其放热速度、烟的产生量都减少了,限氧指数,着火时间,燃烧残留物都提高了[22]。

Hippi和Mattila等在茂金属作催化剂情况下,用羧酸、马来酐、丙烯酸、环氧树脂等对(PE/ATH)和(PE/MH)复合材料进行增容处理,测试发现[23]:不损害其阻燃性的情况下,极大提高了复合材料的冲击强度、拉伸应力等机械性能。羧酸、马来酐、丙烯酸、环氧树脂等分别与氢氧化镁和聚合物材料发生相互作用,发生化学反应或物理吸附,加强了两者之间的有机联系,提高了氢氧化镁在聚合物材料中的相容性和分散性[24-26]。氢氧化镁除可以单独填充聚合物材料外,还可以和其他阻燃剂如红磷、氢氧化铝、卤系阻燃剂等复合使用。少量增效剂的添加可以降低氢氧化镁的填充量,显著地改善材料的阻燃及机械性能。

Carpentier等在EVA和氢氧化镁共混体系中、加入不同重量百分比的硼酸锌[1],用DSC、NMR、TG手段对其进行分析,证明硼酸锌作为增效剂降低了聚合物的分解,在燃烧过程中在聚合物的表面生成玻璃质保护层,以达到阻燃目的。Wang等在DCP中用LLDPE接枝DBM,然后把PE-g-DBM作兼剂加入到无卤LLDPE/MH聚合物中共混,然后用SEM、DSC进行分析,发现氢氧化镁粒在聚合物基体中分散很好,试样的拉伸强度、断裂伸长都有极大提高[27]。许多研究人员用辐射交联的方法对填充氢氧化镁的聚合物进行改性,以提高其性能。Li等人在三酰基三羟甲基丙烷存在下,用60Co对氢氧化镁和乙烯-醋酸乙烯酯共聚物橡胶混合物进行辐射交联,然后对其性能检测发现:60Co的辐射剂量越大,氢氧化镁和乙烯-醋酸乙烯酯共聚物橡胶混合物的交联程度越高。拉伸强度和阻燃性能极大提高[28]。

另外,为了消除氢氧化镁的加入对聚合物颜色的影响,

Titelman等在聚合物中加入TiO

2作增协剂。当TiO

的含量为

总量的1.5%时,就能极大提高PP的热稳定性[7,29]。把用磷酸二氢铵和硼酸改性的氢氧化镁用于碎屑胶合板中,既节省木材的使用量,又提高碎屑胶合板的阻燃性。

6 氢氧化镁阻燃剂的发展趋势

由于环保意识增强,国外已大量使用无机阻燃剂,其中美国、日本、西欧无机阻燃剂消费量分别占阻燃剂总消费量的60%、64%、50%。而其中无机阻燃剂以氢氧化铝和氢氧化镁为主。由于氢氧化镁与氢氧化铝相比有许多优点,因此氢氧化镁所占比例越来越大。根据国外资料统计,西方发达国家氢氧化镁阻燃剂消费量约占无机阻燃剂消费量的30%以上[5,30]。美国是世界上氢氧化镁产量最大、品种最多的国家, 氢氧化镁作为阻燃剂正式投入工业化生产始于1978年,之后,关于氢氧化镁的基础研究和应用研究日趋繁荣、不断深入,用于不同用途的氢氧化镁达14种,作阻燃用的有10个品种。1997年产量为37万t,由6家公司的10座工厂生产。作为阻燃剂使用的氢氧化镁总量约为1.5~2.0万t。近年来,美国氢氧化镁平均需求增长率是12%,其中阻燃剂增长率为8%,目前基本保持这一水平。1998年无机添加型阻燃剂需求量约占美国阻燃剂总量的87%,排首位的是氢氧化铝。到2005年增长率可能会达到10%~20%。如果卤素族阻燃剂受到限制,其增长率将会更高。根据在高聚物领域中应用现状的技术经济分析,氢氧化镁是最具有发展前景的无机阻燃剂。

日本目前主要生产厂家有15个,1996年日本氢氧化镁生产能力为46万t,其中阻燃级氢氧化镁已有近10个品种,产量约1.4万t,除国内使用外还有出口。西欧有7个国家、9个厂家生产氢氧化镁,1996年总能力超过52万t,其中一些厂家附设有阻燃级氢氧化镁生产线。据资料报导,1995年西欧各国阻燃剂消耗量为26万t,无机添加型阻燃剂氢氧化铝和氢氧化镁占统治地位,约48%,其中氢氧化镁仍呈增长势头,2000年增长率约为6%~8%。

近10多年国内外关于氢氧化镁的基础研究与应用研究十分活跃,目前国外有近10个国家的20余家企业生产20多个品种,总年产能力约17万t。许多国家目前仍在建设或计划建设氢氧化镁新装置,近年将建设的氢氧化镁装置总年产能力约为14万t。我国目前氢氧化镁阻燃剂年产能力约为1.3万t,主要生产厂家有山东胶州古河镁盐厂、上海振泰化工厂、河北武邑县阻燃剂厂、江苏南化集团连云港碱厂、山东海化集团、温州钾肥厂等。与国外先进水平相比,我国企业规模小,品种少,技术水平低,亟待提高行业整体水平。

我国近年来合成高分子材料发展极为迅速。按发达国家经验估计,塑料阻燃剂年用量将达到60万t以上,若其中无机阻燃剂占50%,而氢氧化镁阻燃剂占无机阻燃剂30%左右,则每年需要氢氧化镁阻燃剂9万t,可见我国氢氧化镁发展潜力巨大。随着氢氧化镁在聚合物中的应用越来越广泛,优越性已受到越来越多的重视。具有以下特征的阻燃系统应被有关部门列为重点开发项目:①能抑制凝聚相的氧化反应;②具有催化阻燃作用;③能发挥高效的气相阻燃作用;④能形成有效的含碳层或含其他阻燃元素。

为了提高阻燃剂混合后的机械性能,应合理的对添加剂进行改性,改性后的无机阻燃剂要进行商品化,以适应市场

 2004年第5期 中国非金属矿工业导刊 总第43期

83

需要。对氢氧化镁的各种改性研究也越来越深入。在未来一段时间内,将主要朝以下几个方面发展:①超细化;②开发高效的表面改性剂;③开发高性能的增效剂;④纤维化。利用我国丰富的镁资源,依托技术创新开发高附加值的功能性粉体材料是镁盐行业面临的一个共同课题。在镁系产品中,高纯微细氢氧化镁由于国内外市场潜力很大而独具魅力。7 结语

当今世界环保要求越来越高,对环境友好的无机阻燃剂氢氧化镁受到各国重视,有关研究、合作开发、生产活动十分活跃。发达国家纷纷投入巨资进行研究开发,国际合作频频开展,除通用品种外,各种专用、复配型新产品层出不穷,应用领域不断开拓。氢氧化镁阻燃剂已广泛应用于各种塑料制品,尤其是电线电缆用高性能氢氧化镁阻燃剂,更是受到使用者欢迎。随着我国合成高分子材料工业快速发展及阻燃法规不断健全和完善,对阻燃剂需求随之增加,对作为无毒、抑烟型的环保无机阻燃剂氢氧化镁的需求更是十分迫切,我国又是镁矿资源大国,具有得天独厚的资源优势和良好的市场前景。因此,我国应改进现有生产工艺,规模化生产,并加强氢氧化镁应用研究,促进我国氢氧化镁阻燃剂的生产与发展,满足我国飞速发展的塑料工业的需求,同时加快我国阻燃剂工业产品结构调整。

我国塑料工业的快速发展对阻燃剂的需求特别是对无毒、抑烟型无机阻燃剂的需求将更迫切。根据国外氢氧化镁阻燃剂开发和应用现状,结合我国不同的原料资源条件和市场需求等具体情况,规划发展氢氧化镁阻燃剂生产不仅前景乐观,而且也是顺理成章的事。 

[参考文献]

[1] Carpentier F, et al. Harring of fire retarded ethylene vinyl ac-etate copolymer-magnesium hydroxide/zinc borate formulations[J]. Polymer Degradation and Stability, 2000, 69:83.

[2] Norio T. Function of inorganic powder surface by the grafting ofpolymers[J]. Journal of Polymer, 1996, 45(6):421.

[3] 项素云,等.聚丙烯/氢氧化镁阻燃复合材料的性能与结构[J].塑料科技,1995,(3):1.

[4] 周卫平,等.氢氧化镁阻燃剂的制备技术[J].无机盐工业, 1997,52(4):25.

[5] 杨鸿.氢氧化镁阻燃剂的开发与应用[J].无机盐工业,2001,33(3):23.[6] Shigeo M, et al. Fire-retarding polypropylene with magnesiumhydroxide[J]. Journal of Applied Polymer Science, 1980, 25:415.

[7] Titleman G I, et al. Discoloration of polypropylene based com-pounds containing magnesium hydroxide[J]. Polymer Degrada-tion and Stability, 2002, 77:345.

[8] Rothom R N, et al. Flame retardant effects of magnesiumhydroxide[J]. Polymer Degradation and Stability, 1996, 54:383.[9] 王元宏,等.阻燃剂化学及其应用[M].上海:上海科学技术出版社,1988.[10] 翟学良.氢氧化镁热分解行为与机理研究[J].矿产综合利用,2000,(3):

14.

[11] Halikia I, et al. Sothermal kinetic analysis of the thermal de-composition of magnesium hydroxide using thermogravimetricdata[J]. Thermochimica Acta, 1998, 320:75.

[12] Shehata A B. A new cobalt chelate as fame retardant for polypro-pylene filled with magnesium hydroxide[J]. Polymer Degrada-tion and Stability, 2004, 85:577.

[13] Pearce E M, et al. Thermal characterization of polymericmaterials[M]. New York: Academic Press, 1981.

[14] Hornsby R P, Watson C L. Mechanism of smoke suppressionand fire retardancy in polymer containing magnesium hydrox-ide filler[J]. Plastics and Rubber Processing and Application,1989, (11):45.

[15] Hornsby P R, Watson C L. Study of the mechanism of flameretardance and smoke suppression in polymers filled with mag-nesium hydroxide filler [J]. Polymer Degradation and Stability,1990, 30(1):73.

[16] 戴焰林,等.氢氧化镁阻燃剂在聚合物材料中的应用[J].应用化工,2003,32(4):1.

[17] 郭如新.美国氢氧化镁生产现状及应用前景[J].海湖盐与化工,2000,29(3):36.

[18] 郭如新.氢氧化镁应用近期进展[J].海湖盐与化工,1998,27(5):39.[19] 郭如新.氢氧化镁——一种有广阔发展前景的化工产品[J].海湖盐与化工,1997,26(2):30.

[20] 王玉忠.阻燃剂的发展史及聚脂纤维的阻燃改性[J].青岛大学学报,1997,12(1):43.

[21] Cook M, et al. The influence of magnesium hydroxide morphol-ogy on the crystallinity and properties of filled polypropylene[J]. Advances in Polymer Technology, 1998, 17(1):53.

[22] Wang Z, et al. Halogen-free flame retardation and silane crosslinkingof polyethylenes[J]. Polymer Testing,2003,22:533.

[23] HippiU,et al. Compatibilization of polyethylene/aluminumhydroxide(PE/ATH) and polyethylene /magnesium hydroxide(PE/MH) composites with functionalized polyethylenes[J].Polymer, 2003, 44: 1193.

[24] Yeh J T, et al. Combustion of polyethylene filled with metallichydroxides and crosslinkable polyethylene[J]. Polymer Degra-dation and Stability,1995,50:229.

[25] 郭锡坤,等.红磷增效Al(OH)

和Mg(OH)

阻燃聚丙烯的研究[J].中国塑料,1993,7(4):47.

[26] 郭金全.卤烃和水合氧化镁对聚丙烯协同阻燃机理[J].厦门大学学报(自然科学版),1989,28(6):613.

[27] Wang Z, et al. Effects of PE-g-DBM as a compatiblizer onmechanical properties and crystallization behaviors of magne-sium hydroxide-based LLDPE blends[J]. Polymer Degradationand Stability,2002,76:123.

[28] Li Z, et al. Effects of gamma irradiation on the properties offlame-retardant EVM/magnesium hydroxide blends[J]. Radia-tion Physics and Chemistry,2004,69:137.

[29] Grexa O. Flammability parameters of wood tested on a conecalorimeter[J]. Polymer Degradation and Stability, 2001, 74:427.

[30] 郭如新.日本氢氧化镁生产现状及应用前景[J]. 海湖盐与化工,2001,30(5):24. [编辑 邹蔚蔚]

杨华明等:氢氧化镁阻燃剂的现状和发展

84

阻燃剂的研究发展现状

第1期18纤维复合材料No.1 2012年3月FIBER COMPOSITES Mar.,2012 阻燃剂的研究发展现状 陈浩然,李晓丹 (哈尔滨玻璃钢研究院,哈尔滨150036) 摘要本文分别介绍了卤系阻燃剂、磷系阻燃剂、硅系阻燃剂和氮系阻燃剂,从机理上分析各类阻燃剂的阻燃效果、应用效果,并指出无卤高效环保型阻燃剂的研究是今后发展方向。 关键词阻燃剂;阻燃机理;卤系阻燃剂;磷系阻燃剂;硅系阻燃剂;氮系阻燃剂;无卤环保型阻燃剂 The Recent Progress of Flame-retardants CHEN Haoran,LI Xiaodan (Harbin FRP Institute,Harbin150036) ABSTRACT This paper introduces halogen flame-retardants,phosphorous flame-retardants,siliceous flame-retardants and nitrogenous flame-retardants.Retardant effect and application effect are analyzed from retardant mechanism.It is considered that the research of halogen-free,high efficient,environmental flame-retardants will be the development trend of the flame-retardants. KEYWORDS flame-retardant;retardant mechanism;halogen flame-retardants;phosphorous flame-retardants;sili-ceous flame-retardants;nitrogenous flame-retardants;halogen-free environmental flame-retardants 1引言 由于有机聚合物材料具有独特的物理、化学性质和良好的加工性能,近几十年来,塑料、橡胶、合成纤维等聚合物材料及其制品得到蓬勃发展,获得了显著的经济效益和社会效益。但是大多数聚合物材料属于易燃、可燃材料,在燃烧时具有燃烧速度快、发热量高、产烟量大以及释放毒性气体等特点。统计表明,在火灾中造成人员伤亡的主要原因不是火,而是在燃烧中放出的这些烟雾和毒气,严重危害了人们生命和财产的安全。从而可看出,聚合物材料抑烟和阻燃的研究是同等重要的。为此如何提高合成高聚物及天然高聚物材料的阻燃性和抑制硝烟生成已成为一个急需解决的问题,具有重要的社会和经济意义[1]。 2阻燃机理分析 在研究阻燃机理之前,要先了解高聚物受热后发生热分解并燃烧的过程[2]。高聚物受热后,温度逐渐升高,一些热稳定性最差的键先开始断裂,当材料达到热分解温度时,高聚物中大多数键发生断裂,高聚物本身开始分解。高聚物最终生成的产物可能有以下几种:可燃性气体(甲烷、乙烷、乙烯等)、不燃气体或低燃烧值气体(N2、SO2、卤化氢等)、液体(熔融聚合物、预聚体及焦油)、固体(炭化物)、烟。热裂解后的可燃性产物与氧气接触发生燃烧,燃烧是按自由基链式反应进行的,包括以下四步: 链引发:RH→R·+H· 链增长:R·+O2→ROO· ROO·+RH→ROOH+R·链的支化:ROOH→RO·+OH· 2ROOH→ROO·+RO·+H 2 O 链的终止:2R·→R—R R·+OH·→ROH 2RO·→ROOR 2ROO·→ROOR+O 2 从聚合物燃烧的过程可以看出,燃烧中释放的能量会加剧这一过程。 因此,材料的阻燃可以通过以下的途径来实现,一是抑制在燃烧反应中起链增长作用的自由基,隔绝氧气;二是在固相中阻止聚合物的热分解和阻止聚合物释放出可燃气体,如接枝和交联改性或催化成炭;三是减缓生热和传热,如冷却阻燃。

阻燃剂的发展趋势

阻燃剂的发展趋势 随着现代工业的不断发展,塑料、橡胶、合成纤维等高分子材料得到广泛的应用。然而,这些有机高分子化合物绝大多数都是可燃的,且燃烧时可产生大量致命的有毒气体。为解决这一难题、提高合成材料的抗燃性,最有效的方法是加入阻燃剂。对此,以阻燃为目的阻燃剂研究及材料阻燃技术近几年得到长足发展,至今天已成为世界工业体系的重要组成部分之一。本文将阐述阻燃剂的现状和发展趋势。 1 我国阻燃剂发展现状 我国阻燃剂生产在塑料助剂中, 是仅次于增塑二、各类阻燃剂的现状研究剂的第二大行业, 产量逐年增加, 市场不断扩大。自1960 年起开始研制和生产阻燃剂以来, 到目前为止, 我国阻燃剂总生产能力约15 万t/a , 从事阻燃剂研究的研制单位有50 多家, 阻燃剂品种有120 多种, 生产单位150 多家。近几年来, 我国阻燃剂工业发展迅速, 比如最重要的添加型溴系阻燃剂十溴二苯醚(DBDPO)的销量1999 年为7000t/a , 2000 年为9000t/a , 2001 年为13500t/a。增长幅度逐年增大,其它卤系中的另一个重要成员氯蜡系列也有很大增长。还有磷系(包括无机磷类和有机磷酸酯类)和无机系[ 主要是Al2 (OH)3 、Mg (OH)2 和助阻燃剂Sb2O3 等] 的市场也在不断扩大。但是, 按阻燃塑料制品占塑料总用量的比例来看, 与美国相比差距还很大。美国的比例为40 %, 而我国还不到1 %, 即使考虑到美国的经济总量为我国的10 倍, 我们也还有很大的扩展空间。 我国的阻燃剂以卤系阻燃剂为主, 占整个阻燃剂的80 %以上, 其中氯系(主要是氯化石蜡)占69 %, 并有出口;但溴系不足, 每年仍需进口;作为无污染、低毒的无机系仅占阻燃剂的17 %, 其中有一半为三氧化二锑, 而氢氧化铝、氢氧化镁还不到10 %。主要阻燃剂品种有42 型、52 型氯化石蜡, 还有少量的70 型氯化石蜡、多溴二苯醚、六溴醚、八溴醚、聚2 , 6-二溴苯醚、四溴双酚A 及其齐聚物、磷酸烷(芳)基酯、氯(溴)化磷酸醋、氢氧化铝(镁)、三氧化二锑、红磷等。我国阻燃剂比例与世界发达国家和地区相比, 消费结构差距甚大, 目前国

阻燃剂的现状和发展趋势_陈建兵

阻燃剂的现状和发展趋势 陈建兵 (池州学院化学与食品科学系,安徽池州247000) 摘要:从燃烧机理和阻燃机理以及主要研究现状方面介绍了阻燃剂,并就未来阻燃剂的研究方向进行了探讨。 关键词:阻燃剂;燃烧;发展 中图分类号:TQ314124+ 8 文献标志码:A 文章编号:1005-8141(2008)05-0559-02 Development and Situation o f Flame Retardant CHEN Jian-bin (Department of Chemistry and Food Science,Chizhou College,Chizhou 247000,China) Abstract:The mechanism of combustion were introduced briefly in the text,and introduced the mechanism of flame and the situation of re -search,predicted the develop ment of flame retardant in the future. Key words:flame retardant;combusti on;development 收稿日期:2008-04-17;修订日期:2008-05-15 基金项目:安徽省教育厅自然基金(编号:KJ 2006B156;KJ2008B177)。 作者简介:陈建兵(1980-),男,硕士,讲师,主要从事水性高分子与无机非金属材料研究。 阻燃剂是合成高分子材料加工的重要助剂之一,其功能是使合成材料具有难燃性、自熄性和消烟性。随着科学进步与环境保护意识的提高,人们不但开发出性能更好的阻燃剂,而且对阻燃剂自身与使用过程中的环境保护问题也提出了更为严格的要求。阻燃剂的无卤化、低毒化、复合化、抑烟化已经成为21世纪阻燃剂整体发展趋势,因此我国的阻燃剂发展具有广阔的发展前景[1] 。本文就未来阻燃剂研究的方向进行了探讨。1 燃烧机理 聚合物燃烧是一个极其复杂的热氧化过程,导致燃烧过程进行的基本要素是:热、氧和可燃物。其燃烧可分为5个阶段:受热、热降解、着火、燃烧和扩散,在燃烧过程中产生含有大量的高能自由基HO -,如果空气流通,燃烧就会越来越剧烈,但只要降低HO -自由基的浓度或切断氧的供应,就可以达到阻燃的目的,主要有:1降低着火点,防止聚合物降解出自由基;o隔绝空气;?捕获活性极大的HO -自由基,阻止火焰的蔓延。 2 阻燃机理 卤素阻燃剂的阻燃机理:卤素在燃烧时能生成卤化氢,卤化氢是一种自由基的捕捉剂。它能捕捉促进高分子化合物燃烧反应的HO -自由基,从而使火焰减 小,达到阻燃效果。 磷系阻燃剂的阻燃机理:磷化物不论是固相还是液相都有很好的阻燃效果,这是因为磷化物在火焰中产生这样的反应过程:磷酸)偏磷酸)聚偏磷酸,由于生成的磷酸层不挥发的保护,隔绝了空气,产生了阻燃效果。另一个原因是产生聚偏磷酸,具有强力的脱水作用,使有机物炭化,而炭化膜也起到了隔绝空气的效果。 锑系阻燃剂的相乘效应:单独使用锑的氧化物并没有阻燃效果,但与卤素阻燃剂相配合,就使其效果增大,人们把这种效应称为/相乘效应0,把锑的氧化物称为助阻燃剂,卤素与三氧化二锑的相乘效应,其机理可认为是由于聚合物在固相的脱水作用引起了炭化,捕捉在气象的自由基,使自由基停止连锁反应,即卤素与三氧化锑反应生成卤素化锑;在245)564e ,随着温度的上升,各阶段连续生成的三氯化锑(气态),在气相时能起到自由基捕捉剂的作用。 氧化铝水合物的阻燃剂机理:一般认为氧化铝水合物受热时,失水变成氧化铝的反应是失水,使燃烧温度降低,当周围温度下降到200)300e 时,它完全失水变成无水氧化铝,可稀释聚合物受热分解后放出的可然性气体,同时还可以吸收凝聚炭的极小微粒,即起消烟阻燃作用。3 阻燃剂的研究现状 自从1908年Engelard G A 等用天然橡胶与氯气反应制得了阻燃氯化橡胶,开创了以化学方法阻燃高聚物的先河以来,特别是近40年高分子工业迅速发展的需求,阻燃技术得到迅速的发展,开发出许多高效的、 # 559#资源开发与市场Res ource Development &Market 200824(6) #资源与环境#

新型阻燃剂的发展现状-推荐下载

江苏雅克、杰尔斯、山东默锐 随着我国合成材料工业的发展和应用领域的不断拓展,阻燃剂在化学建材、电子电器、交通运输、航天航空、日用家具、室内装饰、衣食住行等各个领域中具有广阔的市场前景。此外,煤田、油田、森林灭火等领域也促进了我国阻燃、灭火剂生产较快的发展。我国阻燃剂已发展成为仅次于增塑剂的第二大高分子材料改性添加剂,目前的生产能力20万t/a左右,年生产量在15万-17万t之间,年消费量20万t左右。不足部分主要从美国和以色列进口,进口的主要品种为有机溴及卤—磷系阻燃剂。我国阻燃剂生产厂60余家,能够生产50余种产品,主要为溴磷系列,其中溴系阻燃剂是最重要的系列,约占我国有机阻燃剂的30%。、 国内阻燃剂的品种和消费量还是以有机阻燃剂为主,无机阻燃剂生产和消费量还较少,但近年来发展势头较好,市场潜力较大。阻燃剂中最常用的卤系阻燃剂虽然具有其他阻燃剂系列无可比拟的高效性,但是它对环境和人的危害是不可忽视的。环保问题是助剂开发和应用商关注的焦点,所以国内外一直在调整阻燃剂的产品结构,加大高效环保型阻燃剂的开发。 1.环保型阻燃剂应用和生产现状 随着人们环保、安全、健康意识的日益增强,世界各国开始把环保型阻燃剂作为研究开发和应用的重点,并已经取得了一定的成果。阻燃剂按有效元素分类,可分为磷系、氯系、溴系和锑基、铝基、硼基阻燃剂等。本文根据阻燃有效元素将阻燃剂分为无卤阻燃

剂、溴系阻燃剂、卤—磷协同阻燃剂及其他阻燃剂四个种类,分别 介绍其中几种环保且具有应用前景的阻燃剂。 1.1无卤阻燃剂 无卤、低烟、低毒的环保型阻燃剂一直是人们追求的目标,近 年来全球一些阻燃剂供应和应用商对阻燃无卤化表现出较高热情, 对无卤阻燃剂及阻燃材料的开发也投入了很大的力量。据分析,无 卤阻燃剂主要品种为磷系阻燃剂及无机水合物。前者主要包括红磷 阻燃剂,无机磷系的聚磷酸铵(APP)、磷酸二氢铵、磷酸氢二铵、磷酸酯等,有机磷系的非卤磷酸酯等。后者主要包括氢氧化镁、氢氧 化铝、改性材料如水滑石等。聚磷酸铵、水滑石为该系列环保型且 市场前景较好的代表产品,以下就这两种产品展开分析。 1.1.1聚磷酸铵 聚磷酸铵(ammoniumpolyphosphate,简称为APP)是长链状含磷、氮的无机聚合物,其分子通式为:(NH4P03)n。由于其具有化学稳定性好、吸湿性小、分散性优良、比重小、毒性低等优点,近年来广 泛用于塑料、橡胶、纤维作阻燃处理剂;还可用于配制膨胀性防火 涂料,用于船舶、火车、电缆及高层建筑的防火处理;也用于生产 干粉灭火剂,用于煤田、油井、森林大面积灭火;此外,还可作肥 料用。聚磷酸铵的聚合度是决定其作为阻燃剂产品质量的关键,聚 合度越高,阻燃防火效果越好。国内已经有聚合度超过100的产品,而国外APP(聚磷酸铵)的聚合度在500以上已是常见。国内聚磷酸 铵研制始于1978年,经过20多年的发展,我国聚磷酸铵生产已具

我国无机阻燃剂的现状与发展综述

我国无机阻燃剂的发展与应用 一、引言 阻燃剂是合成高分子材料的重要助剂之一,添加阻燃剂对高分子材料进行阻燃处理,可以阻止材料燃烧或者延缓火势的蔓延,使合成材料具有难燃性、自熄性和消烟性。随着石油化工材料被广泛应用到国民经济的诸多行业中,如建筑业、塑料制品业、纺织业、运输业、电子电器业、航天业,阻燃剂在防火安全和环境保护方面的重要性愈加不容忽视。随着社会的发展和科技的进步,人们对材料的阻燃性能要求也愈来愈高,我国自80年代以来,阻燃剂的研制、生产及推广应用得以迅速发展,阻燃剂的品种日趋增多、产量急剧上升。目前,据粗略估计,全球阻燃剂的65%~70%用于阻燃塑料,20%用于橡胶,5%用于纺织品,3%用于涂料,2%用于纸张及木材。近年来,随着防火安全标准的日益提高和塑料产量的快速增长,我国阻燃剂的用量正处于快速增长期。 阻燃剂按照化学组成可分为无机阻燃剂和有机阻燃剂,其中,无机阻燃剂除了有阻燃效果外,还具有低发烟率和可抑制氯化氢产生等作用,使得被添加材料具有无毒性、无腐蚀性和低成本等优点。从全球看来,无机阻燃剂消费量远远高于有机阻燃剂,如美国、西欧和日本等工业发达国家无机阻燃剂的消费占总消费量约60%,而我国不到10%,因此我国发展无机阻燃剂非常紧迫,而具有巨大的应用前景。目前无机阻燃剂主要品种有氢氧化铝、氢氧化镁、无机磷、硼酸盐、氧化锑等。

二、研究进展 1、氢氧化铝 氢氧化铝是问世最早的无机阻燃剂之一,也是国际上阻燃剂中用量最大的一种。目前氢氧化铝占全球无机阻燃剂消费量的80%以上,广泛应用于各种塑料、涂料、聚氨酯、弹性体和橡胶制品中,具有阻燃、消烟、填充三大功能,不产生二次污染,能与多种物质产生协同作用、不挥发、无毒、无腐蚀性、价格低廉。 阻燃剂用氢氧化铝一般是以工业氢氧化铝为原料,采用合适的方法进行精制和表面处理而制得,这样制成的氢氧化铝,其粒径小于5μm,适合于作高分子材料的阻燃剂。亦可采用尿素水解中和法和铝酸钠法直接制备阻燃剂用氢氧化铝。氢氧化铝的粒度和用量对材料阻燃性能和材料物理性能影响较大,当颗粒过粗和填充量过大时,会降低合成材料的物理性能,为了改进这些不足,人们对氢氧化铝主要进行以下改性与处理。一是表面改性,氢氧化铝具有较强的极性和亲水性,同极性聚合物材料相容性差,人们通常采用硅烷和酞酸酯类偶联剂对氢氧化铝阻燃剂进行表面处理,改善其与聚合物的粘接力与界面亲合性。经过表面改性处理的氢氧化铝,其阻燃性能和被阻燃基材的抗拉强度、伸长率等与处理前相比均有大幅提高。二是超细化和纳米化处理,为改善无机阻燃剂与树脂的亲和性,提高阻燃成分在树脂中的分散度和均一度,必须采用纳米技术对阻燃剂进行超细化处理。由于纳米化以后的氢氧化铝比表面积增大,表面活性大大增强,抵消了由于其与树脂极性不同而引起树脂机械性能下降的影响,并对刚性粒

高分子材料无卤阻燃剂的研究现状

收稿日期:75 2011-03-01 高分子材料无卤阻燃剂的研究现状 Research Status on Non-halogen Flame Retardants of Polymers Wpm/4:!Op/7!)Tvn/341* Kvof!!!3122 黄 辉,曹家胜 Huang Hui, Cao Jiasheng - 公安部上海消防研究所,上海 200032 - Shanghai Fire Research Institute of Ministry of Public Security, Shanghai 200032, China 摘 要 : 综述了高分子材料无卤阻燃剂的种类和阻燃机理,重点介绍了无机物阻燃剂、无卤膨胀型阻燃剂、有机硅阻燃剂等无卤阻燃剂的开发和在高分子材料中的应用研究现状,并对无卤阻燃剂的发展方向进行了展望。Abstract : Types and mechanisms of polymer non-halogen flame retardants were reviewed. Research status and applications of non-halogen flame retardants in polymers, such as inorganic flame retardants, non-halogen intumescent flame retardants and organic silicon flame retardants, were introduced mainly. In addition, development trends of non-halogen flame retardants were prospected. 关键词 : 无卤阻燃剂;阻燃机理;研究现状 Key words : Non-halogen flame retardant; Flame retardant mechanism; Research status 文章编号:1005-3360(2011)06-0075-05 高分子材料品种越来越多,而常见的高分子材料基本上都是易燃的,因此阻燃技术受到全球性的关注,日益严格的防火安全标准和塑料产量的快速增长,使近年来全球阻燃剂的用量及销售市场一直呈增长的趋势。 目前,含卤阻燃剂(特别是溴系阻燃剂)被广泛用于高分子阻燃材料,并起到了较好的阻燃作用。然而人们对火灾现场深入研究后得出结论:虽然含卤阻燃剂的阻燃效果好,且添加量少,但是采用含卤阻燃剂的高分子材料在燃烧过程中会产生大量的有毒且具有腐蚀性的气体和烟雾,使人窒息而死,其危害性比大火本身更为严重。无卤阻燃剂具有环保、安全、抑烟、无毒和价廉等优点,因此,无卤阻燃剂的开发已经成为当前阻燃剂研究领域的热点[1-3]。在现有工业技术的条件下, 无卤阻燃剂主要以无机阻燃剂、无卤膨胀型阻燃剂和有机硅阻燃剂为主。这3类阻燃剂燃烧时不发烟,不产生腐蚀性气体,被称为“绿色”阻燃剂。 1 无机阻燃剂 无机阻燃剂具有稳定性好,低毒或无毒,贮存 过程中不挥发、不析出,原料来源丰富,价格低廉等优点,兼具阻燃、填充双重功能,并对环境非常友好,是一类很有前途的阻燃剂,目前受到高度重视和普遍应用,成为阻燃市场的主流。无机阻燃剂主要包括氢氧化铝、氢氧化镁、无机磷系等。 1.1 金属水合物 在高分子材料阻燃的长期研究中,人们发现适合作为无卤阻燃剂的金属水合物以氢氧化铝(A1(OH)3) 和氢氧化镁(Mg(OH)2)为主,这是因为A1(OH)3和Mg(OH)2具有填充、 阻燃及抑制发烟三重功能。当其受热分解释放出结晶水,吸收大量的热量,产生的水蒸气降低了可燃性气体的浓度,并使材料与空气隔绝;同时生成的耐热金属氧化物(三氧化二铝和氧化镁)还会催化聚合物的热氧交联反应,在聚合物表面形成一层炭化膜,其会减弱材料燃烧时的传热、传质效应,从而不仅起到阻止燃烧的作用,还起到了消烟的作用。A1(OH)3分解温度范围为235~350℃,吸热量为968 J/g ,由于其分解温度较低,因此作为阻燃剂通常只适用于加工温度较低的高分子材料。与A1(OH)3相比,Mg(OH)2具有更好的热稳定性,更高的促进基材成炭和更好 助剂 文献标识码 : A 中图分类号 : TQ314.24

我国纺织品阻燃整理技术的现状及发展趋势

我国纺织品阻燃整理技术的现状及发展趋势 青岛大学纺织服装学院朱平隋淑英安平林王炳 中国纺织大学孙铠 摘要 近年来,世界各国因纺织品引起的火灾不断增加。我国这十几年来,平均每年发生的火灾次数为3—4万起,死亡人数2—3千人,火灾损失折款2—3亿人民币。1985年,哈尔滨天鹅饭店大火死亡十人,受伤七人,直接经济损失24.9万元;1994年,克拉玛依大火,死伤300多人,都是因纺织品燃烧引起的。 我国纺织品阻燃整理技术发展概况; 我国纺织品阻燃技术始于50年代,以研究棉织物暂时性阻燃整理起步,但发展缓慢。60年代才出现耐久性纯棉阻燃纺织品。70年代开发了PyrovatexCP型阻燃剂,并开始了对合成纤维及混纺织物阻燃技术研究阶段。80年代,我国阻燃织物进入了新的发展时期,许多单位开发了棉、涤及混纺织物的阻燃剂及整理技术和阻燃合成纤维。 阻燃纤维的研究开发——我国阻燃纤维的研究开发起步于70年代;80年代至今,上海、吉林、山东、广东、天津、四川、北京、江苏等省市的一些科研单位、院校及工厂相继对阻燃纤维进行了小试研究,涤纶和丙纶已形成批量生产能力,但总体说来,阻燃纤维产品仍处在研究和试阶段。所用的阻燃剂大多是磷、卤素的有机物或有机物加无机物,个别的用高分子物,如环状芳香族磷酸酯、羟乙基四溴双酚A(涤纶);氯化聚两烯、六溴环癸烷、乙二酸(五溴苯 )酯、磷酸三溴苯酯-氯化石蜡、六氯环戊二烯的二聚物等(丙纶);含增效剂的卤化物体系、有机磷化物(锦纶);氯乙烯、偏二氯乙烯、溴乙烯、五氧化二锑等(腈纶)及苯氧基磷腈、噻嗡磷酸酯(粘胶)等。 通过小试或中试鉴定的单位有:A.阻燃涤纶:吉林纺织设计院,青岛大学纺织服装学院(原山东纺织工学院)、上海化纤公司、天津化纤研究所、江苏纺研所等。B.阻燃丙纶:南京化工设计研究院、北京化纤研究所、江苏纺研所、天津合成材料研究所、山东化纤所、山海关化纤厂、广州化纤所等。C.阻燃锦纶:成都科大、四川维纶厂等。D.阻燃腈纶:上海合纤所、上海金山石化、山西煤化所、山东工业大学等。E.阻燃粘胶:上海纺研院、丹东化纤厂、南京化纤厂、上海第三化纤厂、福建南平化纤厂等。 1.绵织物的阻燃整理; 棉织物的阻燃整理发展很快,目前国内比较成熟,阻燃剂基本可以自给,可以工业化生产。 纯棉耐久性阻燃整理大体有下列三种方法: A.Proban/氨熏工艺,Proban法是英国Wilson公司首先用于工业化生产,传统的Proban法是阻燃剂THPC(四羟甲基氯化眆)浸轧后焙烘工艺,改良的方法是Proban/氨熏工艺,工艺流程为:浸轧阻燃整理→烘干→氨熏→氧化→水洗→烘干。国内计有北京光华、江阴印染厂、鞍山棉纺印染厂等引进国外的助剂和设备进行生产。这是目前公认的阻燃效果好、织物降强小、手感影响少的工艺。但由于设备问题限制了其推广。 B.PyrovatexCP整理工艺。国内已有上海农药厂、常州化工研究所、天津合材所、华东理工大学、青岛纺织服装学院等单位生产该助剂。产品的阻燃性能较好,耐久性好,可耐家庭洗涤50次甚至200次以上,手感良好,但强力降低稍大。国内使用该类阻燃剂的厂家二、三十家。 纯棉暂时性、半耐久性阻燃整理——电热毯、墙布、沙发布等织物的阻燃耐洗次数要求不是很高,这类产品做暂时性或半耐久性阻燃整理即可。即能耐1—15次温和洗涤,但不耐皂洗。主要有硼砂-硼酸工艺、磷酸氢二铵工艺、磷酰胺工艺、双氰胺工艺等。上述工艺应用在纯棉织物上工业化生产的不多。青岛大学纺织服装学院的SFR-203属半耐久性阻燃整理剂。 2.毛织物的阻燃整理; 羊毛具有较高的回潮率和含氨量,故有较好的天然阻燃性,但若要求更高的标准,则需进行阻燃整理。最早的羊毛阻燃整理是采用硼砂、硼酸溶液浸渍法,产品用于飞机上的装饰用布。这种方法阻燃效果良好,但不耐水洗。60年代后采用THPC处理,耐洗性较好,

阻燃剂的研究及发展概况(通用版)

阻燃剂的研究及发展概况(通 用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0822

阻燃剂的研究及发展概况(通用版) 1前言 随着城市建筑的密集化、房屋建筑的高层化和建筑结构的轻型化,合成高分子材料广泛应用于各类领域,与人们的生活密切相关,直接影响着人们的工作生活。但在可燃、易燃物中,容易引起火灾的材料大部分是有机高分子化合物,有极大的潜在火灾危险性。由于高分子材料被引燃导致火灾发生的情况越来越频繁,对高分子材料的阻燃已经引起人们的高度重视。如何提高合成材料的阻燃性能,减少可燃物的燃烧危险性及燃烧时释放出的有毒气体,减少人民的生命财产损失,已经成为研究人员研究的课题。研究人员研究发现,通过添加阻燃剂或者通过化学反应在高分子材料中引入阻燃基团,能有效提高材料的抗燃性,阻止材料被引燃及抑制火焰的传播。在此基础上,世界各国研究人员对阻燃技术进行深入的探讨研究,并

研制开发出了一系列阻燃性能良好的阻燃材料。阻燃剂便是这其中一种,适用于合成材料的阻燃,有很好的阻燃效果。现就阻燃剂发展概况进行分析讨论。 2阻燃剂的类型 阻燃科学技术是为了适应社会安全生产和生活的需要,预防火灾发生,保护人民生命财产而发展起来的一门科学。阻燃剂是阻燃技术在实际生活中的应用,它是一种用于改善可燃易燃材料燃烧性能的特殊的化工助剂,广泛应用于各类装修材料的阻燃加工中。经过阻燃剂加工后的材料,在受到外界火源攻击时,能够有效地阻止、延缓或终止火焰的传播,从而达到阻燃的作用。根据不同的划分标准可将阻燃剂分为以下几类: 2.1按所含阻燃元素分 按所含阻燃元素可将阻燃剂分为卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、磷-卤系阻燃剂、磷-氮系阻燃剂等几类。卤系阻燃剂在热解过程中,分解出捕获传递燃烧自由基的X?及HX,HX能稀释可燃物裂解时产生的可燃气体,隔断可燃气体与空气的接触。磷系阻

阻燃剂的应用现状和发展趋势

阻燃剂的应用现状和发展趋势 学校:安阳工学院 院系:化学与环境工程学院 专业:09高分子材料与工程 姓名:莫墨 学号:200905060087

阻燃剂的应用现状和发展趋势 摘要:随着现代工业的不断发展,塑料、橡胶、合成纤维等高分子材料得到广泛的应用。然而,这些有机高分子化合物绝大多数都是可燃的,且燃烧时可产生大量致命的有毒气体。为解决这一难题、提高合成材料的抗燃性,最有效的方法是加入阻燃剂。为此,以阻燃为目的阻燃剂研究及材料阻燃技术近几年得到发展,至今已成为世界工业体系的重要组成部分一。阻燃剂在化学建材,电子电器,交通运输,航天航空,日用家具,室内装饰,衣食住等各个领域中具有广阔的市场前景。本文将阐述阻燃剂的应用现状和发展趋势。 关键字:阻燃剂分类机理现状发展趋势 一、概述 阻燃剂,又称难燃剂,耐火剂或防火剂:赋予易燃聚合物难燃性的功能性助剂;依应用方式分为添加型阻燃剂和反应型阻燃剂。根据组成,添加型阻燃剂主要包括无机阻燃剂、卤系阻燃剂(有机氯化物和有机溴化物)、磷系阻燃剂(赤磷、磷酸酯及卤代磷酸酯等)和氮系阻燃剂等。反应型阻燃剂多为含反应性官能团的有机卤和有机磷的单体。此外,具有抑烟作用的钼化合物、锡化合物和铁化合物等亦属阻燃剂的范畴。主要适用于有阻燃需求的塑料,延迟或防止塑料尤其是高分子类塑料的燃烧。使其点燃时间增长,点燃自熄,难以点燃。 1.1阻燃剂的分类 阻燃剂有几种不同的分类方法。按所含阻燃元素可将阻燃剂分为卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、磷-卤系阻燃剂、磷-氮系阻燃剂等几类。按组分的不同可分无机盐类阻燃剂、有机阻燃剂和有机、无机混合阻燃剂三种。无机阻燃剂是目前使用最多的一类阻燃剂,它的主要组分是无机物,应用产品主要有氢氧化铝、氢氧化镁、磷酸一铵、磷酸二铵、氯化铵、硼酸等。在三大类阻燃剂中,无机阻燃剂具有无毒、无害、无烟、无卤的优点,广泛应用于各类领域,需求总量占阻燃剂需求总量一半以上,需求增长率有增长趋势。按使用方法的不同可把阻燃剂分为添加型和反应型。添加型阻燃剂主要是通过在可燃物中添加阻燃剂发挥阻燃剂的作用。反应型阻燃剂则是通过化学反应在高分子材料中引入阻燃基团,从而提高材料的抗燃性,起到阻止材料被引燃和抑制火焰的传播的目的。在阻燃剂类型中,添加型阻燃剂占主导地位,使用的范围比较广,约占阻燃剂的85%,反应型阻燃剂仅占15%。 1.2阻燃剂的作用机理 阻燃剂的作用机理是很复杂的,包括种种因素,但阻燃剂的作用机理不外乎

(完整版)阻燃剂的市场现状

阻燃剂的市场现状 概述 随着我国合成材料工业的发展和应用领域的不断拓展,阻燃剂在化学建材、电子电器、交通运输、航天航空、日用家具、室内装饰、衣食住行等各个领域中具有广阔的市场前景。此外,煤田、油田、森林灭火等领域也促进了我国阻燃、灭火剂生产较快的发展。我国阻燃剂已发展成为仅次于增塑剂的第二大高分子材料改性添加剂,目前的生产能力20万t/a左右,年生产量在15万-17万t 之间,年消费量20万t左右。不足部分主要从美国和以色列进口,进口的主要品种为有机溴及卤—磷系阻燃剂。我国阻燃剂生产厂60余家,能够生产50余种产品,主要为溴磷系列,其中溴系阻燃剂是最重要的系列,约占我国有机阻燃剂的30%。、 国内阻燃剂的品种和消费量还是以有机阻燃剂为主,无机阻燃剂生产和消费量还较少,但近年来发展势头较好,市场潜力较大。阻燃剂中最常用的卤系阻燃剂虽然具有其他阻燃剂系列无可比拟的高效性,但是它对环境和人的危害是不可忽视的。环保问题是助剂开发和应用商关注的焦点,所以国内外一直在调整阻燃剂的产品结构,加大高效环保型阻燃剂的开发。 1.环保型阻燃剂应用和生产现状 随着人们环保、安全、健康意识的日益增强,世界各国开始把环保型阻燃剂作为研究开发和应用的重点,并已经取得了一定的成果。阻燃剂按有效元素分类,可分为磷系、氯系、溴系和锑基、铝基、硼基阻燃剂等。本文根据阻燃有效元素将阻燃剂分为无卤阻燃剂、溴系阻燃剂、卤—磷协同阻燃剂及其他阻燃剂四个种类,分别介绍其中几种环保且具有应用前景的阻燃剂。 1.1无卤阻燃剂 无卤、低烟、低毒的环保型阻燃剂一直是人们追求的目标,近年来全球一些阻燃剂供应和应用商对阻燃无卤化表现出较高热情,对无卤阻燃剂及阻燃材料的开发也投入了很大的力量。据分析,无卤阻燃剂主要品种为磷系阻燃剂及无机水合物。前者主要包括红磷阻燃剂,无机磷系的聚磷酸铵(APP)、磷酸二氢铵、磷酸氢二铵、磷酸酯等,有机磷系的非卤磷酸酯等。后者主要包括氢氧化镁、氢氧化铝、改性材料如水滑石等。聚磷酸铵、水滑石为该系列环保型且市场前景较好的代表产品,以下就这两种产品展开分析。 1.1.1聚磷酸铵 聚磷酸铵(ammoniumpolyphosphate,简称为APP)是长链状含磷、氮的无机聚合物,其分子通式为:(NH4P03)n。由于其具有化学稳定性好、吸湿性小、分散性优良、比重小、毒性低等优点,近年来广泛用于塑料、橡胶、纤维作阻燃处理剂;还可用于配制膨胀性防火涂料,用于船舶、火车、电缆及高层建筑的防火处理;也用于生产干粉灭火剂,用于煤田、油井、森林大面积灭火;此外,还可作肥料用。聚磷酸铵的聚合度是决定其作为阻燃剂产品质量的关键,聚合度越高,阻燃防火效果越好。国内已经有聚合度超过100的产品,而国外APP(聚磷酸铵)的聚合度在500以上已是常见。国内聚磷酸铵研制始于1978年,经过20多年的发展,我国聚磷酸铵生产已具有一定的基础,基本

阻燃剂的发展现状和开发动向

专论与综述 收稿日期:2004208227 作者简介:夏 俊(1981-),男,湖南益阳人,湘潭大学化工学院在读硕士生,师从罗和安教授,主要从事精细化工产品合 成、过程模拟与优化的研究。电话:(0732)2373951,E 2mail:waiwai1846@https://www.360docs.net/doc/e55531436.html, 阻燃剂的发展现状和开发动向 夏 俊,王良芥,罗和安 (湘潭大学化工学院,湖南湘潭411105) 摘 要:介绍了世界范围内阻燃剂的现状及发展趋势,对目前我国阻燃剂行业的基本状况和发展存在的问题作了分析,从一系列新技术着手叙述了阻燃剂的发展新动向,指出我国阻燃剂工业应朝环保、低毒、高效的方向发展。关键词:阻燃剂;现状;新技术 中图分类号:T Q 314.248 文献标识码:A 文章编号:1671-3206(2005)01-0001-04 Present status and developing tendency of flame retardant XIA Jun ,WANG Liang 2jie,L UO He 2an (College of Chemical Engineering,Xiangtan University,Xiangtan 411105,China) Abstract:The current situation and developing tendency of the flame retardant in the world are intro 2duced,analyzed the present status and the problems of Chinese flame retardant industry.Described the tendency of the flame retardant industry from a series of new technologies,pointed out the develop 2ment of the flame retardant industry should focus on environmental protection,low toxicity and high efficient. Key wor ds:flame retardant;present status;new technology 阻燃剂主要用于阻燃合成和天然高分子材料,包括塑料、橡胶、纤维、木材、纸张、涂料等 [1] 。据粗 略估计,全球阻燃剂的65%~70%用于阻燃塑料,20%用于橡胶,5%用于纺织品,3%用于涂料,2%用于纸张及木材。电子/电气、运输、建材、家具、纺织为阻燃剂的几大用户[2]。 近年来,随着防火安全标准的日益严格和塑料产量的快速增长,全球阻燃剂的用量及销售一直呈增长的趋势[3],总用量已达到120万t/a 以上,其中85%为添加性阻燃剂,15%为反应型阻燃剂[2]。众多品种中,用量最大的是氢氧化铝(ATH ),其次为卤系阻燃剂。预计在今后5年内,全球阻燃剂需求量年均增长率可达4%~5%(亚太地区略高),到2007年,全球阻燃剂总用量可达到145~155万t 。北美、西欧、日本是阻燃剂最大的消费地区,分别占消费市场的30%、33%、18%,亚洲(不包括日本)占19%。最近的市场调研表明,美国阻燃剂市场总量 2003年增加为9.69亿美元,年增长率为5%左右,近几年,日本高分子添加剂的市场连续下降,而阻燃剂却略有增长[4]。 阻燃剂品种繁多,目前应用最广的是氯系、溴系、磷及卤化磷系、无机系阻燃剂等。世界各地区的阻燃剂消费结构不同,欧洲用量最大的是无机系阻燃剂,而美国、日本、亚洲消费量最大的都为溴系阻燃剂,美国和日本分别占总消费的35%和40%,而亚洲竟高达60%。具体消费结构,欧洲为:无机系33%,溴系28%,有机磷系25%,氯系4%,其他10%;美国为:溴系35%,有机磷系26%,无机系24%,氯系8%,其他7%;亚洲为:溴系60%,无机系25%,氯系8%,有机磷系7%;日本为:溴系40%,无机系30%,有机磷系20%,氯系2%,其他8%[4]。 1 我国阻燃剂发展现状 [5~7] 我国阻燃剂生产在塑料助剂中,是仅次于增塑 第34卷第1期2005年1月 应 用 化 工Applied Chemical Industry Vol.34No.1Jan.2005

(发展战略)浅析我国阻燃剂发展状态

浅析我国阻燃剂发展现状 阻燃剂是合成高分子材料加工的重要助剂之一,目前消费量已经成为仅次于增塑剂的第二大品种。2001年我国阻燃剂总产能约为15万吨,其中氯系阻燃剂占75%、磷系(含卤化)阻燃剂约占6%、溴系阻燃剂约占7%;无机阻燃剂占12%。我国与世界发达国家和地区相比,阻燃剂消费结构差距甚大,比如美国,氯系占8%、溴系占10%、磷及卤化磷系占16%、无机系占60%。由此可以看出我国阻燃剂生产存在不少问题,多为低水平、低效能、有机高毒产品。为此,我们应参考国外阻燃剂产品结构,结合国情以确定我国阻燃剂的发展方向,重点发展含氯量高的氯系、溴系、磷及卤化磷系、无机系阻燃剂及抑制烟剂。 氯系阻燃剂氯系阻燃剂以氯化石蜡为主。我国目前主要是氯蜡-52 和氯蜡-40,而性能优异的氯蜡-7 0仅占氯系阻燃剂产能的12%左右。目前氯系阻燃剂正朝着无污染、高纯度、高热稳定性、高含氯量方向发展,其代表产品便是氯蜡-70,而我国氯蜡-70生产规模偏小、布局分散,且多采用污染严重的四氯化碳溶剂法工艺合成,产品质量达不到合成材料应用的要求。因此我国应加快氯蜡-70的发展步伐,尤其是应采用不破坏环境的水相法工艺生产,重点解决和突破水相法技术中工程化的问题。另外国外已经使用的全氯环戊癸烷、四氯苯酐及反应型氯系阻燃剂氯菌酸也应大力发展。 溴系阻燃剂尽管溴系阻燃剂,尤其是主导产品多溴二苯醚被认为在热分解后会产生有剧毒的溴化二苯并二英和溴化二苯并呋喃,世界卫生组织多次召开专门会议讨论多溴二苯醚阻燃剂的安全性问题,希望通过限制或不使用溴系阻燃剂,力图加快阻燃剂的无卤化过程。但由于溴系阻燃剂与其它阻燃剂相比,其阻燃性、加工性、物性等综合性能优良,且价格适中,在加上寻找溴系阻燃剂代用品困难,故迄今为止只有少数国家明文禁或限用溴系阻燃剂。日本、美国多家权威性机构发布报告认为多溴二苯醚安全性值得信赖。世界卫生组织下属的国际化学品安全计划委员会也认为溴系阻燃剂对人类与环境危害尚属有限,应加强有效管理,而毋需禁用。在缺乏溴系阻燃剂合适替代用品的前提下,溴系阻燃剂在世界范围内,尤其是发展中国家不仅会使用相当长时间,而且还将保持相当的增长速度。而且国内外最新开发的有机阻燃剂仍大多以溴为主。

无卤阻燃剂发展现状及趋势

无卤阻燃剂发展现状及趋势* 王虎 刘吉平 (北京理工大学材料学院) 摘要介绍了近年来国内外磷系阻燃剂、氮系阻燃剂、硅系阻燃剂等无卤阻燃剂的发展状况和最新研究进展,指出无卤和绿色环保型阻燃剂是未来发展的主流。为了改善无卤阻燃剂的阻燃效果,粒度超细化、表面改性处理和协同复合是目前主要发展方向。 关键词无卤阻燃阻燃剂分类发展趋势 近年来,由于城市建筑更为密集、人口密度增大,各种建筑材料、装饰材料应用量急剧增大,火灾引起的人员伤亡和财产损失呈上升趋势。火灾已成为最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。此外,根据数据统计,火灾中的伤亡事故,有80%左右是由于火灾前期材料热解时产生的有毒气体和烟雾使人窒息无法逃生所造所造成的。因此,在提高材料阻燃性的同时,应尽量减少热裂解或燃烧生成的有毒气体和烟量。研究清洁、高效、与材料相容性好的无卤阻燃剂成为阻燃材料发展的重中之重。 1 无卤阻燃剂的分类及阻燃机理 1.1 磷系阻燃剂 在无卤阻燃体系的研究开发中磷系阻燃剂历史较长,该阻燃剂不仅克服了含卤阻燃剂燃烧烟雾大、放出有毒及腐蚀性气体的缺陷,同时又改善了无机阻燃剂高添加量严重影响材料的物理机械性能的缺点,做到了高阻燃性,低烟、低毒、无腐蚀性气体产生。 含有磷系阻燃剂的高聚物被引燃时,在其受热时阻燃剂热解磷的含氧酸,开始起到阻燃作用,其阻燃机制有气相机制和凝固相机制。在凝固相中,当磷系阻燃剂生成磷的含氧酸时,其促使树脂脱水、炭化,使可燃裂解产物减少。同时,磷的含氧酸多系粘稠状的半固态物质,可在材料表面形成一层覆盖于焦炭层的玻璃状熔融物,降低炭层的透气性和保护炭层不被继续氧化,从而抑制了燃烧的蔓延。根据磷系阻燃剂的组成和结构,可以分为无机磷系阻燃剂和有机磷系阻燃剂两类[1]。无机磷系阻燃剂包括红磷和磷酸盐类,有机磷系阻燃剂包括磷酸酯、亚磷酸酯、磷酸酯和磷盐等。 1.2 氮系阻燃剂 氮系阻燃剂低毒、不腐蚀,对热和紫外线稳定,阻燃效率好且价廉。目前应用的含氮阻燃剂主要包括三大类:三聚氰胺、双氰胺、胍盐及其衍生物。其中三聚氰胺、三聚氰胺氰尿酸和三聚氰胺磷酸酯是阻燃剂市场中最具有发展潜力的品种。关于氮系阻燃剂的阻燃机理,通常认为氮系阻燃剂受热分解后,易放出氨气、氮气、深度氮氧化物、水蒸汽等不燃性气体;不燃性气体的生成以及阻燃剂分解吸热(包括一部分阻燃剂的升华吸热)带走大部分热量,极大地降低聚合物的表

高分子材料用阻燃剂的研究现状

综合实践 高分子材料用阻燃剂的研究现状 专业:高分子材料与工程 班级: 学号: 姓名: 日期:2011.5.22

高分子材料用阻燃剂的研究现状 摘要:本文综述了具有代表性的有机阻燃剂(卤系、磷系、膨胀型阻燃剂)与无机阻燃剂及其复配技术的研究现状、存在问题和未来的发展方向,通过与国外阻燃剂市场比较,指出国内阻燃剂市场的发展方向。 关键词:高分子材料;阻燃剂;机理 1 概述: 高分子材料,无论是塑料、橡胶、还是纤维,一般氧指数较低,属于易燃材料,燃烧时产生大量烟雾、有毒气体,使人中毒,甚至死亡,已成为人们日益关注的社会问题。高分子材料一方面给人类提供了丰富多彩的物质条件,另一方面也给人类埋伏了很多的火灾隐患。因此,如何提高高分子材料的阻燃性,已经成为当前消防工作一个急需解决的问题。 1.1高分子材料的燃烧及阻燃机理 高分子材料在空气中受热时,会分解生成挥发性可燃物。当可燃物浓度和体系温度足够高时即可燃烧。所以高分子材料的燃烧可分为热氧降解和燃烧两个过程,涉及传热、高分子材料在凝聚相的热氧降解、分解产物在固相及气相中的扩散、与空气混合形成氧化反应及场气相中的链式燃烧反应等一系列环节。当高分子材料受热的热源热量能够使高分子材料分解,且分解产生的可燃物达到一定浓度,同时体系被加热到点燃温度后,燃烧才能发生。而己被点燃的高分子材料在点燃源稳定后能否继续燃烧则取决于燃烧过程的热量平衡。当供给燃烧产生的热量等于或大于燃烧过程各阶段所需的总热量时,高分子材料燃烧才能继续,否则将中止或熄灭。从高分子材料的燃烧机理可看出,阻燃作用的本质是通过减缓或阻止其中一个或几个要素实现的。其中包括六个方面:提高材料热稳定性、捕捉游离基、形成非可燃性保护膜、吸收热量、形成重质气体隔离层、稀释氧气和可燃性气体。目前常采用的阻燃剂行为主要是通过冷却、稀释、形成隔离膜的物理途径和终止自由基的化学途径来实现。一般阻燃机理分为气相阻燃机理、凝聚相阻燃机理和中断热交换阻燃机理。燃烧和阻燃都是十分复杂的过程,涉及很多影响和制约因素,将一种阻燃体系的阻燃机理严格划分为某一种是很难的,一种阻燃体系往往是几种阻燃机理同时起作用。 1.2 阻燃剂的发展概况 在1970~1999年30年间,阻燃剂经历了两个发展时期:70至80年代初是蓬勃发展时期;80年代中至90年代末是稳步发展时期。在前一时期中,溴系阻燃剂的年增长率最高曾超过20%,且新品种不断涌现;从1984年后,阻燃剂发展速度减慢,特别是进入90年代后,年平均增长率可能只有2%左右。据粗略估计,全球阻燃剂65%~70%用于塑料,20%用于橡胶,5%用于纺织品,3%用于涂料,2%用于纸张及木材。 2 阻燃剂的分类

相关文档
最新文档