第二章线性电阻电路分析.

第二章线性电阻电路分析.
第二章线性电阻电路分析.

2—1图示电路,求i、U ab和R o

第二章线性电阻电路分析

&)

解:(a)经等效变换后,可得到右示a'电路。

6-2

(b)经等效变换后,可得到右示(

畑=5.4-2.4 = 3Z

A = 30

4

2—2图示电路,求i o

b'电路。

JitKn I

T

riioKa

少\

解:电路(a)经等效变换后,可得到(b )图电路。

lOV

r-——

+

3

lovr:

2-3图示电路,求i、u s o

3A 600

60 叩

2vt

D

—*-

Q )

b

——

?-

仙‘)

一如

解:原电路经等效变换后,可得到下图电路。 i = 3A lA

132 u

2A

6

比=1 + 3-3二 3(D isoa

r ?

(K)

解:原电路经△— Y 等效变换可得到所示对应电路,其中: O 1

3

O 国)

5盒

2

(a) 尺IQ

■^10 = R 餉—鸟。=焉

00

耳=1X00

3潜g

3 赛 焉=160

2-5试求图示各电路的等效电阻

R ab (电路中的电阻单位均为欧姆)

6叫 「 、 -------- +

卩 5

应=7十

汽曾?_ = 9,5Q

( ----- + ----- ) + 5 6+3 6+6

=44 ________ T (仝空 4 10)+e

6+3

3A

<1) ---- *-

i m1

10Q

6

b.

解:

10 (3 5) 8

(C

)

14

i-T-

b

解: 对网孔1: i mi =3A

i

m2 I

'40Q +

O l36V

+ lUo

i m3

'+ ° 50V

2-6 3

JlOQ

1

20Q

2-7 iBOV

解!设各刚孔电流和支路电流如圈

(2 + -10/^ -78-130

(;10 + 20);2 -10/1 =130

鬲 h = —1川

a = 4討

5= -h = M [广【2=

用网孔电流法求解下图所示电路中的电压

Uo 。

8Q

6

用网孔电流法求图示电路的各支路电流。

(>Y O

5

n 6Q

④1Q

解:以④为参考节点

2-8 解:

2-9 对网孔 2: -8i m1+ (2+8+40) i m2+40i m3=136 对网

孔 3: +10i m1+40i m2+ (40+10)

i m3=50 由上三式联立解得i m1=3A i m2=8A 所以 Uo=40 ( i m2+ i m3)=40 (8-6)

用节点电压法求解下图所示电路中的电压

1 Q

a —a —T i m3=-6A =80V U a b

1 Q e 15A

(与15A 串联的1Q 电阻去掉),以C 为参考节点 对节点 对节点 由(1) a : (

1+1+1) U a-U b = 10 b :

-U a + ( 1+1)

U b =15 (2)联立解得U a =7V 所以 (1)

(2

)

u b =11V 用节点电压法求解下图所示电路中电流的 I 彗

① 3Q U ab =U a -U b =7-11=-4V Is 和 Io 。 048V ②"

n 5Q 9Q n 2Q I 0

对节点①:

对节点②:

U

n1=

48V

1

5U n 1 (1

2)U n2

1 c 2U n3 0

对节点③: 丄

12

U

2 U n2

(-—

2 12

12

)

U

n3

由上三式联立解得 U n

1=48V U

n2=18V

U

n3=12V

节点①由kcl :

Is 二 U n_

+

U n__U n3 =9A

Io= Un3 Un2 =-3A

2

2-10求解图2-11所示电路中各电源提供的功率

5

U

n1

27

I= 1

=-7A

所以电压源对应 P 1=UI=27*

电流源对应 P 2=UI= U

n

2

*6=-20*6=-120W

用网孔法

(1+4) i m1+4i m2=-27 4 i m1+ (4+20+5) i m2-5 i m3=0 i m3=6A

上三式联立解得 i m1=-7A i m2=2A '

所以电压源对 P 1=27 i m1=27*( -7)=-189W

电流源对应 P 2=UI (i m2-i m3)*5*6=-120W

2-11图示电路,求U 3。

= -Q.6A

对节点①:

(1

对节点②:

20 U n1

20

)U n1

(20

20 U n2

1)U

n2

27

上两式联立解得U n1=20V U

n2

=-20V

(-7) =-189 发出 189W 功 率

解法二:

网孔1

网孔2

解:

44-22 = 10

6}十 4^2

=10 6A

解法一:节点电压法 以③为参考节点

20 Q ②

6A

09非线性电阻电路分析

非线性电阻电路分析 一、是非题 1.非线性电阻的电流增加k倍,则电压也增加k倍。 2.单调型非线性电阻,随着电压升高,动态电阻也增加。 3.非线性电阻电路小信号分析法的实质是将工作点附近的非线性伏安特性线性化。 4.半导体二极管电路模型是单调型非线性电阻,不属电压控制型、电流控制型。 5.不论非线性电阻或线性电阻串联,总功率等于各元件功率之和,总电压等于各元件电压之和。 答案部分 1.答案(-) 2.答案(-) 3.答案(+) 4.答案(-) 5.答案(+)

二、单项选择题 1.影响非线性电阻阻值变化的因素主要是 (A)时间 (B)温度 (C)电压或电流 2.双向性非线性电阻的伏安特性曲线为 3.有关非线性电阻电路的正确概念应是 (A)不同类型的非线性电阻其动态电阻定义不同 (B)单向型非线性电阻不具有单调型电阻性质 (C)非线性电阻可能在有关电压下具有多个电流值 (D)非线性电阻电路功率不守恒 4.图示非线性电阻伏安特性曲线中的BC段对应于下列哪个等效电路?

5.与图示非线性电阻伏安特性曲线AB段对应的等效电路是 答案部分 1.答案(C) 2.答案(B) 3.答案(C) 4.答案(B) 5.答案(B)

三、填空题 1.非线性电阻元件的性质一般用__________来表示。 2.图示电路中的理想二极管,流过的电流I为_______A。 3.右上图示曲线①和②为非线性电阻R1和R2的伏安特性曲线。试画出R1、R2并联后的等效伏安特性。 4.图示隧道二极管伏安特性曲线,试分析i S=4mA、i S=1mA、i S=-2mA三种情况下,隧道二极管的工作点。i S=4mA时____,i S=1mA时_____,i S=-2mA时____。 6.理想二极管伏安特性曲线如图(b)折线所示,试绘出图(a)所示网络的伏安特性曲线。

非线性电阻电路研究论文

非线性电阻电路研究论文 一、摘要 生活中存在的各种各样的电路,绝大多数是非线性电路。非线性电路已经越来越普遍地成为很多线代电子电工技术的理论基础。我们需要对非线性电路有较为深刻的理解,在了解常用的非线性电阻元件的伏安特性、凹电阻、凸电阻等基础上,自行设计非线性电阻电路进行综合电路设计,并利用Multisim软件仿真模拟并加以验证理论的正确性。 二、关键词 二极管,电压源,电流源,线性电阻,电压及其对应的电流。 三、引言 非线性系统的研究是当今科学研究领域的一个前沿课题,其涉及面广,应用前景非常广阔。对于一个一端口网络,不管内部组成,其端口电压与电流的关系可以用U~I平面的曲线称为伏安特性。各种单调分段线形的非线性元件电路的伏安特性可以用凹电阻和凸电阻作为基本积木块,综合出各种所需的新元件。常用串联分解法或并联分解法进行综合。本文主要介绍在电子电工综合实验基础上,根据已有的伏安特性曲线图来设计非线性电阻电路,并利用multisim7软件进行仿真实验。测量所设计电路的福安特性,记录数据,画出它的伏安特性曲线并与理论值比较。 四、正文 1、实验材料与设备装置 1)实验装置 电压源,电流源,稳压管,线性电阻器,二极管DIODE_VIRTUAL,电流表,multisim7软件 2)实验原理和方法要点 对于图(a)进行串联分解,在伏安特性图中以电流i轴来分解曲线 图(a-2) 图(a-1)

对图(a-1)进行分析可知,其伏安特性曲线电路为一个二极管和一个电阻的并联,一个二极管和一个电流源的并联,然后以上二者串联。图(a-2)是图(a-1)伏安线旋转180度,即以上电路的二极管和电流源反接。 同样的道理,可以将特性曲线上下两部分并联(如图b ) 由于特性曲线上下部分是对称的,这里只分析下半部分的设计思路,上半部分只需把下半部分设计的电路图中的所有电源和二极管反向即可。 图b-1又可以分为三部分曲线的并联。 即: u/v 图(b) = 图(b-1) +

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

习题六 简单非线性电阻电路分析.

习题六 简单非线性电阻电路分析 6-1 如题图6-1所示电路中,其中二极管和稳压二极管均采用理想特性,试分别画出其端口的DP 图。 题图6-1 6-2 设一混频器所用的非线性电阻特性为 2 210u a u a a i ++= 当其两端电压)()(t w A t w A u 2211cos cos +=时,求)。(t i 6-3 试画出下列电阻元件的u -i 特性,并指出3的单调性、压控的还是流控的? (1)u e i -=; (2)2 i u =; (3)3 01.01.0u u i +-=。 6-4 试写出题图6-4所示分段线性非线性电阻的u -i 特性表达式。 题图6-4 6-5 如题图6-5(a )所示电路为一逻辑电路,其中二极管的特性如题图6-5(b )所示。当U 1 = 2 V ,U 2 = 3 V ,U 3 = 5 V 时,试求工作点u 。

题图6-5 6-6 如题图6-6所示电路含有理想二极管,试判断二极管是否导通? 6-7 设有一非线性电阻的特性为u u i 343 -=,它是压控的还是流控的?若) (wt u cos =,求该电阻上的电流i 。 6-8 如题图6-8所示为自动控制系统常用的开关电路,K 1和K 2 为继电器,导通工作电 流为0.5 mA 。D 1和D 2为理想二极管。试问在图示状态下,继电器是否导通工作? 题图6-6 题图6-8 6-9 如题图6-9所示为非线性网络,试求工作点u 和i 。 题图6-9 6-10 如题图6-10所示网络,其中N 的A 矩阵为 A =? ? ? ? ??Ω5.1s 05.055.2

线性电路分析中受控电源的等效方法

线性电路分析中受控电源的等效方法 摘要:利用等效变换把受控源支路等效为电阻或电阻与独立电压源串联组合求解含有受控源的现行电路。 关键词:受控电源;等效变换;独立电源 前言: 在求解含有受控源的线性电路中,存在着很大的局限性.下面就此问题作进一步的探讨. 受控源支路的电压或电流受其他支路电压、电流的控制.受控源又间接地影响着电路中的响应.因此,不同支路的网络变量间除了拓扑关系外,又增加了新的约束关系,从而使分析计算复杂化.如何揭示受控源隐藏的电路性质,这对简化受控源的计算是非常重要的.本文在对受控源的电路性质进行系统分析的基础上,给出了含受控源的线性电路的等效计算方法. 正文:根据受控源的控制量所在支路的位置不同,分别采取如下3种等效变换法. 1. 1.当电流控制型的受控电压源的控制电流就是该受控电压源支路的电流、 或当电压控制型的受控电流源的控制电压就是该受控电流源支路两端的电压时,该受控源的端电压与电流之间就成线性比例关系,其比值就是该受控源的控制系数.因此,可采用置换定理,将受控源置换为一电阻,再进一步等效化简. 例1-1:如图求解图a中所示电路的入端电阻R AB. 解:首先,将电压控制型的受控电流源gu 1与R 1 并联的诺顿支路等效变化成电压 控制型的受控电压源gu 1R 1 与电阻R 1 串联的等效戴维南支路,如图b所示.在电 阻R 1与电阻R 2 串联化简之前,应将受控电压源的控制电压转换为端口电流i,即 u 1=-R 2 i.然后,将由电压u 1 控制的电压控制型受控电压源gu 1 R 1 转化为电流控 制型的受控电压源-gR 1R 2 i,如图c所示.由图c可知,由于该电流控制型的受 控电压源的控制电流i就是该受控电压源支路的电流,因此,可最终将该电流控 制型的受控电压源简化成一个电阻,其阻值为-gR 1R 2 .这样,该一端口网络的入 端电阻R AB=R 1+R 2 -gR 1 R 2 . 例1—2 例1—2求解图a中所示电路的入端电阻R AB. 解:可对该一端口网络连续运用戴维南-诺顿等效变换,最后可得到图 b所示的电路.由于电压控制型的受控电流源 u1 8Ω的控制量u1就是它的端电压,且二者的假定正方向相反,因此,可将其简化为一阻值为-8Ω的电阻.这样,该一端口网络的入端电阻 R AB=1/(1 2+1 2-1 8)=8 7 2. 2.受控源的控制量为网络的端口电压或电流时,可将各支路进行等效变 换,可将受控源作为独立源处理.当电路等效到端口时,若控制量是端口电流,则可将电路等效成受控电压源、独立电压源和电阻的串联组合;若控制量是端口电压,则可将电路等效成受控电流源、独立电流源和电阻的并联组合.再进一步将受控源置换为一电阻,最后可求出最简单的等效电路. 例2—1 例2—1简化图a所示电路.

线性电阻电路分析

长春理工大学 国家级电工电子实验教学示范中心学生实验报告 2019-2020学年第2学期 实验题目:线性电阻电路分析 实验地点:东1教414 学院:电子信息工程 班级学号:190412125 姓名:谷东月 报告成绩:

一、实验目的 1、熟悉EWB工作平台的操作环境 2、练习利用EWB进行电路的创建 3、会用电压表和电流表对所设计电路进行测量 4、研究电压表、电流表内阻对电路测量的影响 5、通过对线性电路叠加定理验证实验的设计,训练工程实践思维模式 二、实验性质 验证性实验 三、实验内容 1、分压电路 (1)复制电子工作平台上的实验电路图 (2)测量数据记录 测量R1电压的 电压表内阻测量值R01R02R03R04 25M 25k 25 25m V R1 (V) 6 5.883 0.286 0.3 V R2 (V) 6 6.117 11.714 12 (3)数据分析及结论

1.当R1和R2相差不大时,满足分压公式V R1=(R1/R1+R2)*U,V R2=(R2/R1+R2)*U 2.V R1+V R2=U 2、分流电路 (1)复制电子工作平台上的实验电路图 (2)测量数据记录 R1电阻(Ω)测量值R11 R12 R13 25 50 75 I R1 5 3.33 2.5 I R2 5 6.67 7.5 (3)数据分析及结论 1、并联电阻分流并与电阻成反比 2、并联电阻分流之和等于电路电流 3、I R1+I R2=I,I R1/I R2=R2/R1 3、叠加定理验证实验 (1)设计思路

(2)测量数据及分析 图1 图2 图3 U1 1.5 2.25 -0.75 U2 30 22.5 7.5 U3 0 1.125 -1.125 (3)理论分析及结论 分析:图二,图三数据相加等于相对应的图一的数据。 结论:在线性电路中,任一支路的电压和电流,在各个独立源的作用下,在该支路中

线性电阻电路分析

线性电阻电路分析标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

第二章 线性电阻电路分析 电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。 上一章介绍的2b 法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。 1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。 2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。 §2-l 电阻单口网络 单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。 当强调二端网络的端口特性,而不关心网络内部的情况时,称二端网络为单口网络,简称为单口(One-port)。 电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是u - i 平面上的一条曲线)。等效单口网络:当两个单口网络的VCR 关系完全相同时,称这两个单口是互相等效的。 N 1 N 2 VCR 相同 等效

单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口内部的结构和参数并不相同,谈不上什么等效问题。 利用单口的等效来简化电路分析:将电路中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。 一、线性电阻的串联和并联 1.线性电阻的串联 两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻 的串联。图(a)表示n个线性电阻串联形成的单口网络。 用2b方程求得端口的VCR方程为 其中 上式表明n个线性电阻串联的单口网络,就端口特性而言,等效于一 Ri i R R R R i R i R i R i R u u u u u n n n n = +???+ + + = +???+ + + = +???+ + + = ) ( 3 2 1 3 3 2 2 1 1 3 2 1 ∑ = = = n k k R i u R 1

线性电阻电路分析

第二章线性电阻电路分析 电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。 上一章介绍的2b法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。 1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。 2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。 §2-l 电阻单口网络 单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络部的情况时,称二端网络为单口网络,简称为单口(One-port)。 电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是 u-i平面上的一条曲线)。等效单口网络:当两个单口网络的VCR关系完全相同时,称这两个单口是互相等效的。 单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口部的结构和参数并不相同,谈不上什么等效问题。 利用单口的等效来简化电路分析:将电路中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。 一、线性电阻的串联和并联 1.线性电阻的串联 N1N2 VCR相同 等效

两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻的串联。图(a)表示n个线性电阻串联形成的单口网络。 用2b方程求得端口的VCR方程为 其中 上式表明n个线性电阻串联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电阻值由上式确定。 2.线性电阻的并联两个二端电阻首尾分别相联,各电阻处于同一电压下的连接方式,称为电阻的并联。图(a)表示n个线性电阻的并联。 求得端口的VCR方程为 上式表明n个线性电阻并联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电导值由上式确定。两个线性电阻并联单口的等效电阻值,也可用以下公式计算 Ri i R R R R i R i R i R i R u u u u u n n n n = +???+ + + = +???+ + + = +???+ + + = ) ( 3 2 1 3 3 2 2 1 1 3 2 1 ∑ = = = n k k R i u R 1 Gu u G G G G u G u G u G u G i i i i i n n n n = +???+ + + = +???+ + + = +???+ + + = ) ( 3 2 1 3 3 2 2 1 1 3 2 1

线性电阻电路分析报告

第二章 线性电阻电路分析 电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。 上一章介绍的2b 法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。 1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。 2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。 §2-l 电阻单口网络 单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络部的情况时,称二端网络为单口网络,简称为单口(One-port)。 电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是u -i 平面上的一条曲线)。等效单口网络:当两个单口网络的VCR 关系完全相同时,称这两个单口是互相等效的。 单口的等效电路:根据单口VCR 方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口部的结构和参数并不相同,谈不上什么等效问题。 利用单口的等效来简化电路分析:将电路中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。 一、线性电阻的串联和并联 1.线性电阻的串联 N 1 N 2 VCR 相同 等效

两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻的串联。图(a)表示n 个线性电阻串联形成的单口网络。 用2b 方程求得端口的VCR 方程为 其中 上式表明n 个线性电阻串联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电阻值由上式确定。 2.线性电阻的并联两个二端电阻首尾分别相联,各电阻处于同一电压下的连接方式,称为电阻的并联。图(a)表示n 个线性电阻的并联。 求得端口的VCR 方程为 上式表明n 个线性电阻并联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电导值由上式确定。两个线性电阻并联单口的等效电阻值,也可用以下公式计算 Ri i R R R R i R i R i R i R u u u u u n n n n =+???+++=+???+++=+???+++= )( 321332211321∑ ===n k k R i u R 1 Gu u G G G G u G u G u G u G i i i i i n n n n =+???+++=+???+++=+???+++= )( 321332211321

电路分析答案第三章

第三章习题 3.1 如题3.1图所示梯形电路。 ⑴ 已知24u V =,求1u 、i 和S u 。 ⑵ 已知27S u V =,求1u 、2u 和i 。 ⑶ 已知 1.5i A =,求1u 和2u 。 解:根据线性电路的性质,设: 211u k u = 22u k i = 23s u k u = 令: 2V u 2= 可推出 6V u 2= 1A i = 27V u s = 因而可得: 3k 1= 0.5k 2= 27/2k 3= ⑴ 当24u V =时,有: 12V 43u 1=?= 2A 40.5i =?= 56V 42 27 u s =?= ⑵ 当27S u V =时,有: 2V 2727 2u k 1u s 32=?== 1A 20.5u k i 22=?== 6V 23u k u 211=?== ⑶ 当 1.5i A =时,有: 3V 1.50.5 1i k 1u 22=?== 9V 33u k u 211=?== 3.2 如题3.2图所示电路,已知9S u V =,3S i A =,用叠加定理求电路i 。 解:S u 单独作用时,有: 1163 S u i A = =+ S i 单独作用时,有: 23 163 S i i A =-=-+ 根据叠加定理可得: 12110i i i =+=-= 3.3 如题3.3图所示电路,求电压u 。如独立电压源的值均增至原值的两倍,独立电流源的值下降为原值的一半,电压u 变为多少? 解:根据KVL 列一个回路 113132(32)4u i V A A i =Ω?++?Ω+-?Ω 两个电压源支路可列方程:

1131(3)610i i +=-+ 由此可得: 13i A = 代入上式得: 33132(323)4u V =?++?+-??= 若独立电压源的值均增至原值的两倍,独立电流源的值下降为原值的一半,由上式可知: 1132(1.5)620i i +=-+ 解得 13i A = 有: 332 1.52 (1.523)4 u V =?++?+-??=- 3.4 如题3.4图所示电路,N 为不含独立源的线性电路。已知:当12S u V =、 4S i A =时,0u V =;当12S u V =-、2S i A =-时,1u V =-;求当9S u V =、1S i A =-时的电压u 。 解:根据线性电路的叠加定理,有: 12S S u k u k i =+ 将已知数据代入,有: 120124k k =+ 121122k k -=-- 联立解得: 116k = 212 k =- 因而有: 11 62S S u u i =- 将9S u V =、1S i A =-代入 可得: 11 9(1)262 u V =--= 3.5 如题3.5图所示电路,已知当开关S 在位置1时,I=40mA ;当S 在位置2时,I=-60mA ;求当S 在位置3时的I 解:设电源S U 和S I 对电流I 的贡献为I 根据线性电路的叠加定理,有: /I I kU =+ 其中U 为开关外接电源的作用。 开关S 在位置1时,有 /400I k =+? 此时可将U 视为0 开关S 在位置2时,有 /604 I k -=- 由上可解得: 25k = /40I = 当S 在位置3时,6U V =,则有:

第二章电路的分析方法(答案).

第二章电路的分析方法 本章以电阻电路为例,依据电路的基本定律,主要讨论了支路电流法、弥尔曼定理等电路的分析方法以及线性电路的两个基本定理:叠加定理和戴维宁定理。 1.线性电路的基本分析方法 包括支路电流法和节点电压法等。 (1)支路电流法:以支路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的方程组,从中求解各支路电流,进而求解各元件的电压及功率。适用于支路较少的电路计算。 (2)节点电压法:在电路中任选一个结点作参考节点,其它节点与参考节点之间的电压称为节点电压。以节点电压作为未知量,列写节点电压的方程,求解节点电压,然后用欧姆定理求出支路电流。本章只讨论电路中仅有两个节点的情况,此时的节点电压法称为弥尔曼定理。 2 .线性电路的基本定理 包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适用于交流电路。 (1)叠加定理:在由多个电源共同作用的线性电路中,任一支路电压(或电流)等于各个电源分别单独作用时在该支路上产生的电压(或电流)的叠加(代数和)。 ①“除源”方法 (a)电压源不作用:电压源短路即可。 (b)电流源不作用:电流源开路即可。 ②叠加定理只适用于电压、电流的叠加,对功率不满足。 (2)等效电源定理 包括戴维宁定理和诺顿定理。它们将一个复杂的线性有源二端网络等效为一个电压源形式或电流源形式的简单电路。在分析复杂电路某一支路时有重要意义。 ①戴维宁定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电压源和一个电阻的串联组合来等效代替,其中理想电压源的电压等于含源二端网络的开路电压,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 ②诺顿定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电流源和一个电阻的并联组合来等效代替。此理想电流源的电流等于含源二端网络的短路电流,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 3 .含受控源电路的分析 对含有受控源的电路,根据受控源的特点,选择相应的电路的分析方法进行分析。 4.非线性电阻电路分析

第二章线性电阻电路分析.

2—1图示电路,求i、U ab和R o 第二章线性电阻电路分析 &) 解:(a)经等效变换后,可得到右示a'电路。 6-2 (b)经等效变换后,可得到右示( 畑=5.4-2.4 = 3Z A = 30 4 2—2图示电路,求i o b'电路。 JitKn I T riioKa 少\ 解:电路(a)经等效变换后,可得到(b )图电路。 lOV r-—— + 3 lovr: 2-3图示电路,求i、u s o 3A 600 60 叩 2vt D —*- Q ) b —— ?- 仙‘) 一如

解:原电路经等效变换后,可得到下图电路。 i = 3A lA 132 u 2A 6 十 比=1 + 3-3二 3(D isoa r ? (K) 解:原电路经△— Y 等效变换可得到所示对应电路,其中: O 1 3 O 国) 5盒 2 (a) 尺IQ ■^10 = R 餉—鸟。=焉 00 耳=1X00 3潜g 3 赛 焉=160 2-5试求图示各电路的等效电阻 R ab (电路中的电阻单位均为欧姆) 。

6叫 「 、 -------- + 卩 5 应=7十 汽曾?_ = 9,5Q ( ----- + ----- ) + 5 6+3 6+6 =44 ________ T (仝空 4 10)+e 6+3 3A <1) ---- *- i m1 10Q 6 b. 解: 10 (3 5) 8 (C ) 14 i-T- b 解: 对网孔1: i mi =3A i m2 I '40Q + O l36V + lUo i m3 '+ ° 50V 2-6 3 JlOQ 1 20Q 2-7 iBOV 解!设各刚孔电流和支路电流如圈 (2 + -10/^ -78-130 (;10 + 20);2 -10/1 =130 鬲 h = —1川 a = 4討 5= -h = M [广【2= 用网孔电流法求解下图所示电路中的电压 Uo 。 8Q 6 用网孔电流法求图示电路的各支路电流。 (>Y O

相关文档
最新文档