数学建模数学建模之雨中行走问题模型

数学建模数学建模之雨中行走问题模型
数学建模数学建模之雨中行走问题模型

数学建模

系别:

班级:

姓名:

学号:

正文:

数学建模之雨中行走问题模型

摘要:

考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑;

若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。

① 当αsin r v <时,淋在背上的雨量为[]v vh rh pwD -αsin ,雨水总量

()[]v v r h dr pwD C -+=ααsin cos .

② 当αsin r v =时,此时02=C .雨水总量αcos v pwDdr C =,如030=α,升24.0=C

这表明人体仅仅被头顶部位的雨水淋湿.实际上这意味着人体刚好跟着雨滴向前走,身体前后将不被淋雨.

③ 当αsin r v >时,即人体行走的快于雨滴的水平运动速度αsin r .此时将不断地赶上雨滴.雨水将淋胸前(身后没有),胸前淋雨量()v r v pwDh C αsin 2-= 关键词:

淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度

1.问题的重述

人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢一个简单的情形是只考虑人在雨中沿直线从一处向另一处进行时,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少

2.问题的分析.

由于没带伞而淋雨的情况时时都有,这时候大多人都选择跑,一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。,

一、我们先不考虑雨的方向,设定雨淋遍全身,以 最大速度跑的话,估计总的淋雨量;

二、再考虑雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ ,如图1,建立总淋雨量与速度v 及参数a,b,c,d,u,w,θ之间的关系,问速度v 多大,总淋雨量最少,计算θ=0,θ=0

90时的总淋雨量;

三、再是雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2.,建立总淋雨量与速度v及参数a , b , c, d , u , w , α之间的关系,问速度多大,总淋雨量最少;

四、以总淋雨量为纵轴,对(三)作图,并解释结果的实际意义;

五、若雨线方向不在同一平面内,模型会有什么变化;按照这五个步骤,我们可以进行研究了。

3.模型的假设与符号说明

模型的假设

1. 设雨滴下落的速度为u(米/秒),降水强度(单位时间平面上的降水厚度)为w(厘米/时),且u,w为常量.

2. 设雨中行走的速度为v(米/秒),(固定不变).雨中行走的距离为d(米).

3. 设降雨的角度(雨滴下落的反方向与人前进的方向之间的夹角)为θ

4. 视人体为一个长方体,其身高为a(米),身宽为b(米),厚度为c(米)

符号说明

a:代表人颈部以下的高度

b:人身体的宽度

c:人身体的厚度

d:起跑点到终点的距离

v:跑步的最大速度

m

u :雨的速度

w :降雨量

v :跑步速度

θ:雨线方向与人体夹角

S:人的全身面积

t= d/m v :雨中行走的时间

4.模型的建立与求解

(1)不考虑雨的方向

首先讨论最简单的情形,即不考虑降雨角度的影响。雨将淋遍全身,淋雨的面积s=2ab+2ac+bc=2

m , 淋雨的时间t=d/m v =200s, 降雨量w=2cm/h=4

10-/18(m/s), 所以总的淋雨量Q=

≈。

(2)雨从迎面吹来

雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的角度为 。如图1。建立总淋雨量与速度v 及参数a ,b ,c ,d ,u ,w , 之间的关系,问速度v 多大,总淋雨量最少。计算θ =0,θ =30时的总降雨量。

雨滴落下的速度为u=4m/s ,降雨量w=2cm/h 。因为考虑了降雨的方向,淋湿的部位只有顶部和前部。分两部分计算淋雨量.

顶部的淋雨量1Q = bcdw cos θ/v ;雨速水平分量usin θ,风向与v 相反。合速度usin θ+v ,迎面单位时间、单位面积的淋雨量w ( usin θ+v )/u ,迎面淋雨量2Q =abdw ( usin θ+v )/uv ,所以总淋雨量

12cos (sin )

bdw cu a u v Q Q Q u v

θθ++=+=?

v=m

v 时Q 最小。0θ=时,Q=1.2L ;θ=030,Q ≈1.6L 。

(3)考虑降雨方向的模型(雨从背面吹来)

雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为a ,如图2。建立总淋雨量与速度v 及参数a ,b ,c ,d ,u ,w , 之间的关系,问速度v 多大,总淋雨量最少。

计算 =30的总淋雨量。

雨滴落下的速度为u=4m/s ,降雨量w=2cm/h ,因为考虑了降雨的方向,淋湿的部位只有顶部和背部。分两部分计算淋雨量。

顶部的淋雨量1Q =bcdw cos θ/v ;雨速水平分量usin θ,风向与v 相反。合速度

sin u a v

-,迎面单位时间、单位面积的淋雨量w ( usin θ-v )/u ,迎面淋雨量

2Q =abdw ( usin θ-v )/uv ,所以总淋雨量:

cos (sin )(cos sin ),sin cos (sin )(cos sin ),sin bdw cu a u a v bdw u a a a av

v u a u v u v

Q bdw cu a v u a bdw u a a a av v u a u

v u v +-+-??=?≤??=?

+--+??=?>?? 若cos sin c a a a -<0,即tana>c/a ,则v=usina 时Q 最小,否则,v=m

v 时Q 最小,

当030a =,tan a >,v=2m/s ,Q ≈0.24L 最小,可与v=m v ,Q ≈0.93L 相比。

(4)以总淋雨量为纵轴,速度v为横轴,对三作图(考虑a的影响),并解释结果的实际意义

雨从背面吹来,只要不太小,满足tana>c/a(a=、c=时,> 即可),v=usina,Q 最小,此时人体背面不淋雨,只有顶部淋雨。

(5)若雨线方向与跑步方向不在同一平面内,模型会有什么变化

再用一个角度表示雨的方向,应计算侧面的淋雨量,问题本质上没有变化。

5.模型的评价

(1)在不考虑风向情况下:

此时,你的前后左右和上方都将淋雨。人在行走中的淋雨量最大的大约为升。结论表明:淋雨量是速度的减函数,当速度尽可能大时淋雨量达到最小

(2)在考虑风向及雨量的情况下:

当v=usinθ时,Q取到最小.表明:当行走速度等于雨滴下落的水平速度时,淋雨量最小,仅仅被头顶上的雨水淋湿了。

当v﹥usinθ,你不断地追赶雨滴,雨水将淋湿你的胸膛。

6.模型的结果分析

综合上面的分析,我们得到的结论是:

1.如果雨是迎着你前进的方向落下,这时的最优行走策略是以尽可能大的速度向前跑。

2.如果雨是从你的背后落下,这时你应该控制在雨中行的。走的速度,使得它恰好等于雨滴下落速度的水平分量。

根据一般常识,我们所得到的结果是合理的且与我们的日常生活经验是一致的。运用简单的数学工具,我们对日常生活中司空见惯的问题给予了定量的分析。但同时必须指出的是,这里建立的简单数学模型与雨中行走的实际过程尚有距离,因为在建立数学模型的过程中我们忽略了一些相对次要的因素。关于模型的检验,请大家观察、体会并验证。雨中行走问题的建模过程又一次使我们看到模型假设的重要性,模型的阶段适应性。

参考文献

[1] 姜启源谢金星叶俊,数学模型(第三版),北京:高等教育出版社,2008.

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

《数学模型》

《数学模型》考试大纲 适应专业:数学与应用数学、信息与计算科学、统计学、应用统计学专业 一、课程性质与目的要求 数学模型课亦称为数学建模课,它是数学与应用数学、信息与计算科学、统计学、应用统计学专业必修课或限选课,教育部1998年颁布的高等学校本科专业目录中,把“数学模型”课作为数学类专业的必开课。数学模型是架于实际问题与数学理论之间的桥梁。数学模型就是应用数学语言和方法,对于现实世界中的实际问题进行抽象、简化和假设所得到的数学结构。本课程是研究数学建模的理论、思想和方法,研究建立数学模型、简单的优化模型、数学规划模型、微分方程模型、代数方程与差分方程模型、稳定性模型、离散模型、概率模型等。 数学模型课需要用到数学分析、高等代数、微分方程、图论、概率统计、运筹学等数学知识,它是学生所学数学知识的综合应用,是培养学生综合素质以及应用数学知识解决实际问题的能力的良好课程。该课程的考试评价依据是按照课程目标、教学内容和要求,把握合适的难易程度出试卷,用笔试的方法对学生学习情况和学习成绩做出评价。 二、课程内容和考核要求 第一章建立数学模型 1、考核知识点: 数学建模的背景及重要意义、数学模型与数学建模、数学模型的分类与特点、数学建模的基本方法和步骤、数学建模举例等。 2、考核要求: (1)理解数学建模的背景及意义、原型、模型、数学模型、数学建模等概念。 (2)理解数学模型的各种分类、数学模型的特点。 (3)理解数学建模的基本方法和步骤、通过实例初步了解数学建模的思想和方法。 第二章简单的优化模型 1、考核知识点: 存储模型、生猪的出售时机、森林救火、冰山运输等。

2、考核要求: (1)掌握应用微积分理论建立存储问题模型。 (2)理解应用微积分理论建立生猪的出售时机模型和森林灭火模型。 (3)理解应用微积分理论建立冰山运输问题模型。 第三章数学规划模型 1、考核知识点: 数学规划问题的基本概念、数学规划问题图解法步骤、生产安排问题、奶制品的生产与销售等。 2、考核要求: (1)掌握数学规划问题的基本概念、数学规划问题图解法步骤。 (2)掌握生产安排问题的模型及图解法。 (3)理解奶制品的生产与销售的模型及求解。 第四章微分方程模型 1、考核知识点: 传染病模型、正规战与游击战、药物在体内的分布与排除、香烟过滤嘴的作用等。 2、考核要求: (1)理解传染病问题的建模及讨论。 (2)理解战争问题、房室问题的建模及讨论。 (3)了解香烟过滤嘴作用问题的建模及讨论。 第五章代数方程与差分方程模型 1、考核知识点: 量纲、量纲齐次原理、量纲分析法、差分方程的基本概念、市场经济中蛛网模型、节食与运动问题等。 2、考核要求: (1)掌握量纲、量纲齐次原理、量纲分析法建模及解法步骤。 (2)掌握市场经济中蛛网模型及解法步骤。 (3)理解理解差分方程的基本概念、减肥问题的建模思想。 第六章稳定性模型

雨中奔跑问题数学建模

题目:一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。 1 建模准备 建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。 主要因素:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 2 模型假设及符号说明 1)把人体视为长方体,身高h 米,宽度w 米,厚度d 米。淋雨总量用C 升来记。 2)降雨大小用降雨强度I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。在这里可视其为一常量。 3)风速保持不变。 4)你一定常的速度v 米/秒跑完全程D 米。 3 模型建立与计算 1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。 淋雨的面积 )( 222米wd dh wh S ++= 雨中行走的时间 )(秒v D t = 降雨强度 )/()3600/01.0()/(01.0)/(s m I I I ==时米时厘米 (升) 米S I v D S I t C ??=???=3600/)/(10)(01.0)3600/(3 模型中为变量。为参数,而v S I D ,, 结论,淋雨量与速度成反比。这也验证了尽可能快跑能减少淋雨量。 。米即米米米小时厘米米若取参数22.2,20.0,50.0,50.1,/2,1000======S d w h I D 秒。分秒,即你在雨中行走了每秒,则计算得 米度你在雨中行走的最大速472167/6=v

数学建模笔记

数学模型按照不同的分类标准有许多种类: 1。按照模型的数学方法分,有几何模型,图论模型,微分方程模型.概率模型,最优控制模型,规划论模型,马氏链模型. 2。按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型. 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 1.蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 7.网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

雨中行走问题模型

数学建模之雨中行走问题模型 摘要:由于降雨方向的变化,在跑步过程中尽力快跑不一定是最好的策略。就淋雨量与跑步快慢这个问题,我们通过建立数学模型来探讨在雨中如何行走才能使淋雨量最少。在不考虑雨的方向时,当然是跑的越快淋得越少;考虑雨的方向时,那么再分情况讨论,若雨是迎着你前进的方向落下,这时以最大的速度向前跑可使淋雨量最少;若雨是从你的背后落下,那么你应控制在雨中行走的速度,让它刚好等于落雨速度的水平分量。 关键词:淋雨量,数学模型,降雨的方向。 正文 1.问题的提出 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。将人体简化成一个长方形,高a=1.5(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论 (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步估计跑完全程的淋雨量;(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为 ,问跑步速度v 为多大时可使淋雨量最少。 (3)雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供) 2.问题的分析 总的淋雨量等于人体的各个面上的淋雨量之和。每个面上的淋雨量等于单位面积、单位时间的淋雨量与面积以及时间的乘积。面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

数学模型与数学建模-2

2.1MATLAB MATLAB Matrix Laboratory , MathWorks 20 80 , , MATLAB Simulink .MATLAB 1) , ; 2) , ; 3) , ; 4) ( ), . 2.1.1MATLAB MATLAB , , . , MATLAB , 2.1.1 . MATLAB “>>” , MATLAB . , Enter ,MATLAB .

·8· 2 ? ? 2.1.1MATLAB 1.help , help . poly?t . help polyfit POLYFIT Fit polynomial to data..P=POLYFIT(X,Y,N)finds the coeffici-ents of a polynomial P(X)of degree N that fits the data Y best in a least-squares sense.P is a row vector of length N+1containing the polynomial coefficients in descending powers,P(1)*X^N+P(2)*X^(N-1) +···+P(N)*X+P(N+1). , MATLAB Help . Help Product Help , ( 2.1.2) 2.1.2Help

2.1MATLAB ·9· Seach , . 2.clear clear . “a=1”, >>a=1. 1 a. a , clear . >>clear a???Undefined function or variable a . 3.format MATLAB format . format short , 5 ; format rational ; format long g 15 ; >>format short>>pi ans=3.1416;>>format rational >>pi ans=355/113; >>format long g>>pi ans=3.14159265358979 2.1.2MATLAB 1. 2.1.1 MATLAB . MATLAB 1 , .MATLAB , B b . 2.1.1MATLAB pi i,j inf . n/0 inf, n 0 ans , . ,MATLAB ans NaN , . 0/0 inf/inf 2. MATLAB , . . MATLAB , , , . A=[1?256?49] A=[1,?2,5,6,?4,9] 6 A.

数学建模数学建模之雨中行走问题模型

数学建模 雨 中 行 走 模 型 系别: 班级: 姓名: 学号:

正文: 数学建模之雨中行走问题模型 摘要: 考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑; 若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。 ① 当 α sin r v <时,淋在背上的雨量为 []v vh rh pwD -αsin ,雨水总量 ()[]v v r h dr pwD C -+=ααsin cos . ② 当α sin r v =时,此时0 2 =C .雨水总量α cos v pwDdr C = ,如0 30 =α ,升 24.0=C 这表明人体仅仅被头顶部位的雨水淋湿.实际上这意味着人体刚好跟着雨滴向前走,身体前后将不被淋雨. ③ 当α sin r v >时,即人体行走的快于雨滴的水平运动速度αsin r .此时将不断地赶上 雨滴.雨水将淋胸前(身后没有),胸前淋雨量()v r v pwDh C α sin 2 -= 关键词: 淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 1.问题的重述 人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢?一个简单的情形是只考虑人在雨中沿直线从一处向另一处进行时,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少? 2.问题的分析. 由于没带伞而淋雨的情况时时都有,这时候大多人都选择跑,一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。, 一、我们先不考虑雨的方向,设定雨淋遍全身,以 最大速度跑的话,估计总的淋雨量; 二、再考虑雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为 ,如图1,建立总淋雨量与速度v 及参数a,b,c,d,u,w,θ之间的关系,问速度v 多大,总淋雨量最少,计算=0,=0 90时的总淋雨量; θθθ

数学建模实验答案_概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少? [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 () ()()n n p r dr p r dr p r dr -∞ -∞ =-??? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l =2.0m 的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差 σ=0.2m ,问这时钢材长度的均值m 应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 ()() m J m P m = 其中, 2()2()(), ()x m l P m p x dx p x σ-- ∞ == ? 求m 使J (m )达到最小。 等价于求方程 () ()z z z λ?Φ=- 的根z *。 其中:

数学建模基础(入门必备)

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

“我在雨中行走”佳作四篇

“我在雨中行走”佳作四篇 角度:我在雨中行走,磨炼坚强毅力 我在雨中行走 付茫茫 三月里的小雨淅淅沥沥下个不停,三月里的小河哗啦啦流个不停…… 扔掉纸油伞,任小雨洒在我的脸上,鼓起勇气,直面坎坷人生,坚定不移地走下去,永不回首过去。 冰心曾说过:“眼愈多流泪愈加清明,心因饱经忧患而愈加温厚。”我应该把每一次的困难当成佛给我的每一次洗礼,我应该学习冰心面对困难用两行热泪流去内心的焦灼与愤懑,更应该学会用坚实的臂膀承载起生命的重量。 我想我应该是一棵木棉树,在我近旁有一棵伟岸的树。伟岸的树,你是我的前辈,是我的领路人,因为你的存在让我更有信心去面对生活。你所有经历过的风雨,我也要经历。因为有你,所以我不怕风雨,不怕黑夜,不怕霹雳…… 伟岸的树,我不敢面对自己的学习成绩,更不敢面对每一次考试,那是一个不真实的我,我被空气里弥漫着的恐惧压得喘不过气。可你对我说:“世间没有绝望的境地,只有绝望的思维。”是你告诉我风雨过后见彩虹,只有经历的多了像鹰一样自由翱翔在天空,去感受面朝大海、春暖花开的

惬意!挫折是每个人都要经历的,它就是要身在困境中的人劳其筋骨,饿其体肤,空乏其身,方能成功。 我坚信我可以,并将自始至终坚持我的信念。我在雨中行走,迈着轻盈的步伐,发现它是有一定的速度。雨中漫步,让我领会人生三味,挺起脊梁,让我学会坚强,风雨只不过是一抹轻轻擦拭而过的泪痕。 佛告诉我,我走过的每一步都有痕迹。我会沿着伟岸的树走过风雨、黑夜、霹雳……直到出现: 阵阵晚风吹动的波涛 吹动这风铃声如天籁 是谁画出这天地 又画下我和你 让我们的世界绚丽多彩 我从不曾忘记和你一起经历的风雨。 三月里的小雨淅淅沥沥下个不停,三月里的小河哗啦啦流个不停…… 我在雨中行走,一种潜在意识告诉我:努力吧,你可以!风雨终将过去…… 【感悟】 许多人都说,风雨过后是彩虹。然而,自然界的风雨彩虹经历了一遭又一遭,生命的雨季始终没有消停,伞不能渡我,树不能渡我,佛不能渡我,只有过来人的文字和过往的

概率论与数学建模

概率论与数学建模

概率论与数学建模 基础知识部分 一、概率论: 1、概率:刻化某一事件在一次试验中发生的可能性大小的数。 注:事件指随机事件(可重复、可预测、结果明确) 例如抛骰子,抛一枚硬币。 2、常见的随机变量:X (1)离散型: 泊松分布:k e P X k k k λ λ-(=)= ,=0、1、2、、、! 实际应用:时间t 内到达的次数; (小概率事件)一本书中一页中的印刷错误数; 某地区在一天内邮件遗失的信件数; 某一天内医院的急症病人数; 某一地区一个时间间隔内发生交通事故的次数; 一个时间间隔内某种放射性物质发出的经过计数器的α粒子数等等…… (2)连续型: 指数分布:x e x>0 f X λλ???-,()=0,其它 其中>0λ为常数 ,记为)(~λExp X 特点:无记忆性。即是P(/)()X s t X s P X t >+>=>

一个元件已经使用了s 小时,在此情形下,它总共能使用至少s+t 小时的概率,与开始使用时算起它至少能使用t 小时的概率相等,即元件对已使用过s 小时无记忆。 实际应用:(可靠性理论、排队论)许多“等待时间”都服从指数分布;一些没有明显“衰老”迹象的机械元器件(如半导体元件)的寿命也可也用指数分布来描述…… 正态分布:x e f X

“3σ“原则: “3σ“原则被实际工作者发现,工业生产上用的控制图和一 些产品质量指数都是根据3σ原则制定。 3、随机变量的特征数(数字特征): 均值(期望):k k k x p E X xf x dx ∞ ∞ ∞ ???????∑?=1 +-,(离散型)()=(),(连续型) 方差:22 D X = E X E X ()(())E X E X =-2()(-()) 中心极限定理:n X X ,,1 是独立同分布的随机变量序列,且 22(),(),0i i E X D X μσσ==> 则有:)(}{lim 1t t n n X X P n n Φ=≤-+∞ →σμ 模型一、轧钢中的浪费模型: 问题:将粗大的钢坯制成合格的钢材需要两道工序:粗轧(热轧),形成刚才的雏形;精轧(冷轧),得到规定长度的成品材料。由于受到环境、技术等因素的影响,得到钢材的长度是随机的,大体上呈正态分布,其均值可以通过调整轧机设定,而均方差是由设备的精度决定,不能随意改变。如果粗轧后的钢材长度大于规定长度,精轧时要把多余的部分切除,造成浪费; 而如果粗轧后的钢材长度小于规定长 2σ x 99.7% 6σ 4σ (1) (2) (3) μ

关于雨中行走模型

关于雨中行走模型 第六讲建模方法论(5)——建模实例(一) 雨中行走问题 夏季的某天,你去某地办事,接近目的地时,天空突然下起了大雨,糟糕的是你没有带雨具,且难以找到避雨的地方。一个似乎很简单的事实是你应该在雨中尽可能的快走(跑),以减少雨淋时间。这样做合理吗,试组建数学模型来探讨如何在雨中行走才能最大限度地减少雨淋的程度,即确定最优行走策略。问题分析问题是在给定的降雨条件下,设计一个在雨中行走的策略(调整行走速度),使得你被雨水淋湿的程度最低。所谓被雨水淋湿的程度,可以用其间被淋在身上的雨水量的大小来刻划,而与此有关的主要因素有:降雨的大小、风(降雨)的方向、路程的远近和行走的速度。为了简化问题的研究,我们先做以下假设: 模型假设 1(降雨的速度(即雨滴降落的速度)和降雨强度保持不变; 2(行走速度恒定; 3(风速及风向始终保持不变(这三项都是均匀化假设)。 4(把人的身体看成是一个呈长方体形状的物体(理想化)。 5(淋在身上的雨水被完全吸收(极端化)。 6(不考虑降雨的角度的影响,也就是说在行走的过程中身体的上方及前后左右都将淋到雨水。 7(设定变量和参数 雨中行走的距离(单位:米):D; 雨中行走的速度(单位:米/秒):v; 人体的高度、宽度、厚度(单位:米):h,w, d

被淋雨水总量(单位:升):C; 降雨强度(单位:厘米/小时):I; 2 身体被雨淋的面积(单位:米):S; 雨中行走时间(单位:秒):t=D/v. 其中,降雨强度是单位时间内平面上降雨的厚度,用以刻划降雨的大小。 在本问题中,D,d,w,h从而S是问题的参数;v,t,I是问题中的变量。C是因变量,而v是决策变量。模型中的参数可以通过观测和日常的调查资料得到。 模型的建立与求解 按上面的分析与假设,容易知道:在雨中行走时被淋雨水总量等于被雨淋时间、被雨淋面积和降雨强度三者的乘积。考虑到量纲一致性,并注意到I、v、D为常数,我们有 C(v)=tS(米) =(米) = 模型表明,被淋在身上的雨水总量与在雨中行走的速度成反比,因此在雨中最优行走策略是尽可能的快跑。

数学建模模拟题,图论,回归模型,聚类分析,因子分析等 (48)

第11章第2题 摘要 本题分析4 种化肥和3 个小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,可视为两因素方差分析,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。 试验的目的是分析化肥的四个不同水平以及小麦品种的三个不同水平对小麦产量有无显着性影响。 关键词:方差分析显着性化肥种类小麦品种

一.问题重述 为了分析4 种化肥和3 个小麦品种对小麦产量的影响,把一块试验田等分成36个小块,分别对3种种子和四种化肥的每一种组合种植3 小块田,产量如表1所示(单位公斤),问不同品种、不同种类的化肥及二者的交互作用对小麦产量有无显着影响。 二.问题分析 本题意在分析四种化肥和三种小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,为两因素方差分析问题,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。通过对这两种因素的不同水平及交互作用的分析,从而分析 4 种化肥和3 个小麦品种对小麦产量的影响。 三.模型假设 1.假设只有化肥种类和小麦品种两个因素,其他因素对试验结果不构成影响。 2.假设不存在数据记录错误。 3.假设每一块试验田本身各项指标相同,不会影响结果。 四.符号说明 数字1,2,3,4——不同的化肥种类 数字1,2,3——不同的小麦品种 五.模型建立 将化肥种类和小麦品种视为两个因素,四种化肥种类看作是化肥种类的四个不同水平,三个小麦品种看作是小麦品种的三个不同水平,将表1的数据进行整理,如表2所示。

六.模型求解 将表2数据导入到spss软件中,进行两因素方差检验,得到结果如下:表3

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

人在雨中行走时的淋雨量问题

人在雨中行走时的淋雨量问题 一.模型假设 1.把人看做一个长方体; 2.雨滴下落的速度,方向保持不变; 3.人行走一段距离的速度,方向保持不变。 4.假设主要淋雨量集中在正面,背面和头部,忽略两侧淋雨量。即考虑总淋雨量时只考虑(正面+头部)或者(背面+头部) 二.符号说明 1.V 为雨速(m/s ),方向定义为朝着人正面为正。 2.D 为人在雨中行走距离。 3.R 为人在雨中行走速度 3.θ为雨滴下落方向与地平面的所成角,0°≤θ≤90°。 4. h1,h2,h3分别为视人体为一个长方体时人的身高(m)、身宽(m)、厚度(m); 5.总淋雨量为W (R)单位为m 3 。 三.模型建立 本模型是在上诉理想条件下分析人在行走时的淋雨量的大小,而淋雨量的大小取决与降雨量的大小,方向,还有人行走的速度,行走的路程。我们的目标是求出使得人在雨中行走时淋雨量最小的条件。即最佳行走速度。 以人为Z 轴,人行走的方向为X 轴,左边为y 轴建立空间坐标系。则雨的降落速度可以按这个坐标系分解到x 轴,y 轴,z 轴。得到 θθθsin ,cos ,cos V Vz V Vy V Vx ===。进一步得到θcos V R V +=相. 人的头部,正面或背面的淋雨面积为h1h2,h2h3,淋雨时间为D/V.则可得到人正面或背面的淋雨量为θcos 21V R h h R D +;人头部淋雨量为θsin 32V h h R D ;进一步得总淋雨量W(R )=() θθsin 33cos 21V h h V R h h R D ++。 分析: 1)当雨从人正面降落,即V 方向取正,V>0,由此得到 }sin 32)cos (21{)(θθV h h V R h h R D R W ++=; 对W (R)进行单调性分析可知,其一阶导数0)(<'R W 。所以W(V)单调递减。无最小值。 2)当雨从人后面降落,即V 方向取负,V<0,由此得到

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

相关文档
最新文档