高性能钢铁材料研究

高性能钢铁材料研究
高性能钢铁材料研究

高性能钢铁材料研究

钢铁工业属于资源、资金和科技密集型产业,含括了地质、采矿、选矿、炼铁、炼钢、轧制和金属制品等系列工程,是生产、经营、科技和经济的综合体。钢铁制造过程在消耗大量原材料和能源的同时,也带动了机械、电力、化工、建材、交通、房地产和农副产品等部门和行业的发展。无论是在过去和现在,还是在将来相当长的历史时期内,钢铁工业的发展水平仍然是衡量一个国家工业化和现代化水平高低的重要标志之一。

随着航天、兵工、汽车等事业的飞速发展,对材料提出了更高的要求,不仅要求材料具有超高强度,而且要求具有高的韧性、高的抗剪切失稳能力,以保证各种部件的安全可靠运行。几十年来,先后发展了多种高性能的钢铁材料。高性能钢铁材料的含义是:在环境性、资源性和经济性的约束下,采用先进制造技术生产具有高洁净度、高均匀度、超细晶粒特征的钢材,强度和韧度比传统钢材提高,钢材使用寿命增加。满足21世纪国家经济和社会发展的需求,开发新一代高性能钢铁材料的生产技术及其加工技术,降低钢铁材料同比消耗,提高材料寿命、提高材料寿命,实现钢铁材料制备、加工和食用过程的节约化和技术化。

1 高性能钢铁研究技术

在20世纪高性能钢铁研究的技术成就主要有:低成本高效化洁净钢生产技术、大板坯高速连铸技术、炉渣干法粒化技术、粉矿低温快速还原技术、高品质板带材关键生产技术、高品质特殊钢生产技术、基于氢冶金的熔融还原炼钢技术、微合金化钢技术、超细晶粒钢技术、氮合金化不锈钢技术、高质量特殊钢技术和钢材组织性能预报和材料信息化技术。钢铁材料本身在21世纪还会发生重要的变革,最终将会导致钢铁材料的性能显著提高,并将对整个社会发展起巨大的推动作用。

2 高性能钢铁方面的成就

经过科研人员的不懈努力积累和创造,在钢铁材料科学和技术上取得了巨大的进步,开发出了微合金化钢、超细晶粒钢、氮合金化不锈钢、高质量特殊钢等高性能钢材。

2.1微合金化钢

Nb、V、Ti和Al是常用的微合金强化元素。微合金化是一个笼统的概念,通常是指在原有主加元素的基础上再添加微量的Nb、V、Ti等碳氮化物形成元素,从而对钢的力学性能、耐蚀性、耐热性等性能起有利作用。

2.2超细晶粒钢

超细晶粒钢是当今世界钢铁材料技术领域的研发热点。从20世纪90年代末开始,日本、韩国、中国和欧盟等国家先后投入巨资进行超细晶粒钢的研发。通过对晶粒细化理论的深入研究,已经研究出许多获得微米级晶粒细化的技术,并且对微米级超细晶粒钢进行了工业生产,使钢铁材料的性能有了很大程度上的提高。但是也存在一些不足之处,如超细晶粒钢的焊接技术尚未得到彻底解决,超细晶粒钢的均匀延伸性较低,特别是在晶粒达到1μm左右,甚至没有均匀延伸性,这些严重制约了超细晶粒钢的应用范围

2.3氮合金化不锈钢

应用氮合金化可以替代不锈钢的镍元素,降低成本,提高性能。从20世纪20年代开始,人们发现在不锈钢中氮可以提高强度,后来又陆续发现其对钢的耐蚀性能有益。阻碍氮作为合金元素使用的主要因素主要是氮的加入问题。随着加压

冶金技术的发展,氮可以较大含量固溶于钢中,并因此改善钢的性能。目前国外已开发了多种高氮钢的冶炼技术,包括等离子冶炼、加压感应炉冶炼、加压电渣重熔冶炼、粉末冶金以及利用先进的计算机合金设计方法进行的常压下高氮钢的冶炼等。

2.4高质量特殊钢

为了便于机械加工,按照传统冶金生产工艺流程生产出的特殊钢材,如冷镦钢、轴承钢、齿轮钢、弹簧钢、合结钢和碳结钢等需要先进行软化退火处理。利用轧制热进行在线软化退火处理,不需要离线重新加热,节能降耗效果显著。目前,许多国家相继开展了特殊钢的在线软化处理技术的研发,主要以高碳GCrl5轴承钢的控轧控冷和在线球化退火处理为主,而对于中碳钢和中碳合结钢的研究工作有限。

疲劳失效是钢制机械零部件的主要失效方式。影响疲劳性能的主要因素包括硬度、夹杂物和表面缺陷。通常改善疲劳性能的方法是减少易成为疲劳破坏源的夹杂物、表面缺陷和脱碳等。当采用工艺方法(如对线材或半产品采用车削、磨削等去皮技术)获得无表面缺陷和脱碳的光亮材后,进一步改善疲劳性能就需要控制杂质元素和夹杂物。

2.5高性能钢材最新研究

2.5.1铌钢

析出铌可促进变形诱导铁素体相变,而且还可以阻止铁素体晶粒的长大。在通过合金化研究高性能钢铁材料研究方面,钢中Nb的作用机理研究机器高性能高铌钢的开发和应用得到了较广泛的重视,钢中溶解铌含量显著地提高了材料的非结晶温度,这就允许钢在较高的温度下进行轧制兵获得较高的强度和韧性。告铌钢可以降低轧机负荷,提高生产效率,并不需在钢中添加一些高贵的合金元素。为了开发和扩大高铌钢的应用,需要研究高铌钢中铌在基体及碳化物种的分配比例关系、铌对热变形行为、碳化钨吸储、相变动力学的影响,及与其他合金元素的作用,进一步提出高铌钢的组织性能控制的成分设计和工艺控制原则,以及高铌钢的焊接性能、低温断裂韧性和疲劳性能。

为此,国家成立了中信为合金化技术中心、上海大学铌钢研究中心等研究机构,以期望在高性能铌钢方面取得更大的研究成果和更广泛的应用推广

2.5.2厚大钢板

海军使用的合金钢和装甲钢板在服役过程中承受着复杂的载荷和环境,除具有高强度、良好焊接性能外,还要求在这些环境中具有高断裂韧性和疲劳性能。HSLA-80以上厚规格钢板制备技术的开发将为未来海军提供低成本高性能的钢铁材料,以满足海军舰艇的性能要求,并减轻舰艇重量,提高防护性能,抵御未来武器的威胁。

2.5.3 非调质钢

中碳钢及中碳低合盒结构钢,多数是调质处理后,用以生产汽车、拖拉机、机床、建筑机械。由于调质热处理造成工件的生产周期延长、生产工艺复杂、能源消耗大、生产成本高,因而,为了简化生产工艺、缩短生产周期、节约能源、降低工件成本、提高工件质量,从70年代开始,世界各国均相继进行了微合金中碳非调质钢的研制,并先后建立了各自的钢号和标准。我国在非调质钢港面筋行了大量的研究工作,开发出了GF40SiMnVS、32Mn2SiV等高强高韧非调质钢。

2.5.4抗大变形高性能管线钢热轧钢板

长距离天然气输送管道具有效率高、成本低、节能和环保的明显优势,由于管线必须经过地震区和冻土区,要求焊管材料除了具备较高的强韧性外,还必须有较大的塑性,具有抵抗高应变的能力。此外,这种高塑性高强韧性管线钢还必须具备优良的焊接性能,适合野外环缝焊接。

2.5.5新一代高强韧性钢高效节能连续化生产技术

采用无缺陷连铸坯制造技术,开发和应用连铸坯热装热送及其相关技术,提高铸坯热送率和热送温度,降低铸坯加热温度,实现轧钢生产的节能目标;应用热卷板超细晶钢生产技术,在不添加或少添加合金元素的前提下,通过新型控轧控冷工艺获得超细晶组织以提高钢材的强韧性,从而达到高效节能、低成本、连续化和节能的生产汽车、油气输送管线、建筑、高强度标准件等用高附加值产品。

3 研究和生产机构

高性能特种钢生产企业:东北特钢、宝钢、鞍钢、武钢等大型生产企业,保证了高性能钢铁的生产质量和数量,满足我国对高性能钢铁的需求。

高性能特种钢研究机构:钢铁研究总院、北京科技大学、东北大学、上海大学等,为搭建在高性能钢铁基础研究和推广应用等方面的新型行业技术平台,相关的科研和企业合作成立了先进钢铁材料国家工程中心、电工钢联合研发中心等研发机构。另外,科研机构与生产企业液多数建立起了战略合作伙伴关系,为在高性能钢铁方面的研究打下了良好的基础和平台。

国家为在高性能钢铁材料研究方面进行了大量的投入,包括国家自然科学基金、国家高技术研究发展计划、973、教育部重点基金项目以及大型飞机关键结构用先进钢铁材料等项目,为高性能钢铁材料方面的研究在国家层面上提供了平台、资金和人员。

经过多年的研究发展,我国已经相继开发性出了多种高性能的钢铁材料,典型代表是4340钢、l8Ni马氏体时效钢、HY180,AF1410,AerMetl00等二次硬化钢以及它们的改型,这些钢种都具有良好的强韧性配合,且在航空、航天方面得到广泛应用。随着各项应用的发展需求,需要开发出更高性能的高性能钢铁材料,促进我国各项科技事业的发展。

4 高性能钢铁工业存在的问题

中国钢铁工业在技术发展方面取得了辉煌的业绩,同时也存在能源消耗高、生产效率偏低、资源消耗大、环境污染较严重、基础研究落后等问题,与21世纪钢铁工业与环境友好、资源循环、性能极限的特征存在很大差距,具体表现如下方面:

在资源消耗方面,首先我国虽然具有丰富的铁矿、煤炭资源,但铁矿石产量仅能维持1亿t的生产,2/3的铁矿石需要进口;其次我国钢铁工业水资源浪费现象严重。在钢铁生产流程中水主要消耗于设备冷却、除尘和炉渣处理。资源短缺将成为我国钢铁工业可持续发展面临的主要问题。

在环境方面,20世纪90年代以来,采用末端治理方针,吨钢环境负荷逐年降低,但与国际先进水平相比存在较大差距。

在劳动生产率方面,我国在转炉冶炼周期、连铸机拉速等方面与国际先进水平存在较大差距,使得我国劳动生产率仅为国际先进水平的1/2。

在基础研究方面,我国对钢铁生产和研究有几千年的历史,但是对钢铁的研究仍有一定的局限性,并且与国外的研究还存在着一定的差距。

5 展望

必须看到,钢铁材料是一类不断发展的先进材科。无论是品种还是质量,21世纪的钢铁材料已经完全不同于从前的钢铁材料。伴随着需求变化和相关技术进展,2l世纪的钢铁材料将会以质量高和多样化的面貌出现在人类面前。为了适应未来的社会和经济发展,应不断地运用新技术、新工艺和新装备,研发出环境友好、性能优良、资源节约、成本低廉的先进钢铁材料与相关信息化技术。

在基础理论研究方面,开展钢的形变诱导相变、钢的析出强化理论与应用、氮的合金化原理及相变强化的研究;在计算材料学方面,开展冶金过程模拟钢的数据库、钢铁材料应用网络数据平台的建设;在钢铁材料应用技术方面,开展焊接技术和材料、腐蚀性能和机理研究的平台建设。

在应用技术的研究方面,开发高性能碳素结构钢技术、高强度铁素体~珠光体微合金钢技术、铁素体不锈钢技术(包括:高成形性铁素体不锈钢、装饰用高性能铁素体不锈钢、高耐蚀性铁素体不锈钢、新一代汽车尾气排放系统用铁素体不锈钢)。在品种方面,研制长寿命高强度合金结构钢、耐延迟断裂高强度钢、高韧性超高强度钢以及氮合金化不锈钢。

钢铁材料的发展演变

钢铁材料的发展演变 一、钢铁材料的历史 人类社会的发展历程,是以材料为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用的能力,决定着社会的形态和人类生活的质量。历史学家也把材料及其器具作为划分时代的标志:如石器时代、青铜器时代、铁器时代、高分子材料时代…… 100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉镍管炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。 二、钢铁材料的概念 钢材是钢锭、钢坯或钢材通过压力加工制成我们所需要的各种形状、尺寸和性能的材料钢材是国家建设和实现四化必不可少的重要物资,应用广泛、品种繁多,根据断面形状的不同、钢材一般分为型材、板材、管材和金属制品四大类、为了便于组织钢材的生产、订货供应和搞经营管理工作,又分为重轨、轻轨、大型型钢、中型型钢、小型型钢、钢材冷弯型钢,优质型钢、线材、中厚钢板、薄钢板、电工用硅钢片、带钢、无缝钢管钢材、焊接钢管、金属制品等品种。 三、钢材的生产方法 大部分钢材加工都是钢材通过压力加工,使被加工的钢(坯、锭等)产生塑性变形。根据钢材加工温度不同分冷加工和热加工两种。钢材的主要加工方法有 轧制:将钢材金属坯料通过一对旋转轧辊的间隙(各种形状)因受轧辊的压缩使材料截面减小,长度增加的压力加工方法,这是生产钢材最常用的生产方式,主要用来生产钢材型材、板材、管材。分冷轧、热轧。 锻造钢材:利用锻锤的往复冲击力或压力机的压力使坯料改变成我们所需的形状和尺寸的一种压力加工方法。一般分为自由锻和模锻,常用作生产大型材、开坯等截面尺寸较大的材料。 拉拨钢材:是将已经轧制的金属坯料(型、管、制品等)通过模孔拉拨成截面减小长度增加的加工方法大多用作冷加工。 挤压:是钢材将金属放在密闭的挤压简内,一端施加压力,使金属从规定的模孔中挤出而得到有同形状和尺寸的成品的加工方法,多用于生产有色金属材钢材。 四、我国钢铁材料的现状 改革开放以来,随着市场的需求,我国钢产量和消费量不断增长。从1996年起,我国

金属材料化学分析操作手册

金属材料化学分析操作规程汇编 第一部分 黑色金属材料的分析 钢钢铁铁中中碳碳硫硫的的分分析析 一.原理 CS ——280微机碳硫自动分析仪原理:金属式样中各种状态碳和硫的化合物,在KHD —400高速自动引燃炉中与助溶剂一起,通入纯氧加热产生CO2及SO2气体:C-O2—CO2;S —O2—SO2,这两种气体先经过硫吸收杯除硫(SO2在此处被吸收),剩下的CO2气体在碳吸收器内被KOH 溶液吸收。 分析方法: 碳:气体容量法;硫:碘量法。 二.助溶剂与试剂 助溶剂:硅钼粉,锡粒(高纯),纯铁助溶剂 试剂:氢氧化钾,酸性水,碘酸钾,可溶性淀粉(以上试剂均为分析纯) 三.操作步骤 1.清扫KHD —400自动引燃炉。 2.打开“电源”及“控阀”开关。 3.选择标准校正标尺: 3.1按“准备/(2)”键,将有助溶剂及标样的坩埚放入炉体,升上炉体。 3.2按“启动”按钮。 3.3待蜂鸣器鸣叫六声,将碳标尺及硫标尺校正到相应标样的含量处。 4试样测试: 4.1将盛有助溶剂及式样的坩埚放入炉体,升上炉体。 4.2按“启动”按钮。

4.3待蜂鸣器鸣叫六声后,直读该式样的百分含量。 四.注意事项: 1.氧气压力要按照说明书上的压力指标调整。 2.及时除尘。 碳碳钢钢及及一一般般低低合合金金钢钢的的连连续续分分析析 试样溶液的制备 试剂: 1.硝酸:(1+3) 2.过硫酸铵:(15%)需当日配置 溶样: 称取试样1.0克于250毫升锥形瓶中,加硝酸(1+3)50毫升,加热溶解后,加过硫酸铵15毫升,煮沸2分钟,流水冷却至室温,于100毫升容量瓶中,以水稀释至刻度,摇匀,分液。 硅硅的的测测定定((硅硅钼钼蓝蓝光光度度法法)) 一.方法提要: 试样用酸溶解后,硅变成正硅酸,在一定酸度范围内正硅酸与钼酸铵作用生成可溶性硅钼黄杂多酸,在草酸存在下,用硫酸亚铁铵还原成硅钼蓝借以进行光度测定。 二.试剂: 1.钼酸铵:(5%) 2.草酸:(0.625%) 3.硫酸亚铁铵:(6%),每100毫升溶液中加入硫酸(1+1)6滴。

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

耐蚀金属材料课程练习题答案(江苏科技大学)

练习题 一、选择题 1、为了提高合金的耐蚀性,向材料中加入强的阴极性元素金属,属于以下哪种 方法A。 A)降低阳极相活性B)降低阴极相活性C)增加系统阻力 2、同样加入强阴极性元素,有的合金耐腐蚀,有的却不耐蚀。其原因是A。 A)前者处于可钝化的,后者不是B)前者腐蚀体系处于常温,后者不是 C)前者腐蚀体系存有活化离子(如Cl-),后者不是D)以上都不是 3、为提高铁金属材料耐蚀性,铬是一种常添加的元素,主要起以下作用B。 A)使腐蚀电位正移,增加材料的热力学稳定性B)合金易进入钝态区 C)致钝电位向正向移动D)以上都对 4、加入Cu、P、Cr元素的耐候钢具有较好的耐大气腐蚀性,机理是D。 A)有序固溶理论B)电子机构理论 C)表面富集理论D)形成致密腐蚀产物膜理论 5、金属产生晶间腐蚀应满足的条件是C A)在高压的环境中,只要其电极电位低且强度不够; B)在高温的环境中,只要其产生的氧化膜不够致密; C)在腐蚀的环境中,只要其晶粒与晶界物-化状态和电化学性能不同; D)在高压、高温、腐蚀的环境中,只要其晶粒与晶界成分不符合塔曼定律; 6、奥氏体不锈钢中添加Nb元素的主要作用是C A)增加膜的致密性B)提高材料的抗点蚀能力 C)作为稳定化元素抑制碳化铬的生成D)增加热力学稳定性 7、黄铜脱锌属于以下哪种腐蚀类型E。 A)点蚀B)缝隙腐蚀C)晶间腐蚀D)电偶腐蚀E)选择性腐蚀 8、下列哪种热处理工艺对1Cr18Ni9Ti的抗晶间腐蚀是必须的B A)固溶处理B)稳定化处理 C)去应力退火处理D)敏化处理 9、加入了稳定化元素Ti、Nb的奥氏体不锈钢,却没有达到耐腐蚀的目的。这可能是该钢种在使用前没能进行过D处理。 A)固溶处理B)敏化处理C)退火处理D)稳定化处理 10、海水腐蚀环境中,以下哪个区域腐蚀最严重A。 A)飞溅带B)潮差带C)全浸带D)海泥带 11.以下关于可逆氢脆说法错误的是C A)氢脆在室温附近最敏感;B)材料强度越高,氢脆越敏感;

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性 《职业性接触毒物危险程度分级》GB5044分级原则是什么? 答:(1)职业性接触毒物危险程度分级,是以急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高容许浓度等六项指标为基础的定级标准。 (2)分级原则是依据六项分级指标综合分析,全面权衡,以多数指标的归属定出危害程度的级别,但对某些特殊毒物,可按其急性、慢性或致癌性等突出危害程度定出级别。 《职业性接触毒物危险程度分级》GB5044分级依据是什么? 答:(1)急性毒性 以动物试验得出的呼吸道吸入半数致死浓度(LC )或经口、经皮半数致死量(LD50) 50 或LD50最低值作为急性毒性指标。 的资料为准,选择其中LC 50 (2)急性中毒发病状况 是一项以急性中毒发病率与中毒后果为依据的定性指标:可分为易发生、可发生、偶而发生中毒及不发生急性中毒四级。将易发生致死性中毒或致残定为中毒后果严重;易恢复的定为预后良好。 (3)慢性中毒患病状况 一般以接触毒物的主要行业中,工人的中毒患病率为依据,但在缺乏患病率资料时,可取中毒症状或中毒指标的发生率。 (4)慢性中毒后果 依据慢性中毒的结局,分为脱离接触后,继续进展或不能治愈、基本治愈、自行恢复四级。并可依据动物试验结果的受损病变性质(进行性、不可逆性、可逆性)、靶器官病理生理特性(修复、再生、功能储备能力),确定其慢性中毒后果。 (5)致癌性 主要依据国际肿瘤研究中心公布的或其他公认的有关该毒物的致癌性资料,确定为人体致癌物、可疑人体致癌物、动物致癌物及无致癌性。 (6)最高容许浓度 主要以《工业企业设计卫生标准》TJ36-70中表4车间空气中有害物质最高容许浓度值为准。

高性能钢铁粉末冶金材料关键技术与应用

. 高性能钢铁粉末冶金材料关键技术与应用项目推荐公示内容 一、项目名称: 高性能钢铁粉末冶金材料关键技术与应用 二、推荐单位意见: 粉末冶金技术不仅可提高材料性能,而且可实现零部件的近终形制造,是国际上公认的“绿色制造技术”,是近些年来工业发达国家优先发展的高技术领域。该项目选择应用面最广、产量最大的钢铁粉末冶金材料为研究重点,开展了高压缩性铁粉工业化生产及应用技术研发,任务来源于国家科技支撑计划和国家973计划。 该项目的创新性主要体现在:攻克了高纯冶炼、高效水雾化和精还原等产业3以上的高压缩性铁粉工业化高效生产新7.20g/cm化关键技术,创立了压缩性在工艺;基于粉体塑性特性和改性原理,开发出了粘结化混合粉末,其压坯密度可3;在探明Ni、Mo7.60g/cm达、Cu等合金元素的强化作用机理和规律的基础上,发明了具有“烧结硬化”特性的预合金粉和燃油发动机气门阀座专用粉及其工业化生产工艺;发明了雾化铁粉的表面绝缘双层包覆新方法和关键装备,创立了铁基软磁复合材料(零件)的致密成形和热处理工艺。项目关键技术和产品性能达到了国际先进水平。本项目共取得发明专利11项,实用新型专利15项,发表学术论文20篇,出版著作1 部,主持和参与修订国家标准3 项。4项科技成果先后通过了山东省科技厅的鉴定,均“达到国际先进水平”,“产品密度居国际同类产品的领先水平”。 该项目形成了具有完全自主知识产权的钢铁粉末冶金材料生产成套技术,先后建设了8条工业化生产线,打破了国外公司的技术和市场垄断。近三年新增销售额19.30亿元,新增利润 2.48亿元。 项目成果丰富了粉末冶金过程理论和材料理论,提升了我国粉末冶金技术和产业的水平,对扩大粉末冶金的应用领域、推动我国粉末冶金行业品种结构的优化具有重要意义,并为我国汽车工业和高端装备制造业提供了有力的技术支撑。 经审查,提交的材料真实有效。 推荐该项目为国家科学技术进步奖_贰__等奖 三、项目简介: 2000年以来,随着我国汽车和高端装备制造业的快速发展,对高性能钢铁粉末冶金产品的需求量迅速增长。2009年,中国汽车产量首次超过1000万辆(1364万辆),成为世界第一大汽车制造国,汽车用铁基粉末冶金零件的年需求量达到11万吨,而我国仅生产了4.71万吨,且高密度铁基结构零件和低损耗铁基软磁产品等高性能铁基粉末冶金产品为空白。中国各个品牌汽车原装配套. . 体系中,关键粉末冶金零部件几乎都是由国外企业垄断,且对我国实施严密的技术封锁,已成为我国从汽车制造大国走向汽车制造强国的所面临的主要挑战。

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

新型钢铁材料的设计

一、项目名称:新型钢铁材料的设计、制备和性能研究 二、推荐单位:中国科学院沈阳分院 三、项目简介: 本项目以发展新型钢铁材料为目标,近10年来在多项国家及辽宁省科研项目的支持下,以合金化和结构/功能一体化设计、显微组织控制等为主要学术思想,通过成分优化、纯净化冶炼、组织细化、相变控制、强韧化匹配、生物医学功能化等途径,在新型钢铁材料的设计、制备及性能研究方面开展了系统而深入的研究工作,取得了众多高水平研究成果,发展了一批具有自主知识产权和市场应用前景的新型钢铁材料,在国内外相关领域形成了很高的影响力。项目研究成果对于推动我国钢铁材料的发展与应用,提升钢铁材料的品质具有重要指导意义。项目取得的主要创新性研究成果包括:(1)高强高韧钢铁材料的设计理论,以解决钢铁结构材料强度与塑(韧)性之间的矛盾为切入点,形成了通过成分优化、纯净化、细晶化和复相组织控制等手段获得高强高韧钢铁材料的设计理论与制备技术。(2)结构/功能一体化钢铁新材料的设计理论,以环境保护和生物医用为主要方向,提出了具有抗菌抑菌、生物医学等功能特性的结构/功能一体化钢铁新材料设计思想,通过添加铜元素、以氮代镍等方式,使不锈钢具备了强烈和广谱杀菌特性、在人体中无有害镍离子溶出、抗凝血、抗感染、降低支架内再狭窄等特殊功能。相关研究成果具有独创性。(3)研究开发出一批具有自主知识产权和应用价值的高性能钢铁新材料,包括X80级高强度管线钢、X120级超高强度管线钢、X65级抗大变形管线钢、2800MPa级超高强度马氏体时效钢、2400MPa级无钴超高强度马氏体时效钢、应变诱发相变型高强韧马氏体时效不锈钢、氮化物强化型高铬耐热钢、高速列车转向架用特种弹簧钢、系列抗菌不锈钢、医用高氮无镍奥氏体不锈钢、抗感染医用不锈钢、抗支架内再狭窄不锈钢等钢铁新材料,性能均达到国际先进水平。在国内外相关学术期刊上总计发表文章140篇(其中SCI收录76篇,EI收录125篇),他引次数超过400次,授权23项国家发明专利。 四、完成人: 第1完成人:杨柯 学术贡献:全面负责项目的总体设计和实施,课题申请,国际合作项目的申请和执行,提出一系列创新学术思想。通过纯净化、细晶化、均质化来显著提高高性能结构钢铁材料的强度以及改善其强韧性配合。创造性地提出了钢铁材料的结构/生物医学功能一体化的创新思想,在国际上首次设计并开发出具有抗细菌感染、抑制支架内再狭窄等先进生物医学功能的

国内磁性材料业状况和前景

国内磁性材料业状况和前景 1中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性 材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪 30年代开发的铝-镍-钴永磁(AlNiCo);50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体(Sm-Co),包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼(Nd-Fe-B)。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平均以每年10%的速度增长。中国磁体 产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年 之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是 中国磁体产业开始发展的第一阶段,其特点是起点低:因为投资小, 设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小 生产的模式。 1997~2002的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够 按先进的工艺路线组织生产,产品质量一般属中低档。2003年起,中 国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”, 即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体; 投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织 集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和 磁体制备,投资显著降低,效益则大为提升;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先 进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产因为成本过高,已难以为继,世 界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企业看好中国,如日本的TDK、FDK、

高性能钢铁粉末冶金材料关键技术与应用

高性能钢铁粉末冶金材料关键技术与应用项目推荐公示容 一、项目名称: 高性能钢铁粉末冶金材料关键技术与应用 二、推荐单位意见: 粉末冶金技术不仅可提高材料性能,而且可实现零部件的近终形制造,是国际上公认的“绿色制造技术”,是近些年来工业发达国家优先发展的高技术领域。该项目选择应用面最广、产量最大的钢铁粉末冶金材料为研究重点,开展了高压缩性铁粉工业化生产及应用技术研发,任务来源于国家科技支撑计划和国家973计划。 该项目的创新性主要体现在:攻克了高纯冶炼、高效水雾化和精还原等产业化关键技术,创立了压缩性在7.20g/cm3以上的高压缩性铁粉工业化高效生产新工艺;基于粉体塑性特性和改性原理,开发出了粘结化混合粉末,其压坯密度可达7.60g/cm3;在探明Ni、Mo、Cu等合金元素的强化作用机理和规律的基础上,发明了具有“烧结硬化”特性的预合金粉和燃油发动机气门阀座专用粉及其工业化生产工艺;发明了雾化铁粉的表面绝缘双层包覆新方法和关键装备,创立了铁基软磁复合材料(零件)的致密成形和热处理工艺。项目关键技术和产品性能达到了国际先进水平。本项目共取得发明专利11项,实用新型专利15项,发表学术论文20篇,出版著作1 部,主持和参与修订国家标准3 项。4项科技成果先后通过了省科技厅的鉴定,均“达到国际先进水平”,“产品密度居国际同类产品的领先水平”。 该项目形成了具有完全自主知识产权的钢铁粉末冶金材料生产成套技术,先后建设了8条工业化生产线,打破了国外公司的技术和市场垄断。近三年新增销售额19.30亿元,新增利润 2.48亿元。 项目成果丰富了粉末冶金过程理论和材料理论,提升了我国粉末冶金技术和产业的水平,对扩大粉末冶金的应用领域、推动我国粉末冶金行业品种结构的优化具有重要意义,并为我国汽车工业和高端装备制造业提供了有力的技术支撑。 经审查,提交的材料真实有效。 推荐该项目为国家科学技术进步奖_贰__等奖

钢铁材料的质检方法及其应用

钢材质量的检验方法及其应用 冶金工厂生产各种钢材,出厂时都要按照相应的标准及技术文件的规定进行各项检验(实验)。科学实验(检验)是科学技术发展的基础,它标志着科学技术发展的水平,是推动科学技术发展的重要手段。冶金产品检验是冶金工业发展的基础,她标志着冶金工业技术水平和冶金产品的质量。应使用各种有效的手段对半成品和成品进行质量检验,检验工序必须作为生产流程中的一个重要工序。 钢的质量检验方法标准包括化学成分分析、宏观检验、金相检验、力学性能检验,工艺性能检验、物理性能检验、化学性能检验、无损检验以及热处理检验方法标准等。每种检验方法标准又可分为几个到几十个不同的试验方法。 (1)化学成分每一个钢种都有一定的化学成分,化学成分是钢中各种化学元素的含量百分比。保证钢的化学成分是对钢的最基本要求,只要进行化学成分分析才能确定某号钢的化学成分是否符合标准。 对于碳素结构钢,主要分析五大元素,即碳、锰、硅、硫、磷;对于合金钢,除分析上述五大元素之外,还要分析合金元素。此外,对钢中的其他有害元素和残余元素也有规定。 (2)宏观检验宏观检验是用肉眼或不大于十倍的放大镜检验金属表面或断面以确定其宏观组织缺陷的方法。宏观检验也称低倍组织检验,其检验方法很多,包括酸浸实验、硫印实验、断口检验和塔型车削发纹检验等。 浸酸试验可以显示一般疏松、中心疏松、锭型偏析、点状偏析、皮下气泡残余缩孔、翻皮白点轴心晶间裂缝,内部气泡、分金属夹杂物及夹渣、异金属夹杂等,并进行评定。 硫印实验是利用钢中硫化物与硫酸反应生成硫化氢,硫化氢与相纸的溴化银反应生成硫化银,使相纸变成棕色这一原理来检查钢中硫的宏观分布情况,并可间接检查其他元素在钢中偏析和分布情况。 端口检验是根据检验目的采取适当的方法将试样折断以检验断口质量,或对在使用过程中破损的零部件和生产制造过程中由于某种原因而导致破损的工件断口进行观察和检验。可按断口的宏观形貌和冶金缺陷将断口分类,以评定钢材质量。 塔型车削发纹检验是检查钢材不同深度处的发纹。试验时将钢材试样车成不同尺寸的阶梯,进行酸浸或磁力探伤后,检查其裂纹程度,以衡量钢中夹杂物、气孔和疏松存在的多少。发纹严重地危害钢的动力学性能,特别hi疲劳强度等,因此,对重要用途的钢材都要进行塔型检验。 (3)金相组织检验这是借助金相显微镜来检验钢中的内部组织及其缺陷。金相检验包括奥氏体晶粒的测定、钢中非金属夹杂物的检验、脱碳层深度的检验以及公众化学成分偏析的检验等。其中钢中化学成分偏析的检验项目又包括亚共析钢带状组织、工具钢碳化物不均匀、球化组织和网状碳化物、带状碳化物及碳化物液析等。 (4)硬度硬度是衡量金属材料软硬度的指标,是金属材料抵抗局部塑性

磁性材料的研究现状与应用

磁性材料的研究现状与应用 磁性材料是功能材料的重要分支,利用磁性材料制成的磁性元器件具有转换、传递、处理信息、存储能量、节约能源等功能,广泛地应用于能源、电信、自动控制、通讯、家用电器、生物、医疗卫生、轻工、选矿、物理探矿、军工等领域,尤其在信息技术领域已成为不可缺少的组成部分。 磁性材料大体上分为两类:其一为铁磁有序的金属磁性材料;其二绝大多数为亚铁磁有序、具有半导体导电性质的非金属磁性材料。磁性材料的发展过程大致可分为三个阶段:50年代以前主要研究金属磁性材料;50到80年代为铁氧体的黄金时代,除电力工业外,各领域中铁氧体占绝对优势;90年代以来,纳米磁性材料崛起。磁性材料由3d过渡族金属与合金的研究扩展到3d-(4f,4d,5d,5f)合金与化合物的研究与应用。同时,磁性功能材料也得到了显著的进展。 一、磁性的描述 磁及磁现象的根源是电流,或者说磁及磁现象的微观机制是电荷的运动形成原子磁矩造成的,而且,所有的物质都是磁性体,只是由于构成物质的原子结构不同,而显示出的磁学性能不同。有铁磁性、亚铁磁性、反铁磁性、顺磁性、抗磁性以及无磁性等。描述材料的磁性的物理量有磁化强度M、磁化率χ、磁感应强度B、磁导率μ。 根据物质磁化率的符号和大小,可以把物质的磁性大致分为五类:抗磁体、顺磁体、铁磁体、亚铁磁体和反铁磁体。影响材料性质的有磁化强度随温度的变化。即在不同温度下,磁化强度不同的性质。铁磁材料的自发磁化在居里温度Tc处发生相变,Tc以下为铁磁性,而Tc以上铁磁性消失。同样亚铁磁性材料也具有类似的特性。另外一个必须注意的因素便是磁各向异性,即磁学特性随材料的晶体学方向不同而不同的性质,典型特征便是在不同方向施加磁场会测得不同的磁滞回线。 磁性材料的基本特征可以分为两大类: (1)完全由物质本身(成分组分比)决定的特性。主要有饱和磁化强度Ms和磁感应强度Bs; (2)由物质决定,但随其晶体组织结构变化的特性。主要有磁导率、矫顽力Hc和矩形比Br/Bs,以及磁各向异性。 由此,利用和开发磁性材料就需要有分析技术和加工工艺两个方面的进展。从历史上而言,按材料加工技术进展区分,大体可有以下几个阶段: (1)熔炼铸造技术,获得铁及其合金等软磁和永磁材料。 (2)粉末冶金,开发绝缘性磁性材料、陶瓷材料和稀土永磁材料。 (3)真空镀膜,开发了镀膜磁性材料及非晶磁性材料,制成磁纪录介质及微磁学器件。 (4)单原子层控制技术,制备了定向晶体学取向型、巨磁电阻多层膜、人工超晶格等有特殊用途的磁性材料。 而磁性材料的开发和利用,也就是采取以上这几种技术工艺方法来加强所需要的性能,抑制不利于所需性能的因素。 二、软磁材料和永磁材料 软磁材料,也是高磁导率材料,是应用中占比例最大的传统磁性材料,多用于磁芯。是指由较低的外部磁场强度就可获得很大的磁化强度及高密度磁通量的材料,对这种材料的基本要求是: (1)初始磁导率μi和最大磁导率μm要高,以提高功能效率; (2)剩余磁通密度Br要低,饱和磁感应强度Ms要高,以节省资源并迅速响应外磁场; (3)矫顽力Hc要小,以提高高频性能; (4)铁损要低以提高功能效率;

金属材料检测标准大汇总

金属材料检测标准大汇 总 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料化学成分分析 GB/T 222—2006钢的成品化学成分允许偏差 GB/T 系列钢铁及合金X含量的测定 GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 系列海绵钛、钛及钛合金化学分析方法X量的测定 GB/T 系列铜及铜合金化学分析方法第X部分:X含量的测定 GB/T 5678—1985铸造合金光谱分析取样方法 GBT 系列铝及铝合金化学分析方法 GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 GB/T 系列镁及镁合金化学分析方法第X部分X含量测定 金属材料物理冶金试验方法 GB/T 224—2008钢的脱碳层深度测定法 GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 GB/T 227—1991工具钢淬透性试验方法 GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 GB/T 1979—2001结构钢低倍组织缺陷评级图 GB/T 1814—1979钢材断口检验法 GB/T 2971—1982碳素钢和低合金钢断口检验方法 GB/T —2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法

GB/T —2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法GB/T 3488—1983硬质合金显微组织的金相测定 GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 GB/T 4236—1984钢的硫印检验方法 GB/T 4296—2004变形镁合金显微组织检验方法 GB/T 4297—2004变形镁合金低倍组织检验方法 GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 GB/T —2015不锈钢5%硫酸腐蚀试验方法 GB/T 4462—1984高速工具钢大块碳化物评级图 GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) GB/T 5168—2008α-β钛合金高低倍组织检验方法 GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法GB/T 10851—1989铸造铝合金针孔 GB/T 10852—1989铸造铝铜合金晶粒度 GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T 13298—2015金属显微组织检验方法

金属材料耐腐蚀的选材顺序

金属材料耐腐蚀的选材顺序(由低到高) 一、不锈钢材料耐点腐蚀、晶间腐蚀和应力腐蚀能力的顺序 1、奥氏体不锈钢: 1Cr18Ni9Ti→0Cr18Ni9(304)→0Cr18Ni11Ti(321)→00Cr19Ni10(304L)0Cr17Ni12Mo2Ti (316)→00Cr17Ni14Mo2(316L)→00Cr19Ni13Mo3(317L)→00Cr20Ni25Mo4.5Cu (904L)→00Cr27Ni31Mo4Cu 2、铁素体不锈钢: 0Cr13(410S)→0Cr13Al(405)→00Cr12Ti(409L)→00Cr17(430LX)→00Cr18Mo2→00Cr26Mo1→00Cr30Mo2 3、双相不锈钢: 00Cr18Ni5Mo3Si2(3RE60)→00Cr22Ni5Mo3N(SAF2205)→00Cr25Ni7Mo4N(SAF2507) 二、耐高温腐蚀用材的顺序 20#→12Cr1MoV→12Cr2Mo1(2Cr-1Mo)→1Cr5Mo→1Cr9Mo→P91(10Cr9Mo1VNb)→0Cr25Ni20(310S) 三、耐应力腐蚀用材 16MnR→20R→12Cr1MoV 00Cr17Ni14Mo2(316L)→00Cr19Ni13Mo3(317L)→00Cr20Ni25Mo4.5Cu(904L)00Cr18Ni5Mo3Si2(3RE60)→00Cr22Ni5Mo3N(SAF2205)→00Cr25Ni7Mo4N(SAF2507)0Cr13(410S)→00Cr12Ti(409L)→00Cr17(430LX)→00Cr18Mo2→00Cr26M o1 注:铁素体不锈钢和双相不锈钢不得在大于350℃的环境中使用。 材料的耐腐蚀性能 钽:钽金属材料的耐腐蚀性能可同玻璃相比美,在环境温度下,除了氢氟酸外,对所有的酸都具有良好的耐腐蚀性,钽金属在高温下易被强碱腐蚀。钽金属对除了SO3-2及氟的酸性盐溶液以外的所有氢化性及非氢化性盐溶液具有较强的耐腐蚀性。在高温下在硫酸及碳酸溶液中易受腐蚀,非凡是氟离子存在时腐蚀会严重。 l蒙耐尔合金:蒙耐尔合金在有色金属与合金中,最耐氢氟酸(或氟化氢)腐蚀,在介质相当宽的浓度和强度范围内有很好的稳定性,也可用于氯化物,海水,碱等介质中作防腐材料。蒙耐尔合金不适用于强氧酸,如硝酸及亚硝酸,也不适用酸性铁盐,锡盐等溶液中。

(完整版)高性能金属新材料

高性能金属新材料(特种金属功能材料、高端金属结构材料) 一、金属类新材料 金属新材料按功能和应用领域可划分为高性能金属结构材料和金属功能材料。高性能金属结构材料指与传统结构材料相比具备更高的耐高温性、抗腐蚀性、高延展性等特性的新型金属材料,主要包括钛、镁、锆及其合金、钽铌、硬质材料等,以及高端特殊钢、铝新型材等。金属功能材料指具有辅助实现光、电、磁或其他特殊功能的材料,包括磁性材料、金属能源材料、催化净化材料、信息材料、超导材料、功能陶瓷材料等。 与其他材料相比,稀土具有优异的光、电、磁、催化等物理特性,近年来在新兴领域的应用急速增长,其中永磁材料是稀土应用领域最重要的组成部分,2009年永磁材料占稀土新材料消费总量的57%。在国家新兴产业政策的推动下,新能源汽车、风力发电、节能家电等领域将拉动稀土永磁材料钕铁硼磁体的需求出现爆发式增长。建议重点关注钕铁硼行业龙头中科三环、宁波韵升,以及稀土资源类企业包钢稀土、厦门钨业等。 钢铁材料、稀有金属新材料、高温合金、高性能合金是属于金属类工程结构材料。 ①、钢铁材料和稀有金属新材料 钢铁材料提高钢材的质量、性能,延长使用周期,在钢铁材料生产中,应用信息技术改造传统的生产工艺,提高生产过程的自动化和智能化程度,实现组织细化和精确控制,提高钢材洁净度和高均匀度,出现低温轧制、临界点温度轧制、铁素体轧制等新工艺。 稀有金属新材料指高强、高韧、高损伤容限钛合金,以及热强钛合金、锆合金、难熔金属合金、钽钨合金、高精度铍材等。 ②、高温合金和高性能合金 高温结构材料主要种类包括:高温合金、粉末合金、高温结构金属间化合物,以及高熔点金属间化合物等。 二、高性能结构材料 从世界上新材料的发展趋势看,钢铁材料和有色金属材料的生产一直在向短流程、高效率、节能降耗、洁净化、高性能化、多功能化的方向发展。结构材料其主要功能是承担负载(如火车、汽车、飞机)。汽车用钢近年来已从一般钢铁发展为使用高强合金钢、铝合金或特殊的高强Mg基合金,高强Ti合金在高强钢中有重要位置,不锈钢则有取代碳钢的趋势。用于军用飞机的Al合金及一般钢材则被先进的Ti合金及高分子基复合材料所取代。进一步还需要发展碳纤维增强复合材料或Al基复合材料。 结构材料的主体有: (1)钢铁 钢铁材料,特别是具有多相结构和复杂成分的优质钢具有重要的应用前景和潜在优势,需要开展相应的基础研究。联系微米和纳米技术的纳米层间结构、织构以及晶界和界面都可视为改善钢铁材料的重要途径。 (2)Al合金 Al基材料及相应的沉淀硬化效应导致高强铝合金的出现,相关技术工艺已发展为“沉淀科学”,它涉及“相”间晶体结构的匹配性以及合金的稳定性,特别是时效合金的稳定性直接影响航空或空间应用,因此可视为Al合金基础研究中的重要问题。 (3)Mg合金 镁及镁合金广泛应用于冶金、汽车、摩托车、航空航天、光学仪器、计算机、电子与通讯、电动、风动工具和医疗器械等领域。镁合金是最轻的工程结构材料,以其优良的导热性、减振性、可回收性、抗电磁干扰及优良的屏蔽性能等特点,被誉为新型“绿

中国磁性材料产业现状及其发展展望(1)

中国磁性材料产业现状及其发展展望(1) 摘要:磁性材料是各种电子产品主要的配套产品,无论是消费家电产品和工业类如计算机、通讯设备、汽车,以及国防工业均离不开磁性材料。当前,中国各种磁性材料的产量基本上世界第一,成为磁性材料生产大国和磁性材料产业中心。中国磁性材料的中长期市场前景十分光明,中国的磁性材料产品在全球的地位必将进一步提高。必须加强科技创新力度、加强技术改造加强企业管理水平,调整产业结构和提高产品档次,使中国磁性材料从大国走向强国。本文着重从宏观角度分析了中国磁体产业整体情况,介绍了稀土永磁材料特别是中国钕铁硼烧结和粘结产业现状,以及中国新型的稀土永磁材料的研究开发情况,同时对我国磁体产业发展前景进行了预测和分析。 1 中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪30年代开发的铝-镍-钴永磁;50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体,包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平

均以每年10%的速度增长。中国磁体产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是中国磁体产业开始发展的第一阶段,其特点是起点低:由于投资小,设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小生产的模式。 1997~20XX的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够按先进的工艺路线组织生产,产品质量一般属中低档。 20XX年起,中国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”,即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体;投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和磁体制备,投资显著降低,效益则大为提高;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产由于成本过高,已难以为继,世界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企

我国磁性材料行业发展概况及行业竞争格局分析

我国磁性材料行业发展概况及行业竞争 格局分析 磁性材料主要是指由过渡元素铁、钴、镍及其合金等组成的能够直接或间接产生磁性的物质。磁性材料是电子工业的重要基础功能材料,广泛应用于计算机、电子器件、通讯、汽车和航空航天等工业领域和家用电器、儿童玩具等日常生活用品。 由于依据的重点不同,磁性材料有着不同的分类。磁性材料按应用类型分类,可分为软磁材料、永磁(或硬磁)材料、磁存储矩磁材料、微波旋磁材料、磁敏感(磁致伸缩)压磁材料及其它磁补偿材料等。按导电性能,又可分为金属磁性材料、铁氧体磁性材料、稀土磁性材料和其他非金属磁性材料。 磁性材料具体应用领域及产品 资料来源:产业信息网整理磁性材料产业链 磁性材料行业,从广义上讲,是将矿物材料或金属材料通过深加工将其变成与相关产业配套的零部件产品的制造行业,其产品不是最终的消费品,所以处于中游行业。 磁体行业产业链

永磁产品上游主要是钢铁制造,提供主要原材料铁鳞和铁红。下游行业主要有汽车、计算机及办公设备、家电、电动工具和电动玩具。软磁上游产业是钢铁制造行业和化工行业,钢铁制造行业提供主要原材料铁红,化工行业提供四氧化三锰、氧化锌,氧化镍等。下游包括计算机及办公设备、家电、消费电子、汽车、通讯设备、节能灯及LED等。 2013年全球、中国及横店东磁磁体产量 产业信息网发布的《2013-2018年中国磁性材料行业深度研究及投资前景评估报告》指出:二十一世纪经济全球化和国际产业结构的调整,我国正在形成全球最大的电子元件消费市场,这带动我国磁性材料的持速发展。2004-2012年,全球永磁材料和软磁材料产量的年复合增长率达到10%多,中国磁性材料产量一直位居世界第一。全球的永磁、软磁产量为105万吨和50万吨左右,中

钢铁化学成分

钢号化学成分(%)机械性能(≥) C Si Mn P ≤S ≤ Cr Ni Mo Cu V σ b M Pa σ b M P a δ % Ψ % HB A K v J 碳钢铸件ZG200- 400 ≤ 0.2 ≤ 0.5 ≤ 0.8 0. 04 0. 04 ≤ 0.3 ≤ 0.30 ≤ 0.2 ≤ 0.30 ≤ 0.05 40 20 2 5 4 3 ZG230- 450 ≤ 0.3 ≤ 0.5 ≤ 0.9 0. 04 0. 04 ≤ 0.3 ≤ 0.30 ≤ 0.2 ≤ 0.30 ≤ 0.05 45 23 2 2 2 3 2 5 ZG270- 500 ≤ 0.4 ≤ 0.5 ≤ 0.9 0. 04 0. 04 ≤ 0.3 ≤ 0.30 ≤ 0.2 ≤ 0.30 ≤ 0.05 50 27 1 8 2 5 2 2 ZG310- 570 ≤ 0.5 ≤ 0.6 ≤ 0.9 0. 04 0. 04 ≤ 0.3 ≤ 0.30 ≤ 0.2 ≤ 0.30 ≤ 0.05 57 30 1 5 2 1 1 5 ZG340- 640 ≤ 0.6 ≤ 0.6 ≤ 0.9 0. 04 0. 04 ≤ 0.3 ≤ 0.30 ≤ 0.2 ≤ 0.30 ≤ 0.05 64 34 1 1 8 1 0 WCA≤ 0.2 5 ≤ 0.6 ≤ 0.7 0. 04 0. 04 5 ≤ 0.5 ≤ 0.50 ≤ 0.2 ≤ 0.30 ≤ 0.03 41 5 ~ 58 5 20 5 2 4 3 5 WCB≤ 0.3 ≤ 0.6 ≤ 1.0 0. 04 0. 04 5 ≤ 0.5 ≤ 0.50 ≤ 0.2 ≤ 0.30 ≤ 0.03 48 5 ~ 65 5 25 2 2 3 5 WCC≤ 0.2 5 ≤ 0.6 ≤ 1.2 0. 04 0. 04 5 ≤ 0.5 ≤ 0.50 ≤ 0.2 ≤ 0.30 ≤ 0.03 48 5 ~ 65 5 27 5 2 2 3 5 低合金钢ZG20Cr Mo 0.1 7~ 0.2 5 0.2 0~ 0.4 5 0.5 0~ 0.8 0. 03 0. 03 0.5 0~ 0.8 0.4 0~ 0.6 46 24 5 1 8 3 2 4 ZG35Cr Mo 0.3 0~ 0.3 7 0.3 0~ 0.5 0.5 0~ 0.8 0. 03 0. 03 0.8 0~ 1.2 0.2 0~ 0.3 74 ~ 88 51 1 2 2 7 ZG40Cr0.3 5~ 0.4 5 0.2 0~ 0.4 0.5 0~ 0.8 0. 03 0. 03 0.8 0~ 1.1 ≤ 0.1 5 63 34 5 1 8 2 6 ≥ 212 ZG15W1 Mo1V 0.1 4~ 0.2 0.1 5~ 0.3 0.4 0~ 0.7 0. 03 0. 03 1.2 0~ 1.7 1.0 ~ 1.2 53 9 34 3 2 3 5 ≥ 140

相关文档
最新文档