微专题16 解析几何中的“隐形圆”问题

微专题16 解析几何中的“隐形圆”问题
微专题16 解析几何中的“隐形圆”问题

微专题16 解析几何中的“隐形圆”问题

真 题 感 悟

(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆

心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).

(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,

求圆N 的标准方程;

(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;

(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA

→+TP →=TQ →,求实数t 的取值范围.

解 圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.

(1)由圆心N 在直线x =6上,可设N (6,y 0).

因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,

于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.

因此,圆N 的标准方程为(x -6)2+(y -1)2=1.

(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0

=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0,

则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5

. 因为BC =OA =22+42=25,

而MC 2=d 2

+? ????BC 22, 所以25=(m +5)2

5

+5,解得m =5或m =-15. 故直线l 的方程为2x -y +5=0或2x -y -15=0.

(3)法一 TA

→+TP →=TQ →,即TA →=TQ →-TP →=PQ →, 故|TA

→|=|PQ →|, 因为|TA

→|=(t -2)2+42,又0<|PQ →|≤10, 所以0<(t -2)2+42≤10,

解得t ∈[2-221,2+221],

对于任意t ∈[2-221,2+221],欲使TA

→=PQ →,此时0<|TA →|≤10,只需要作直线TA 的平行线,使圆心到直线的距离为

25-|TA →|24,必然与圆交于P ,Q 两点,

此时|TA

→|=|PQ →|,即TA →=PQ →, 因此对于任意t ∈[2-221,2+221],均满足题意,

综上,t ∈[2-221,2+221].

法二 设P (x 1,y 1),Q (x 2,y 2).

因为A (2,4),T (t ,0),TA

→+TP →=TQ →, 所以???x 2=x 1+2-t ,y 2=y 1+4.

① 因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.②

将①代入②,得(x 1-t -4)2+(y 1-3)2=25.

于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上,

从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,

所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t ≤2+221. 因此,实数t 的取值范围是[2-221,2+221].

考 点 整 合

高考中圆的方程是C 级考点,其重要性不言而喻.但在一些题目中,条件没有直接给出圆方面的信息,而是隐藏在题目中,要通过分析和转化,发现圆(或圆的方程),从而最终可以利用圆的知识求解,我们称此类问题为“隐形圆”问题,课本习题

给出的“阿波罗尼斯圆”是“隐形圆”典型的例子.

1.问题背景

苏教版《数学必修2》P112第12题:

已知点M (x ,y )与两个定点O (0,0),A (3,0)的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.

2.阿波罗尼斯圆

公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:

到两定点距离之比等于已知数的动点轨迹为直线或圆.

如图,点A ,B 为两定点,动点P 满足P A =λPB .

则λ=1时,动点P 的轨迹为直线;当λ≠1时,动点P 的轨迹为

圆,后世称之为阿波罗尼斯圆.

证 设AB =2m (m >0),P A =λPB ,以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则A (-m ,0),B (m ,0).

又设P (x ,y ),则由P A =λPB 得(x +m )2+y 2=

λ(x -m )2+y 2,

两边平方并化简整理得(λ2-1)x 2-2m (λ2+1)x +(λ2-1)y 2=m 2(1-λ2).

当λ=1时,x =0,轨迹为线段AB 的垂直平分线;

当λ>1时,? ????x -λ2+1λ2-1m 2+y 2=4λ2m 2(λ2-1)2,轨迹为以点? ??

??λ2+1λ2-1m ,0为圆心,????

??2λm λ2-1为半径的圆. 上述课本习题的一般化情形就是阿波罗尼斯定理.

热点一 轨迹问题

【例1】 如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM ,PN (M ,N 分别为切点),使得PM =2PN ,试建立适当的坐标系,并求动点P 的轨迹方程.

解 以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立平面直角坐标系,

则O 1(-2,0),O 2(2,0),

由已知PM =2PN ,得PM 2=2PN 2.

因为两圆的半径均为1,

所以PO 21-1=2(PO 22-1).

设P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1].

即(x -6)2+y 2=33,

所以所求轨迹方程为(x -6)2+y 2=33.

探究提高 动点的轨迹问题是高考的热点之一,解决轨迹问题的关键是通过建立直角坐标系,寻找动点满足的条件,列式化简得所求轨迹方程.

【训练1】 设A (-c ,0),B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.

解 设动点P 的坐标为(x ,y ),

由P A PB =a (a >0),得(x +c )2+y 2(x -c )2+y 2

=a . 化简得(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)

+(1-a 2)y 2=0.

当a ≠1时,得x 2

+2c (1+a 2)1-a 2x +c 2+y 2=0, 整理得? ??

??x -1+a 2a 2-1c 2+y 2=? ????2ac a 2-12. 当a =1时,化简得x =0. 所以当a ≠1时,P 点的轨迹是以? ??

??a 2+1a 2-1c ,0为圆心,

??????2ac a 2-1为半径的圆; 当a =1时,P 点的轨迹为y 轴.

热点二 含“隐形圆”的范围与最值问题

【例2】 (2013·江苏卷)如图所示,在平面直角坐标系xOy 中,点

A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.

(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线

的方程;

(2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.

解 (1)联立???y =x -1,y =2x -4,

得圆心为C (3,2). 切线的斜率存在,设切线方程为y =kx +3.

则d =|3k +3-2|1+k 2

=r =1, 得k =0或k =-34.

故所求切线方程为y =3或3x +4y -12=0.

(2)设点M (x ,y ),由MA =2MO ,知x 2+(y -3)2=2x 2+y 2,

化简得x 2+(y +1)2=4.

即点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D .

又因为点M 在圆C 上,故圆C 与圆D 的关系为相交或相切.

故1≤CD ≤3,又C (a ,2a -4),D (0,-1),

故1≤a 2+(2a -3)2≤3.

解得0≤a ≤125.

所以圆心C 的横坐标a 的取值范围为????

??0,125. 探究提高 (1)如何发现隐形圆(或圆的方程)是关键,常见的有以下五个策略: 策略一:利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆;

策略二:动点P 对两定点A ,B 的张角是90°(k P A ·k PB =-1或P A →·PB

→=0)确定隐形

圆;

策略三:两定点A ,B ,动点P 满足P A →·PB

→=λ确定隐形圆; 策略四:两定点A ,B ,动点P 满足P A 2+PB 2是定值确定隐形圆;

策略五:两定点A ,B ,动点P 满足AP =λBP (λ>0,λ≠1)确定隐形圆(阿波罗尼斯圆).

(2)“隐形圆”发掘出来以后常考查点和圆、直线和圆、圆和圆的位置关系等相关知识点,一般解决思路可从“代数角度”或“几何角度”入手.

【训练2】 在△ABC 中,边BC 的中点为D ,若AB =2,BC =2AD ,则△ABC 的面积的最大值是________. 解析 以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系.则A (-1,0),B (1,0),由BD =CD ,BC =2AD 知,AD =2BD ,D 的轨迹为阿波罗尼斯圆,方程

为(x -3)2+y 2

=8.设C (x ,y ),得D ? ????x +12,y 2,所以点C 的轨迹方程为? ????x +12-32+? ??

??y 22=8,即(x -5)2+y 2=32.所以S △ABC =12×2|y |=|y |≤32=42,故S △ABC 的最大值是4 2.

答案 4 2

热点三 含“隐形圆”的定点与定值问题

【例3】 已知圆C :x 2+y 2=9,点A (-5,0),在直线OA

上(O 为坐标原点)存在定点B (不同于点A )满足:对圆C 上任

一点P ,都有PB P A 为一常数,试求所有满足条件的点B 的坐标.

解 法一 假设存在满足条件的点B (t ,0),

当P 为圆C 与x 轴的左交点(-3,0)时,PB P A =|t +3|2;

当P 为圆C 与x 轴的右交点(3,0)时,PB P A =|t -3|8,

依题意|t +3|2=|t -3|8,解得t =-5(舍去)或t =-95.

下面证明点B ? ??

??-95,0对于圆C 上任一点P ,都有PB P A 为常数. 设P (x ,y ),则y 2=9-x 2,

所以PB 2P A 2=? ????x +952

+y 2(x +5)2+y 2=x 2+185x +8125+9-x 2x 2+10x +25+9-x 2=1825(5x +17)2(5x +17)=925

,从而PB P A =35为常数.

故满足条件的点B 的坐标为? ??

??-95,0. 法二 假设存在满足条件的点B (t ,0),

使得PB P A

为常数λ(λ>0),则PB 2=λ2P A 2, 所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入得,

x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),

即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,

所以???5λ2+t =0,34λ2-t 2-9=0,解得?????λ=35,t =-95或???λ=1,t =-5(舍去), 故满足条件的点B 的坐标为? ??

??-95,0. 探究提高 本题以阿波罗尼斯圆为背景构建定点问题,体现了阿波罗尼斯圆在解析几何中的经典地位.

【训练3】 已知⊙O :x 2+y 2=1和点M (4,2).

(1)过点M 向⊙O 引切线l ,求直线l 的方程;

(2)求以点M 为圆心,且被直线y =2x -1截得的弦长为4的⊙M 的方程;

(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q ,试探究:平面

内是否存在一定点R ,使得PQ PR 为定值?若存在,请举出一例,并指出相应的定值;

若不存在,请说明理由.

解 (1)直线l 的斜率存在,设切线l 的方程为y -2=k (x -4),

易得|4k -2|k 2+1

=1,解得k =8±1915. ∴切线l 的方程为y -2=8±1915(x -4).

(2)圆心到直线y =2x -1的距离为5,设圆的半径为r ,

则r 2=22+(5)2=9,

∴⊙M 的方程为(x -4)2+(y -2)2=9.

(3)假设存在满足条件的点R (a ,b ),设点P 的坐标为(x ,y ),相应的定值为λ(λ>0).

根据题意可得PQ =x 2+y 2

-1,∴x 2+y 2-1(x -a )2+(y -b )2=λ, 即x 2+y 2-1=λ2(x 2+y 2-2ax -2by +a 2+b 2).(*)

又点P 在圆M 上,∴(x -4)2+(y -2)2=9,

即x 2+y 2=8x +4y -11,代入(*)式得

8x +4y -12=λ2[(8-2a )x +(4-2b )y +(a 2+b 2-11)].

若系数对应相等,则等式恒成立,

∴???λ2(8-2a )=8,

λ2(4-2b )=4,λ2(a 2+b 2-11)=-12,

解得a =2,b =1,λ=2或a =25,b =15,λ=103,

∴存在定点R ,使得PQ PR 为定值,点R 的坐标为(2,1)时,定值为2;点R 的坐标

为? ??

??25,15时,定值为103. 【新题感悟】 (2019·南京、盐城高三二模)在平面直角坐标系xOy 中,已知点 A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一点P ,使得直线P A ,PB 在y 轴上的截距之积为5,则实数m 的值为________.

解析 根据题意,设P 的坐标为(a ,b ),则直线P A 的方程为y =b a +1(x +1),其在y 轴上的截距为b a +1,直线PB 的方程为y =b a -5(x -5),其在y 轴上的截距为

-5b a -5.若点P 满足使得直线P A ,PB 在y 轴上的截距之积为5,则有b a +1×? ????-5b a -5=5,变形可得b 2+(a -2)2=9,则点P 在圆(x -2)2+y 2=9上.若圆M :(x -4)2+(y -m )2=4上存在唯一点P ,则圆M 与(x -2)2+y 2=9有且只有一个公共点,即两圆内切或外切,又由圆心距为

(4-2)2+m 2≥2,则两圆只能外切,则有4

+m 2=25,解可得:m =±21.

答案 ±21

一、填空题

1.在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长的取值范围为________.

解析 如图,设BC 的中点为M (x ,y ).

连接OB ,OM ,AM ,则BC =2BM =2AM ,

所以OB 2=OM 2+BM 2=OM 2+AM 2,

即4=x 2+y 2+(x -1)2+(y -1)2,

化简得? ????x -122+? ??

??y -122=32, 所以点M 的轨迹是以? ??

??12,12为圆心,62为半径的圆, 所以AM 的取值范围是??????6-22

,6+22, 所以BC 的取值范围是[6-2,6+2].

答案 [6-2,6+2]

2.在平面直角坐标系xOy 中,已知圆C :(x -a )2+(y -a +2)2=1,点A (0,2),若圆C 上存在点M ,满足MA 2+MO 2=10,则实数a 的取值范围是________. 解析 设点M (x ,y ),由MA 2+MO 2=10,

即x 2+(y -2)2+x 2+y 2=10,整理得x 2+(y -1)2=4,

即点M 在圆E :x 2+(y -1)2=4上.

圆C 上存在点M 满足MA 2+MO 2=10等价于圆E 与圆C 有公共点,

所以|2-1|≤CE ≤2+1,

即1≤a 2+(a -3)2≤3,整理得1≤2a 2-6a +9≤9,

解得0≤a ≤3,即实数a 的取值范围是[0,3].

答案 [0,3]

3.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为________.

解析 由题意得圆心M (a ,a -4)在直线x -y -4=0上运动,所以动圆M 是圆心在直线x -y -4=0上,半径为1的圆.又因为圆M 上存在点P ,使经过点P 作圆O 的两条切线,切点为A ,B ,使∠APB =60°,所以OP =2,即点P 也在x 2+y 2=4上,于是2-1≤a 2+(a -4)2≤2+1,即1≤a 2+(a -4)2≤3,解得

实数a 的取值范围是?

?????2-22,2+22. 答案 ?

?????2-22,2+22 4.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是________. 解析 由题意知原命题等价于直线上存在点P 使得PC =22,从而(PC )min ≤22,即圆心C (2,0)到直线y =k (x +1)的距离d =

|3k |1+k 2≤22,解得-22≤k ≤2 2.

答案 [-22,22]

5.在平面直角坐标系xOy 中,设点A (1,0),B (3,0),C (0,a ),D (0,a +2),若存在点P ,使得P A =2PB ,PC =PD ,则实数a 的取值范围是________.

解析 设P (x ,y ),则(x -1)2+y 2=2·(x -3)2+y 2,整理得(x -5)2+y 2=8,即动点P 在以(5,0)为圆心,22为半径的圆上运动.另一方面,由PC =PD 知动点P 在线段CD 的垂直平分线y =a +1上运动,因而问题就转化为直线y =a +1与圆(x -5)2+y 2=8有交点.所以|a +1|≤22,故实数a 的取值范围是[-22-1,22-1].

答案 [-22-1,22-1]

6.如图,在等腰△ABC 中,已知AB =AC ,B (-1,0),AC 边的中

点为D (2,0),则点C 的轨迹所包围的图形的面积等于________.

解析 因为AB =2AD ,所以点A 的轨迹是阿波罗尼斯圆,易知其

方程为(x -3)2+y 2=4(y ≠0).设C (x ,y ),由AC 边的中点为D (2,0),知A (4-x ,-y ),所以C 的轨迹方程为(4-x -3)2+(-y )2=4,即(x -1)2+y 2=4(y ≠0),所求的面积为4π.

答案 4π

7.(2019·宿迁模拟)已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:

(x -3)2+(y -4)2=1上的动点,则|P A →+PB

→|的取值范围为________. 解析 设AB 的中点为C ,由垂径定理可得CC 1⊥AB ,则CC 1=

1-? ????322=12,即点C 的轨迹方程是x 2+y 2=14,C 1C 2=32+42=5,则PC max =5+1+12=132,

PC min =5-1-12=72,所以|P A →+PB

→|=|2PC →|∈[7,13]. 答案 [7,13]

8.(2019·苏、锡、常、镇调研)在平面直角坐标系xOy 中,已知圆C :(x +1)2+y 2=2,点A (2,0),若圆C 上存在点M ,满足MA 2+MO 2≤10,则点M 的纵坐标的取值范围是________.

解析 设M (x ,y ),因为MA 2+MO 2≤10,所以(x -2)2+y 2+x 2+y 2≤10,化简得

x 2+y 2-2x -3≤0,则圆C :x 2+y 2+2x -1=0与圆C ′:x 2+y 2-2x -3=0有公共

点,将两圆方程相减可得两圆公共弦所在直线的方程为x =-12,代入x 2+y 2-2x

-3≤0可得-72≤y ≤72,所以点M 的纵坐标的取值范围是??????-72

,72. 答案 ??????-72

,72 二、解答题

9.在x 轴正半轴上是否存在两个定点A ,B ,使得圆x 2+y 2=4上任意一点P 到A ,

B 两点的距离之比为常数12?如果存在,求出点A ,B 坐标;如果不存在,请说明

理由.

解 假设在x 轴正半轴上存在两个定点A ,B ,使得圆x 2+y 2=4上任意一点P 到

A ,

B 两点的距离之比为常数12.设P (x ,y ),A (x 1,0),B (x 2,0),其中x 2>x 1>0,

则(x -x 1)2+y 2(x -x 2)2+y

2=12对满足x 2+y 2=4的任何实数对(x ,y )恒成立, 整理得,2x (4x 1-x 2)+x 22-4x 21=3(x 2+y 2),将x 2+y 2=4代入得,

2x (4x 1-x 2)+x 22-4x 21=12,这个式子对任意x ∈[-2,2]恒成立,

所以一定有???4x 1-x 2=0,x 22-4x 21=12,

因为x 2>x 1>0, 所以解得x 1=1,x 2=4.

所以在x 轴正半轴上存在两个定点A (1,0),B (4,0),使得圆x 2+y 2=4上任意一

点P 到A ,B 两点的距离之比为常数12.

10.如图,已知平面α⊥平面β,A ,B 是平面α与平面β的交线上的两个定点,DA ?β,CB ?β,且DA ⊥α,CB ⊥α,AD =4,BC =8,AB =6,在平面α上有一个动点P ,使得∠APD =∠BPC ,求△P AB 的面积的最大值.

解 由题意知DA ⊥α,又P A ?α,∴DA ⊥P A ,

∴在Rt △P AD 中,tan ∠APD =AD AP =4AP , 同理tan ∠BPC =BC BP =8BP .

∵∠APD =∠BPC ,∴BP =2AP .

在平面α上以线段AB 的中点为原点,AB 所在的直线为x 轴,建立平面直角坐标系,则A (-3,0),B (3,0),

设P (x ,y ),则有(x -3)2+y 2=2(x +3)2+y 2(y ≠0).

化简得(x +5)2+y 2=16,

∴y 2=16-(x +5)2≤16.∴|y |≤4.

∴△P AB 的面积为S △P AB =12|y |·AB =3|y |≤12,当且仅当x =-5,y =±4时取得等

号,故△P AB 的面积的最大值是12.

11.已知点A (-3,0),B (3,0),动点P 满足P A =2PB .

(1)若点P 的轨迹为曲线C ,求此曲线的方程;

(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求QM 的最小值,并求此时直线l 2的方程.

解 (1)设点P 的坐标为(x ,y ),

则(x +3)2+y 2

=2(x -3)2+y 2,

化简可得(x -5)2+y 2=16即为所求.

(2)由(1)知曲线C 是以点(5,0)为圆心、4为半径的圆,如图,则直线l 2是此圆的切线,连接CQ ,CM ,则QM =CQ 2-CM 2=CQ 2-16,

当CQ ⊥l 1时,CQ 取最小值,CQ min =|5+3|2

=42, 此时QM 的最小值为32-16=4,这样的直线l 2有两条,设满足条件的两个公共点为M 1,M 2,

易证四边形M1CM2Q是正方形,所以l2的方程是x=1或y=-4.

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

微专题27以解析几何为载体的应用题答案

微专题27 例题 答案:(1)150;(2)10. 解析:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直 角坐标系xOy.由条件知A(0,60),C(170,0),直线BC 的斜率k BC =-tan ∠BCO =-4 3.又因为AB ⊥BC , 所以直线AB 的斜率k AB =3 4. 设点B 的坐标为(a ,b),则k BC = b -0a -170=-4 3,k AB =b -60a -0=34 .解得a =80,b =120.所以BC = (170-80)2+(0+120)2=150.答:新桥BC 的长为150 m . (2)设保护区的边界圆M 的半径为r m ,OM =d m (0≤d ≤60). 由条件知,直线BC 的方程为y =-4 3(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切,故点M(0, d)到直线BC 的距离是r ,即r =|3d -680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m , 所以???r -d ≥80, r -(60-d )≥80, 即???680-3d 5-d ≥80,680-3d 5-(60-d )≥80, 解得10≤d ≤35.故当d =10时,r =680-3d 5最大,即圆面积最大. 答:当OM =10 m 时,圆形保护区的面积最大. 变式联想 变式1 答案:(1)22+2百米;(2)点Q 在线段DE 上且距离y 轴1 3 百米. 解析:(1)设直线OM :y =kx(其中k 一定存在),代入y =x +1x ,得kx =x +1 x ,化简为(k -1)x 2=1.设M(x 1, y 1),则x 1= 1 k -1 ,(k >1),所以OM =x 12+y 12=x 12+k 2x 12=1+k 2·1k -1 =1+k 2 k -1 .令t =k -1(t >0),则1+k 2k -1=t 2+2t +2t =t +2 t +2≥22+2,当且仅当t =2时等号成立,即k =2+1时成立.综上, OM 的最短长度为22+2百米.

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 2 x —2?y 2 =2上,贝U △ ABP 面积的取值范围是 和d 2,且d 1 d 2 =6,则双曲线的方程为 2 2 x ■丄=1 4 12 2 x D — 9 、选择题 1.【2018全国一卷 4】 已知椭圆C : 第九篇:解析几何 X 2 V 2 評廿1的一个焦点为(2 ,0),则C 的离心率为 1 A.- 3 2.【2018全国二卷 6】 1 B.- 2 2 x 2 双曲线 2-爲=1(a 0,b 0)的离心率为,3,则其渐近线方程为 a b A . y 二 2x B . y = 3x D . y 3 x 2 3.【2018全国 11】已知F , F 2是椭圆C 的两个焦点,P 是C 上的一点,若PR_ PF 2 , 且.乙PF 2F 1 =60,则C 的离心率为 A . J 2 B . 2-3 C. D . .3-1 4.【2018全国 三卷 8】直线x y *2=0分别与x 轴,y 轴交于A , B 两点,点P 在圆 A . 2,61 B . 4,8〕 D . 5.【2018全国三卷10】已知双曲线 C : 三卷 =1(a 0 , b 0)的离心率为 .2 ,则点(4,0) 到C 的渐近线的距离为 B . 2 C. 2 D . 2,2 2 x 6.【2018天津卷7】已知双曲线 — a =1(a 0, b 0)的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于 A , B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为 d 1 12 4 =1

8. 4 2 7. 【 2018 浙江卷2 】双曲线「宀的焦点坐标是 之和为() D.4魂 二、填空题 【2018全国一卷15】直线y =x ? 1与圆x 2 y 2 2^^0交于A ,B 两点,则 A ? (- 2 , 0), ( .2 , 0) B ? (-2, 0), (2, 0) C . (0, - . 2 ), (0 , ,2) D . (0, -2), (0, 2) 8.【2018上海卷13】设P 是椭圆 呂+以=1 5 3 上的动点,贝U P 到该椭圆的两个焦点的距离 1. 2. 【2018北京卷10】已知直线I 过点(1,0)且垂直于 轴,若 I 被抛物线 y 2 = 4ax 截得的线 3. 段长为4,则抛物线的焦点坐标为 2 2 【2018北京卷12】若双曲线 笃-丿 1(a 0)的离心率为 a 4 -1,则 2 4.【2018天津卷12】在平面直角坐标系中,经过三点( 0,0) 1),( 2,0)的圆 的方程为 5. 2 x 【2018江苏卷8】在平面直角坐标系 xOy 中,若双曲线 2 与=1(a 0,b 0)的右焦点 b 6. F (c,0)到一条渐近线的距离为乜 2 12】在平面直角坐标系 则其离心率的值是 【2018江苏卷 xOy 中,A 为直线I: y = 2x 上在第一象限内的点, B(5,0),以 AB 为直径的圆C 与直线 l 交于另一点D .若AB CD =0,则点A 的横坐标 7. 【2018浙江卷 17】已知点P (0,1),椭圆^+y 2=m (m>1)上两点A ,B 满足AP =2"P B ,则 4 当m= 时,点B 横坐标的绝对值最大.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高考数学讲义微专题14函数的切线问题(含详细解析)

微专题14 函数的切线问题 一、基础知识: (一)与切线相关的定义 1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。这样直线AB 的极限位置就是曲线在点A 的切线。 (1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上 (2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数3 y x =在 ()1,1--处的切线,与曲线有两个公共点。 (3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。对于一个函数,并不能保证在每一个点处均有切线。例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线 (4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边) 2、切线与导数:设函数()y f x =上点()() 00,,A x f x ()f x 在A 附近有定义且附近的点 ()()00,B x x f x x +?+?,则割线AB 斜率为: ()()()()() 000000 AB f x x f x f x x f x k x x x x +?-+?-= = +?-? 当B 无限接近A 时,即x ?接近于零,∴直线AB 到达极限位置时的斜率表示为: ()()000 lim x f x x f x k x ?→+?-=?,

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

2019高考数学真题(理)分类汇编-平面解析几何含答案解析

专题05 平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠, ,得

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

全国高考数学复习微专题:函数的切线问题

函数的切线问题 一、基础知识: (一)与切线相关的定义 1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。这样直线AB 的极限位置就是曲线在点A 的切线。 (1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上 (2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数3 y x =在 ()1,1--处的切线,与曲线有两个公共点。 (3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点 A 处的切线。对于一个函数,并不能保证在每一个点处均有切线。例如y x =在()0,0处, 通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当 0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相 同,故y x =在()0,0处不含切线 (4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边) 2、切线与导数:设函数()y f x =上点()() 00,,A x f x ()f x 在A 附近有定义且附近的点 ()()00,B x x f x x +?+?,则割线AB 斜率为: ()()()()() 000000 AB f x x f x f x x f x k x x x x +?-+?-= = +?-? 当B 无限接近A 时,即x ?接近于零,∴直线AB 到达极限位置时的斜率表示为: ()()000 lim x f x x f x k x ?→+?-=?,

解析几何经典例题

解析几何经典例题 圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2、如图2,为双曲线的两焦点,P为其上一动点,从 的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地,求 抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) A、圆 B、椭圆 C、双曲线 D、抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹就是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

2017年高考真题分类汇编(理数)专题5解析几何(解析版)

2017年高考真题分类汇编(理数):专题 5 解析几何 13、(2017·天津)设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为. (Ⅰ)求椭圆的方程和抛物线的方程; (Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程. 14、(2017?北京卷)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分) (1)求抛物线C的方程,并求其焦点坐标和准线方程; (2)求证:A为线段BM的中点. 15、(2017?新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足= . (Ⅰ)求点P的轨迹方程; (Ⅱ)设点Q在直线x=﹣3上,且?=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.16、(2017?山东)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为 2.(14分) (Ⅰ)求椭圆E的方程. (Ⅱ)如图,该直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且看k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M 的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.

17、(2017?浙江)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q. (Ⅰ)求直线AP斜率的取值范围; (Ⅱ)求|PA|?|PQ|的最大值. 18、(2017?江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别 为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2. (Ⅰ)求椭圆E的标准方程; (Ⅱ)若直线l1,l2的交点Q在椭圆E上,求点P的坐标. 19、(2017?新课标Ⅰ卷)已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1, ),P4(1,)中恰有三点在椭圆C上.(12分) (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点. 20、(2017?新课标Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆. (Ⅰ)证明:坐标原点O在圆M上; (Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.

2020平面解析几何第八章 微专题八

微专题八 圆锥曲线中性质的推广 [真题研究] 一道解析几何试题的命题背景可能就是圆锥曲线的一个性质定理的特殊情况.如果掌握了定理的原理,也就把握了试题的本质.对一些典型的试题,不应满足于会解,可以引导学生深入探究试题背后的知识背景,挖掘问题的本质.这样才能真正找到解决问题的方法,学会用更高观点去看待数学问题,把握问题的本质. 一、试题展示 题1 (2018·全国Ⅰ)如图1所示,设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN . (1)解 当l 与x 轴垂直时,l 的方程为x =2,可得点M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y =12x +1或y =-1 2x -1. 即x -2y +2=0或x +2y +2=0. (2)证明 当l 与x 轴垂直时,AB 为MN 的垂直平分线, 所以∠ABM =∠ABN . 当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0), M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由? ???? y =k (x -2), y 2=2x ,得ky 2-2y -4k =0,显然方程有两个不等实根. 所以y 1+y 2=2 k ,y 1y 2=-4. 直线BM ,BN 的斜率之和k BM +k BN =y 1x 1+2+y 2 x 2+2=x 2y 1+x 1y 2+2(y 1+y 2)(x 1+2)(x 2+2) .①

将x 1=y 1k +2,x 2=y 2 k +2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2) =2y 1y 2+4k (y 1+y 2)k =-8+8 k =0. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补, 所以∠ABM =∠ABN . 综上,∠ABM =∠ABN . 题2 (2018·全国Ⅰ)设椭圆C :x 22+y 2 =1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点, 点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . (1)解 由已知得F (1,0),l 的方程为x =1. 由已知可得,点A 的坐标为? ???1, 22或??? ?1,-2 2.又M (2,0), 所以直线AM 的方程为y =- 22x +2或y =2 2 x - 2. 即x +2y -2=0或x -2y -2=0. (2)证明 当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB . 当l 与x 轴不重合也不垂直时,设l 的方程为 y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 则x 1<2,x 2<2,直线MA ,MB 的斜率之和为 k MA +k MB =y 1x 1-2+y 2 x 2-2. 由y 1=kx 1-k ,y 2=kx 2-k ,得

相关文档
最新文档