数字图像处理作业

数字图像处理作业
数字图像处理作业

基于直方图的图像增强方法

姓名:XXX

专业:电子与通信工程

学号:XXX

导师:XXX

基于直方图的图像增强方法

一.直方图均衡化算法

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法,这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地砸直方图上分布。这样就额可以拥有增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

1.1算法介绍与仿真

图像的直方图是图像的重要统计特征,是用来表征数字图像的每一灰度级与其出现的频率间的统计关系的方法。其数学公式如式(1)所示:

)1,....2,1,0()r (k -==L k N

n P k (1) 式中,P (r k )为图像f (x ,y )的第k 级灰度出现的概率;r k 为第k 级灰度的灰度值级;n k 为图像中灰度值为r k 的像素的个数;N 为图像f (x ,y )的总像素数;L 为总的灰度级数,需要注意的是直方图不表示图像的空间信息,且任一特定图像都有唯一直方图,但反之并不成立在图像直方图中,整体较暗的图像其直方图的组成部分集中在灰度低的一侧,而明亮的图像的直方图组成部分集中在灰度较高的一

侧。当一副图像其像素占据全部可能的灰度范围且分布均匀时,该图像有较高的对比度,其图像也比较清晰。因此,可以通过改变直方图的灰度级分布达到增强图像的目的。

直方图均衡化是一种以累积分布函数变换法为基础的直方图修正方法。其基本思路是将一已知灰度概率分布的图像经过变换,使之成为具有均匀灰度概率分布、输出图像的直方图近似服从均匀分布的变换算法。

其计算步骤如下:

1)列出原始图像的灰度级r k ,k =0,1,2,…,L -1,L 为总的灰度级数;

2)统计各灰度级像素数目n k ,k =0,1,2,…,L -1;

3)计算原始图像直方图各灰度级的频率P (r k )=n k /N ,k =0, 1,2,…,L -1,N 为图像f (x ,y )的总像素数;

4)计算累计分布函数1,...2,1,0,)()k (1

0-==∑-L k r P C L k ;

5)计算映射后的输出图像灰度级g (i )=INT [(gmax -gmin )C (k )+gmin +0.5],i =0,1, …,P -1,P 为输出图像灰度等级个数,

INT 为取整符号;

6)统计映射后各灰度等级的像素数目n i ,i =0,1,…,P -1;

7)计算输出图像直方图P (g i )=n i /N ,i =0,1,…,P -1;

8)用r k 和g i 的映射关系修改原始图像的灰度级,获得均衡 化后的输出图像。

为了验证直方图均衡方法是否可以达到增强图像的目的,下面我们就利用在宿舍拍摄的照片来进行验证,图像直方图均衡化前后效果如图1所示。由图1中的a和b可看出均衡后的图像对比度明显增强,亮度增大,原本图中的黑暗区域也可以看到了。由c和d可看出原图的灰度级集中在数值较低的部分而直方图均衡后使得直方图变得均匀分布了,在整体灰度级上都有分布。

图1

1.2算法存在的问题

由于直方图均衡化理论来源于连续函数而数字图像的的灰度是离散值应用于数字图像处理的变换函数进行了从连续到离散的近似。如积

分运算就变成了累加运算因而在直方图均衡存在以下问题。

1)量化误差

会造成原图像信息的丢失,原来的像素的总的灰度值为连续的而变换为离散的这样就存在量化误差如1.1中步骤5)中得取整,如变换后的灰度值为50.15和50.00由于灰度级只有256个所以只能把变换后的两个灰度值都量化到50,那这样就势必会造成原图像的信息丢失。丢失的一定是数量很少的像素。

2)无法增强局部细节

由于直方图均衡变换是针对整幅图像所有像素值进行统一变换,所以这种算法只能整体增强图像,而不能针对局部细节部分也进行增强。并且当灰度集中在地区域或高区域时这是会造成画面过亮,而整幅图像的灰度的范围没有提升,也达不到突出图像细节的目的。所以这样就提出了自适应直方图均衡化(AHE)。

二.自适应直方图均衡化

上面的介绍的直方图均衡是图像中的每一点都进行运算,也就是说, 灰度变换函数运算与像素所处的位置无关,这种全局性处理的算法, 它具有算法简单, 计算速度较快等优点, 但由于它是对所有像素点都作同样的处理, 忽略了图像的局部特征, 这样导致经过直方图均衡法算法的图像将丢失图像的有用信息, 对图像的去噪处理及边缘检测带来损失。

那么该如何提取图像的局部特征呢? 采用局部法对图像进行处

理, 不同局部采用不同的对比度增强方法, 也就是说, 根据图像象素的局部统计特征来决定处理方法. 每个象素的灰度值都通过一个均衡化变换函数得到的, 而该变换函数是由以该象素中心的一个局部子图像的直方图得到的,称其为局部对比度增强法局部对比度增强法的计算公式为

(2)

其中x i, j , x i, j 分布为变换前、后的中心象素,∑∈?=w j i j i j i x n m m ),(,,1为窗W 内象素的平均灰值,从(2)可看出, 当k> 1 时, 如果x i, j > m i, j , 那么x i, j >x i, j ,否则x i, j < x i, j 。我们并没有调节整幅图像的动态范围,而只是

改变局部窗口内的对比度, 同样达到了细节增强的效果, 优化了图像质量. 下面我们详细地分析局部对比度增强法的具体算法。

为了保存图像中的细节部分, 在实施直方图均衡化之前, 先对原图的细节部分保存, 再到直方图均衡时将这些细节添入算法过程。于是, 图像均衡算法修改为:

??

???≤≤-+=它 其 )(2550))((,,,,,,j i j i j i j i j i j i x T x m x k x T x (3) 其中x i, j 和x i, j 表示变换前后的图像灰度值, m i, j 表示为以x i, j 为中心的窗邻域均值, T 表示对x i, j 的变换函数。从式(3)中我们可以看出, T 起到了调节直方图动态范围的作用, k ( x i, j - m i, j )则相当于一个高通滤波器, 起到了增强细节( 即局部对比度) 的作用, 强化细节的同时, 也在增加高频噪声。自然想到,我们该如何即可增强细节又能避免增加高频噪声呢?其实,要达到这种效果比较简单,算法关键就在k 这个

)(,,,,j i j i j i j i m x k m x -+=

??

????-=1)(2,2n j i k k σσ自适应参量的选取上。

考虑到参量k 的自适应性,我们先对k 进行分析。当窗W 的中心象素x i, j 位于无图像细节处时,k 趋向于0,而当窗W 的中心象素x i,

j 位于图像细节处时,k 取一个较大正值。基于以上考虑我们选取窗W

内邻域灰度方差作为自适应变量, 那么的表达式可以写为:

(4) 其中k 为比例系数,n 2σ为整幅图像的噪声方差,j ,i 2σ

为窗W 内的灰度方差。 若令n j i r σσ,=

,则式(2)可表为k=k[r 2-1],由于图像窗W 内的灰度方差j ,i 2σ不小于图像的噪声方差,可知r ≥1,当r=1时,k=0,也即n j ,i σσ=那么图像无细节存在,因此该领域中点的像素值只能增强,当r 越大,k 值也越大,由此可知r>1,得到 n j ,i σσ>,该领域内有细节存在,而

k 值也变大,细节被增强。

综上所述, 我们得出自适应直方图均衡算法具体的实现过程如下。

1) 给出原始图像的所有灰度级i,统计原始图像各灰度级的像素 数ni

2) 计算原始图像的直方图与累积直方图。

3) 用式(4)计算k 值. 用式(3)进行计算局部灰度值。

4) 用式(2) 计算局部对比度, 实现均衡化。

5) 用p (t i ) =

n

n i 计算新的直方图。

三.对比度受限的自适应直方图均衡

AHE 有过度放大图像中相同区域的噪音的问题,另外一种自适应的直方图均衡算法即限制对比度直方图均衡(CLAHE )算法能有限的限制这种不利的放大。

3.1算法简介

对比度受限自适应直方图均衡法(CLAHE )通过限制局部直方图的高度来限制局部对比度的增强幅度,从而限制噪声的放大及局部对比度的过增强。

对比度增强的幅度可定义为灰阶映射函数的斜率。假定自适应直方图均衡方法的滑动窗口的大小为M ×M ,则局部映射函数为:

M

M i CDF i m ??=)(255)( (5) CDF(i)为滑动窗口局部直方图的累积分布函数。累积分布函数CDF(i)的导数为直方图Hist(i),从而局部映射函数m(i)的斜率S 为:

()M

M i Hist di i m d S ??==255)()( (6) 因此限制直方图高度就等效于限制映射函数m(i)的斜率S ,进而限制对比增强度。若限定最大斜率为Smax ,则允许的最大直方图高度为:

255

max max M M S H ??= (7) 从而,对于高度大于H max 的直方图应截去多余的那部分,如图1所示。由图可知,实际上是从阈值T (而非H max )处对直方图进行截断,然后将截去的部分均匀地分布在整个灰阶范围上,以保证总的直

方图面积不变,从而使整个直方图上升一个高度L 。因此H max 、T 、L 三者之间应满足下面关系:

H max =T+L

(8)

最后,改进的直方图值为:

???≥<+=T i Hist H T i Hist L i Hist i Hist )()()()(max '

通过改变最大的映射函数斜率S max 及相应的最大直方图高度H max ,便可以获得不同增强效果的图像。

CLAHE 可以有效抑制局部对比度的增强及噪声放大。然而,在输出图像中仍然会产生大量的人为噪声,尤其是在灰阶突变的交界区域,这是由于灰阶突变交界区域的局部直方图剧烈变化而引起的。 基本步骤:

1)图像分块

2)产生局部直方图

3)分别对每个图像块进行限制对比度直方图均衡,每个图像块分别产生独立的变换函数

4)将多个图像块的灰度查找表拼接成输出图像

其基本思想是构造限制函数,限制灰度级的概率密度,并将超过限制函数的像素点在直方图内进行重整。

具体算法:

1)定义限制函数clipLimit,计算超过限制函数的总像素点数totalExcess

2)计算totalExcess平均分到每个灰度级的平均值avgBinIncr

3)定义限制函数与平均值的差upperLimit = clipLimit - avgBinIncr; 4)对直方图进行限高处理

● if 第K灰度级像素数>限制函数

●降低该灰度级像素数=限制函数

●else

●if第K灰度级像素数> upperLimit

●增高该灰度级概率密度=限制函数;

●并在超过限制函数的总像素点数totalExcess中减去增加的像素点数

●Else 第K灰度级像素数

●该灰度级像素点数+多余像素点平均值avgBinIncr;

●并在超过限制函数的总像素点数totalExcess中减去该平均值。

5)对直方图进行均衡

3.2仿真结果

图2

由上图的仿真结果可以看出来,限制对比度的直方图均衡得到的图片细节更加的突出,没有过亮或过暗的情况出现,弥补了图像直方图均衡在处理低灰度层密集分布的图像时,不能有效增加图像动态范围与对比度的缺陷.该算法与直方图匹配算法相比,算法简单,计算量小,对图像处理系统要求低,容易实现.在图像实时处理领域中可以使用该算法来取代直方图匹配算法,以实现图像直方图均衡的处理。

四.总结

通过这次的数字图像处理学习,我也更好的理解了什么是数字图像处理,并且也学到了很多图像处理的相关知识,包括图像增强、图像切割、图像变换、图像编码、图像分析等好多的知识,并通过本次的实验也熟悉了MATLAB的编程和软件的操作,并且了解了上述三种算法的过程与优劣并且自己仿真,所以说还是收益颇丰的。

五.附录

下面这部分是所涉及到的英文文献的粗略翻译与文章的程序

A Novel Approach for Image Enhancement by Using Contrast Limited Adaptive Histogram Equalization Method(一种通过运用对比度受限自适应直方图均衡方法的图像增强方法)

摘要

一个图像增强的新方法通过运用对比度受限的自适应直方图均衡方法将铲射给一个好的对比度图像如医学图像。在本文中,我们提出了一个新的图像增强方式通过运用对比度首先的自适应直方图均衡的方法。我们提出了一个自适应直方图均衡方法总体的框架。我们将通过对比其他的对比度增强方法来证明本方法的有效性。

索引词汇:、、、、、

介绍

图像增强的目的是产生一个重要的步骤在图像处理中,这个步骤是通过编辑原始的图像来观测到更多的图像对比度在一个特定的应用领域中。对比度增强技术将会在图像处理应用中扮演重要的角色,

如移动图像,数字照片,分析医疗图像,遥感,和各种图形科学中。所有的图像会由几点因素产生不好的对比度,因为运用不好质量的成像设备或者光线和环境所以我们的提出了一个新的对比度增强技术意在消除这些问题。不同的对比度增强技术被用在提高图像的对比度如直方图均衡,直方图修正,贪婪算法,自适应直方图均衡等等。本文提出了一个新的一个基于对比度受限自适应直方图均衡的直方图均衡方法。

退出对比度增强方法

现在有很多的对比度增强技术可使用在不清晰图像上,所以我们先讨论下面几中对比度增强技术

直方图均衡

直方图均衡的目的是分配一个图像的灰度级,从而使没给灰度级的发生概率近乎相等。直方图均衡将会增加亮度和一幅暗的和低对比度图像的对比度。使原始图像中观察到的特征不可见。它还用来规范图像的亮度和对比度,直方图均衡进程是找到一个映射函数来映射,图像输入直方图函数和使分布式输出直方图函数相一致。直方图均衡化还被用在生物神经网络上来是神经元输出功率达到最大做为输入统计函数。这已经在fly retina 中被证明了。直方图均衡化是在更一般的直方图映射方法中较为特别的。这些方法是通过调整图像来时期更容易被分析和增强其显示质量。

B)直方图平滑

为了避免尖峰带来的强烈的排斥固定点问题一个平滑度约束可

以完成这个目标。直方图的向后方差被用来确保其平滑度。平滑可以修改直方图是其尖峰更少因为他们在直方图中基本上都是突然变化的。

C)自适应直方图均衡

普通的直方图均衡运用的是从图像直方图之得到的一样的变换源来去变换所有得像素。这个在像素值分布相似的图像中可以工作的很好。然而,当图像包含区域比大部分图像部分更暗或更亮时,这些区域的对比度将得不到足够的增强。自适应直方图均衡可以通过运用来自于临近区域的变换函数来变换每一个像素值来改善这一点。它的首次开发是运用在飞机驾驶舱显示器中。当图像区域包含的一个像素的临域是相当均匀的,它的直方图将会特别的尖锐,转移函数将只会映射整个结果图像中的一个狭窄域的像素值。这导致了自适应直方图均衡过于放大了很大程度上同质的的图像上的少量信号。这个方法被用来增强图像的对比度。它通过自适应的方式改变了直方图均衡化而这种方法是通过计算几个直方图来完成的,每个直方图对应着一个图像的不同区域,从而重新分配图像的亮度值。因此它便于增减图像的局部对比度和显示更多的细节。

3提出的算法

(a对比度受限的自适应直方图均衡

一个提出算法为了医学图像特别的开发出来它提供了很好的图像增强相比于原始图像。CLAHE算法把图像分割成些相关区域然后对没个区域进行直方图均衡化。这些事件产生了使用过的灰度值并重

新分配因此可以使图像隐藏的特征更加的可见。CLAHE是AHE的改进算法。我们运用上述提到的算法来去增强图像,直方图均衡化,直方图平滑,自适应直方图均衡化和加强了的对比度首先的自适应直方图均衡化。这些提到的加强技术馋了的如图一的结果,第一次测试结果的可视化表示(乳房肿瘤)。从观察到的可视化结果分析所有的算法都能够加强其对比度但是我们提到的算法中对比度受限的自适应直方图可以更准切的显示出图像。

(3

对于图像质量来说人类的视觉不被认为是基准,所以估计上述提到的算法的质量指标已经被计算出来了通过对比原始图像和输出图像。下图2表示了直方图增强图像等级的映射。

为了评价上述提到的图像技术增强方法产生了更好的增强图像。表1揭示了CLAHE对比与其他算法的效果。得出的结果再次更好的揭示了这些增强算法的优劣。其它的算法也产生了不错的图像增强,但是还是没有CLAHE好。

算法步骤

获得输入:制定行和列的数量然后设定限幅界限和用于直方图的统计特征数量(bin)用于构建对比度增强的转换。更高的数值引起更大的动态范围代价是处理速度变慢。对比度增强技术的限幅界限是从0到1来限制对比度增强。更高的数值可以得到更高的对比度。

处理输入:制定限幅界限为归一化值如果必要的话,在图像分裂成区域前补充图像(pad the imagebefore splitting it into regions)对比每一个过程行和列区域(瓦)从而产生灰度映射值做一个此区域的直方图并用制定的数量的统计特征数量(bin)用限幅界限来限制此直方图,对比度限制程序(由变换公式推出)必须使用与每一个临近区。CLAHE为了防止噪声过度的被放大自适应直方图均衡可以解决它。

差值允许效率的显著提高而不影响结果的质量

上图4代表的是运用对比度受限自适应直方图均衡时不同限幅界限所产生的图。CLAHE的限幅界限归一化从0到1.更高的数值产生更大的对比度。表1.1代表了不同限幅界限时对比度水平。

四结论

在此文中,对比度受限的自适应直方图均衡已经运用于乳房癌症图像的对比度增强。对比与现在已经提出的流行的的方法直方图均衡,直方图平滑,自适应直方图均衡他它已经被证可以得到更好的结果了。

下面是仿真程序和参考程序

直方图均衡:

1.

i1=imread('f:\1\1.jpg');

i2=rgb2gray(i1);

figure;

subplot(131);imshow(i1);title('原图');

subplot(132);imshow(i2);title('灰度图');

subplot(133);imhist(i2);title('原图直方图');

i3=histeq(i2);

figure;

subplot(221);imshow(i2);title('a灰度图');

subplot(222);imshow(i3);title('b直方图均衡后的图'); subplot(223);imhist(i2);title('c原图直方图');

subplot(224);imhist(i3);title('d直方图均衡后直方图');

2.

%zhifangtuqunhenghua

clear;

x1=imread('1.tif');

[m,n]=size(x1);

x2=double(x1);

lenna=zeros(m,n);

lenna_equ=zeros(n,n);

histgram=zeros(256);

cdf=zeros(256);

[lenna,map]=imread('1.tif');

%get histogram

for i=1:m

for j=1:n

k=lenna(i,j);

histgram(k)=histgram(k)+1;

end

end

%get cdf

cdf(1)=histgram(1);

for i=2:256

cdf(i)=cdf(i-1)+histgram(i);

end

%run point operation

for i=1:m

for j =1:n

k=lenna(i,j);

lenna_equ(i,j)=cdf(k)*256/(m*n);

end

end

%生成直方图均衡化后的lenna图

g=mat2gray(lenna_equ);

figure;

subplot(2,2,1);imshow(lenna);

subplot(2,2,2);imhist(lenna);

ylim('auto');

subplot(2,2,3);imshow(g);

subplot(2,2,4);imhist(g);

ylim('auto')

f=imread('1.tif');

figture;

subplot(2,2,1);imshow(f);

title('the orignal image');

subplot(2,2,2);imhist(f);

ylim('auto');

g=histeq(f,256);

subplot(2,2,3);imshow(g);

title('image after equalization') subplot(2,2,4);imhist(g);

ylim('auto');

%zhifangtupipeichengxu

I = imread('pout.tif');

Ieq=histeq(I);

[c,x]=imhist(Ieq);

I1=imread('tire.tif');

J=histeq(I1,c);

subplot(2,2,1);

imshow(I);

title('Image A');

subplot(2,2,2);

imshow(Ieq);

title('Image A after Equalization'); subplot(2,2,3);

imshow(I1);

title('Image B');

subplot(2,2,4);

imshow(J);

title('Image B after Matching');

受限的自适应直方图均衡

1.

oimg=imread('f:\1\1.jpg');

oimg1=rgb2gray(oimg);

i3=adapthisteq(oimg1);

i4=histeq(oimg1);

figure;

subplot(131);imshow(oimg1);title('a灰度图');

subplot(132);imshow(i4);title('b直方图均衡');

subplot(133);imshow(i3);title('c限制对比度的直方图均衡');

2.

function [CEImage] = runCLAHE(Image,Min,Max,NrX,NrY,NrBins,Cliplimit)

% "Contrast Limited Adaptive Histogram Equalization"

% by Karel Zuiderveld

% The program was reproduced by Alireza Saberi in April 2010

% These functions implement Contrast Limited Adaptive Histogram Equalization.

% The main routine (CLAHE) expects an input image that is stored contiguously in

% memory; the CLAHE output image overwrites the original input image and has the

% same minimum and maximum values (which must be provided by the user). % This implementation assumes that the X- and Y image resolutions are an integer

% multiple of the X- and Y sizes of the contextual regions. A check on various other

% error conditions is performed.

%

%

% Image - The input/output image

% XRes - Image resolution in the X direction

% YRes - Image resolution in the Y direction

% Min - Minimum greyvalue of input image (also becomes minimum of output image)

% Max - Maximum greyvalue of input image (also becomes maximum of output image)

% NrX - Number of contextial regions in the X direction (min 2, max uiMAX_REG_X)

% NrY - Number of contextial regions in the Y direction (min 2, max uiMAX_REG_Y)

% NrBins - Number of greybins for histogram ("dynamic range")

% Cliplimit - Normalized cliplimit (higher values give more contrast) % The number of "effective" greylevels in the output image is set by

uiNrBins; selecting

% a small value (eg. 128) speeds up processing and still produce an output image of

% good quality. The output image will have the same minimum and maximum value as the input

% image. A clip limit smaller than 1 results in standard (non-contrast limited) AHE.

Image=imread('f:\1\1.jpg');

[XRes,YRes]=size(Image);

% CEimage = Image;

CEImage = zeros(XRes,YRes);

if Cliplimit == 1

return

end

NrBins=max(NrBins,128);

XSize = round(XRes/NrX);

YSize = round(YRes/NrY);

NrPixels = XSize*YSize;

XSize2 = round(XSize/2);

YSize2 = round(YSize/2);

if Cliplimit > 0

ClipLimit = max(1,Cliplimit*XSize*YSize/NrBins);

else

ClipLimit = 1E8;

end

LUT=makeLUT(Min,Max,NrBins);

% avgBin = NrPixels/NrBins;

Bin=1+LUT(round(Image));

Hist = makeHistogram(Bin,XSize,YSize,NrX,NrY,NrBins);

if Cliplimit > 0

Hist = clipHistogram(Hist,NrBins,ClipLimit,NrX,NrY);

end

Map=mapHistogram(Hist,Min,Max,NrBins,NrPixels,NrX,NrY);

% Interpolate

xI = 1;

for i = 1:NrX+1

if i == 1

subX = XSize/2;

xU = 1;

数字图像处理大作业

大作业指导书 题目:数字图像处理 院(系):物联网工程学院 专业: 计算机 班级:计算机1401-1406 指导老师: 学号: 姓名: 设计时间: 2016-2017学年 1学期

摘要 (3) 一、简介 (3) 二、斑点数据模型 .参数估计与解释 (4) 三、水平集框架 (5) 1.能量泛函映射 (5) 2.水平集传播模型 (6) 3.随机评估方法 (7) 四、实验结果 (8) 五、总结 (11)

基于水平集方法和G0模型的SAR图像分割 Abstract(摘要) 这篇文章提出了一种分割SAR图像的方法,探索利用SAR数据中的统计特性将图像分区域。我们假设为SAR图像分割分配参数,并与水平集模型相结合。分布属于G分布中的一种,处于数据建模的目的,它们已经成功的被用于振幅SAR图像中不同区域的建模。这种统计数据模型是驱动能量泛函执行区域映射的基础,被引用到水平集传播数值方案中,将SAR 图像分为均匀、异构和极其异构区域。此外,我们引入了一个基于随机距离和模型的评估过程,用于量化我们方法的鲁棒性和准确性。实验结果表明,我们的算法对合成和真实SAR 数据都具有准确性。+ 简介 1、Induction(简介) 合成孔径雷达系统是一种成像装置,采用相干照明比如激光和超声波,并会受到斑点噪声的影响。在SAR图像处理过程中,返回的是斑点噪声和雷达切面建模在一起的结果。这个积性模型(文献[1])因包含大量的真实SAR数据,并且在获取过程中斑点噪声被建模为固有的一部分而被广泛应用。因此,SAR图像应用区域边界和目标检测变得更加困难,可能需要斑点去除。因此,斑点去除是必需的,有效的方法可以在文献[2][3][4][5][6][7][8][9][10]中找到。 对于SAR图像分割,水平集方法构成一类基于哈密顿-雅克比公式的重要算法。水平集方法允许有效的分割标准公式,从文献[12]中讨论的传播函数项可以得到。经典方法有着昂贵的计算成本,但现在的水平集的实现配置了有趣的低成本的替换。 水平集方法的一个重要方面,比如传播模型,可以用来设计SAR图像的分割算法。这个传播函数能够依据伽马和伽马平方根法则将斑点统计进行整合,函数已经被广泛地应用于SAR图像中的均质区域分割。Ayed等基于伽马分布任意建模,设计方案将SAR图像分成多个均质区域。尽管多区分割问题已经解决,该方案人需要一定数量的区域作为输入。Shuai 和Sun在文献[16]中提出对这个方法进行了改进,他们使用了一个有效的传播前收敛判断。Marques等引入了一个类似于含有斑点噪声图像中目标检测的框架,将基于本地区域的斑点噪声统计融合进去。这些作者采用伽马平方根对均质区域进行建模并用一个自适应窗口方案检测本地的同质性。 最近,新的SAR数据模型比如K,G,显示出了优势。经典法则受限于均质区域特性的描述,而最近的法则展现出了在数据建模中更有吸引力的特性。法则允许同构、异构和高度异构幅度SAR数据的建模。这个分布族提供了一组参数,可以描述SAR图像中的不同区域。分布的参数信息,可以被广泛的应用于设计SAR图像处理和分类技术。在文献[21]中,Mejail 等人介绍了SAR监督数据分类器,它基于其参数映射并实现了有趣的结果。Gambini等人在文献[22]中使用这个分布的一个参数来量化SAR数据的粗糙度,通过活动轮廓和B样条差值来检测边缘。然而,这种技术需要一个初始分割步骤,并受拓扑限制。一般来说,活动轮廓方法不能解决不连续区域分割的问题。 本文介绍了一种新的水平集算法来实现SAR图像中均质、异构和极其异构区域分割的目标。由于分布能够描述SAR图像的同质性和规模,我们的方法采用分布对斑点数据进行建模。这些分布参数基于每一个域点进行估计,通过这些信息,我们可以在水平集分割框架内得到一个能量泛函来驱动向前传播(front propagation)。该泛函以最大化不同区域平均能量间的差异作为结束。最终水平集阶段以能量带作为依据得到SAR图像的分割结果。

数字图像处理课后参考答案

数字图像处理 第一章 1、1解释术语 (2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。 (3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。 1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。 1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。 1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。 1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。 1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。 1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。 第二章 2、1解释下列术语 (18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。 (19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。 (20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。 (21)像素的8邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的8个像素称为该像素的8邻域像素,她们的坐标分别为(x-1,y-1)(x-1,y)(x-1,y+1)(x,y-1)(x,y+1)(x+1,y-1)(x+1,y)(x+1,y+1)。 (28)欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D e(p,q)=[(x-u)2+(y-v)2]1/2 (29)街区距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的街区距离定义为:D4(p,q)=|x-u|+|y-v|。 (30)棋盘距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D8(p,q)=max(|x-u|,|y-v|)。 (33)调色板:就是指在16色或者256色显示系统中,将图像中出现最频繁的16种或者256种颜色组成的一个颜色表,并将她们分别编号为0~15或0~255,这样就使每一个4位或者8位的颜色编号或者颜色表中的24位颜色值相对应。这种4位或者8位的颜色编号称为颜色的索引号,由颜色索引号及对应的24位颜色值组成的表称为颜色查找表,即调色板。 2、7对图像进行描述的数据信息一般应至少包括: (1)图像的大小,也即图像的宽与高 (2)表示每个像素需要的位数,当其值为1时说明就是黑白图像,当其值为4时说明就是16色或16灰度级图像,当其值为8时说明就是256色或256灰度级图像,当其值为24就是说明就是真彩色图像。 同时,根据每个像素的位数与调色板的信息,可进一步指出就是16色彩色图像还就是16灰度级图像;就是256色彩色图像还就是256灰度级图像。 (3)图像的调色板信息。 (4)图像的位图数据信息。 对图像信息的描述一般用某种格式的图像文件描述,比如BMP等。在用图像文件描述图像信息时,相应的要

数字图像处理大作业.doc

-------------精选文档 ----------------- 1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请 给出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1 像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I);%对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100)% 阈值为 100 I1(i,j)=255; else I1(i,j)=0;%进行二值化

-------------精选文档 ----------------- end end end figure; imshow(I1); Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c%找出每两个条纹之间的距离

2.现有 8 个待编码的符号 m0,,m7, 它们的概率分别为 0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3.请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

数字图像处理大作业

1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请给 出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I); %对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100) %阈值为100 I1(i,j)=255; else I1(i,j)=0; %进行二值化 end end end figure; imshow(I1);

Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c %找出每两个条纹之间的距离

2. 现有8个待编码的符号m0,……,m7,它们的概率分别为0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3. 请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

《数字图像处理》习题解答

胡学龙编著 《数字图像处理(第 3 版)》思考题与习题参考答案 目录 第 1 章概

述 (1) 第 2 章图像处理基本知识 (4) 第 3 章图像的数字化与显示 (7) 第 4 章图像变换与二维数字滤波 (10) 第 5 章图像编码与压缩 (16) 第 6 章图像增强 (20) 第 7 章图像复原 (25) 第 8 章图像分割 (27) 第 9 章数学形态学及其应用 (31) 第 10 章彩色图像处理 (32)

第1章概述 连续图像和数字图像如何相互转换 答:数字图像将图像看成是许多大小相同、形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像 (连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字 化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅 度值(可能是灰度或色彩)整数化的过程称为量化。 采用数字图像处理有何优点 答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 数字图像处理主要包括哪些研究内容 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的 图像。 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。 答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可

数字图像处理大作业

大作业要求 1.数字图像处理中的图像增强、图像分割、数学形态学、图像编码这几个章节中,围绕你所感兴趣的题目写一篇综述。 2.要求: (1)在中国知网上下载5篇以上相关文章,结合上课所学内容,确定综述的内容。(2)文字3000字以上,包含 a. 课题背景和概述 b. 国内外研究现状 c. 技术应用(可以实现哪些功能,实 现的方法及结果 d. 结论 e. 学习体会 f.参考文献 (3)综述的排版: 正文层次格式如下: 1(空两格)×××××(居中,三号宋体,加粗,占4行) 1.1×××(左顶格,四号宋体,加粗,占 2.5行,不接排) 1.1.1×××(左顶格,小四号宋体,加粗,占2行,不接排) a.(左空两格,a.后空一格)×××(小4号宋体,加粗) (正文)×××××(小4 号宋体,接排)

(1)(左空两格,(1)后空一格)×××(小4号宋体,加粗) (正文)×××××(小4号宋体,接排) 1)(左空两格,1)后空一格)(小4号宋体,加粗) (正文)×××××(小4号宋体,接排) 正文中段落一律段前、段后0磅,行距为20磅,对齐方式:两端对齐。小4号字体。 论文中的图和表居中,并且有图题和表题。 例如: 图 1 主站工作过程(5号字体,加粗) 表1 不同总线速率下从站的延迟时间(5号字体,加粗) 速率(Kbit/s ) 9.6 19.2 93.75 187.5 500 1500 1200SDR minT (bit T ) 11 11 11 11 11 11 11 SDR maxT (bit T ) 60 60 60 60 100 150 800 参考文献按照下面形式给出: 参考文献 (居中,三号,宋体,加粗,占4行)

(完整版)数字图像处理大作业

数字图像处理 1.图像工程的三个层次是指哪三个层次?各个层次对应的输入、输出对象分别是什么? ①图像处理 特点:输入是图像,输出也是图像,即图像之间进行的变换。 ②图像分割 特点:输入是图像,输出是数据。 ③图像识别 特点:以客观世界为中心,借助知识、经验等来把握整个客观世界。“输入是数据,输出是理解。 2.常用的颜色模型有哪些(列举三种以上)?并分别说明颜色模型各分量代表的意义。 ①RGB(红、绿、蓝)模型 ②CMY(青、品红、黄)模型 ③HSI(色调、饱和度、亮度)模型 3.什么是图像的采样?什么是图像的量化? 1.采样 采样的实质就是要用多少点来描述一幅图像,采样结果质量的高低就是用前面所说的图像分辨率来衡量。简单来讲,对二维空间上连续的图像在水平和垂直方向上等间距地分割成矩形网状结构,所形成的微小方格称为像素点。一副图像就被采样成有限个像素点构成的集合。例如:一副640*480分辨率的图像,表示这幅图像是由640*480=307200个像素点组成。 2.量化 量化是指要使用多大范围的数值来表示图像采样之后的每一个点。量化的结果是图像能够容纳的颜色总数,它反映了采样的质量。 针对数字图像而言: 采样决定了图像的空间分辨率,换句话说,空间分辨率是图像中可分辨的最小细节。 量化决定了图像的灰度级,即指在灰度级别中可分辨的最小变化。 数字图像处理(第三次课)

调用图像格式转换函数实现彩色图像、灰度图像、二值图像、索引图像之间的转换。 图像的类型转换: 对于索引图像进行滤波时,必须把它转换为RGB图像,否则对图像的下标进行滤波,得到的结果是毫无意义的; 2.用MATLAB完成灰度图像直方图统计代码设计。

数字图像处理部分作业答案

3.数字化图像的数据量与哪些因素有关? 答:数字化前需要决定影像大小(行数M、列数N)和灰度级数G的取值。一般数字图像灰度级数G为2的整数幂。那么一幅大小为M*N,灰度级数为G的图像所需的存储空间M*N*g(bit),称为图像的数据量 6.什么是灰度直方图?它有哪些应用?从灰度直方图你能获得图像的哪些信息? 答:灰度直方图反映的是一幅图像中各灰度级像素出项的频率之间的关系。以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。 应用:通过变换图像的灰度直方图可以,使图像更清晰,达到图像增强的目的。 获得的信息:灰度范围,灰度级的分布,整幅图像的平均亮度。但不能反映图像像素的位置。 2. 写出将具有双峰直方图的两个峰分别从23和155移到16和255的图像线性变换。 答:将a=23,b=155 ;c=16,d=255代入公式: 得 1,二维傅里叶变换有哪些性质?二维傅里叶变换的可分离性有何意义? 周期性,线性,可分离性,比例性质,位移性质,对称性质,共轭对称性,差分,积分,卷积,能量。 意义:分离性表明:二维离散傅立叶变换和反变换可用两组一维离散傅立叶变换和反变换来完成。 8.何谓图像平滑?试述均值滤波的基本原理。 答:为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。 均值滤波是一种局部空间域处理的算法,就是对含有噪声的原始图像f(x,y)的每个像素点取一个领域S,计算S中所有像素的灰度级平均值,作为空间域平均处理后图像g(x,y)像素值。 9.何谓中值滤波?有何特点? 答:中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。 它对脉冲干扰及椒盐噪声的的图像却不太合适。抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多 6图像几何校正的一般包括哪两步?像素灰度内插有哪三种方法?各有何特点? 答:1)建立失真图像和标准图像的函数关系式,根据函数关系进行几何校正。 2)最近邻插值,双线性插值,三次卷积法 3)最近邻插值:这种插值方法运算量小,但频域特性不好。 3、若f(1,1)=4,f(1,2)=7,f(2,1)=5,f(2,2)=6,分别按最近邻元法、双线性插值法确定点(1.2,1.6)的灰度值。 最近邻元法:点(1.2,1.6)离(1,2)最近,所以其灰度值为7.双线性法:f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1) 将i=1,j=1,u=0.2,v=0.6代入,求得:f(i+u,j+v)=5.76。四舍五入取整后,得该点其灰度值为6

《数字图像处理》复习大作业及答案

2014年上学期《数字图像处理》复习大作业及参考答案 ===================================================== 一、选择题(共20题) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增 强。(B) A 图像整体偏暗 B 图像整体偏亮 C图像细节淹没在暗背景中D图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。(B ) A 平均灰度 B 图像对比度 C 图像整体亮度D图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A、RGB B、CMY或CMYK C、HSI D、HSV 4、采用模板[-1 1]T主要检测( A )方向的边缘。 A.水平 B.45? C.垂直 D.135? 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像 7、彩色图像增强时, C 处理可以采用RGB彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以 便引入一些低频分量。这样的滤波器叫B。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __ A.一一对应 B.多对一 C.一对多 D.都不 11、下列算法中属于图象锐化处理的是:C A.低通滤波 B.加权平均法 C.高通滤 D. 中值滤波 12、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:( A ) A、256K B、512K C、1M C、2M 13、噪声有以下某一种特性( D ) A、只含有高频分量 B、其频率总覆盖整个频谱 C、等宽的频率间隔内有相同的能量 D、总有一定的随机性 14. 利用直方图取单阈值方法进行图像分割时:(B) a.图像中应仅有一个目标 b.图像直方图应有两个峰 c.图像中目标和背景应一样大 d. 图像中目标灰度应比背景大 15. 在单变量变换增强中,最容易让人感到图像内容发生变化的是( C )

数字图像处理大作业要点

数字图像处理实验报告 学院:信息学院 专业:电科1004班 姓名: 学号: 辅导老师: 完成日期: 2013年6月29日 空域图像增强 实验要求:

(1)选择若干图像(两幅以上),完成直方图均衡化。 (2)选择若干图像(两幅以上),对图像文件分别进行均值滤波、中值滤波和拉 普拉斯锐化滤波操作。 (3)添加噪声,重复上述过程观察处理结果。 实验原理: (1)图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅 图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。图像增强主要可分为三类:频域图像增强方法、小波域图像增强方法、空域图像增强方法。 (2)空域图像增强主要包括:直方图均衡化、平滑滤波和锐化滤波等方法。 (3)直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。 这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。 这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。 (4)平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另 一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。 (5)均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板, 该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。再用模板中的全体像素的平均值来代替原来像素值。均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。 线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。 (6)中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技 术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为2*2,3*3区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。 (7)拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子, 亦称为边界提取算子。通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。 拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维

数字图像处理基础知识总结

第一章数字图像处理概论 *图像是对客观存在对象的一种相似性的、生动性的描述或写真。 *模拟图像 空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像 *数字图像 空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。是图像的数字表示,像素是其最小的单位。 *数字图像处理(Digital Image Processing) 利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。(计算机图像处理) *数字图像处理的特点(优势) (1)处理精度高,再现性好。(2)易于控制处理效果。(3)处理的多样性。(4)图像数据量庞大。(5)图像处理技术综合性强。 *数字图像处理的目的 (1)提高图像的视感质量,以达到赏心悦目的目的 a.去除图像中的噪声; b.改变图像的亮度、颜色; c.增强图像中的某些成份、抑制某些成份; d.对图像进行几何变换等,达到艺术效果; (2)提取图像中所包含的某些特征或特殊信息。 a.模式识别、计算机视觉的预处理 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 **数字图像处理的主要研究内容 (1)图像的数字化 a.如何将一幅光学图像表示成一组数字,既不失真又便于计算机分析处理 b.主要包括的是图像的采样与量化 (2*)图像的增强 a.加强图像的有用信息,消弱干扰和噪声 (3)图像的恢复 a.把退化、模糊了的图像复原。模糊的原因有许多种,最常见的有运动模糊,散焦模糊等(4*)图像的编码 a.简化图像的表示,压缩表示图像的数据,以便于存储和传输。 (5)图像的重建 a.由二维图像重建三维图像(如CT) (6)图像的分析 a.对图像中的不同对象进行分割、分类、识别和描述、解释。 (7)图像分割与特征提取 a.图像分割是指将一幅图像的区域根据分析对象进行分割。 b.图像的特征提取包括了形状特征、纹理特征、颜色特征等。 (8)图像隐藏 a.是指媒体信息的相互隐藏。 b.数字水印。 c.图像的信息伪装。 (9)图像通信

西安交通大学大学数字图像处理大作业

数字图像处理

目录 作业一 (1) 一作业要求 (1) 二源代码 (1) 三运行结果 (3) 作业二 (5) 一作业要求 (5) 二算法描述 (5) 三源代码 (7) 四运行结果 (10)

作业一 一作业要求 在图像的空间域滤波操作中,会出现有部分掩膜矩阵在图像外面的情况,所以需要给图像先加入一个边界,执行完操作之后,再去掉这个边界,保证图像中所有的像素都参与矩阵运算。 二源代码 byte[,] filter(byte[,]f,float[,]mask) { int w = f.GetLength(0); int h = f.GetLength(1); byte[,] g = new byte[w,h]; int M = mask.GetLength(0)/2; int N = mask.GetLength(1)/2; for (int y=N;y255) return 255; if (v<0) return 0; return (byte)v;

} float[,] averagingMask(intM,int N) { float[,] mask = new float[2*M+1,2*N+1]; for (int m=-M;m<=M;m++) for (int n=-N;n<=N;n++) mask[M+m,N+n] = 1.0f/((2*M+1)*(2*N+1)); return mask; } byte[,] addboard(byte[,] f,intM,int N) { int w=f.GetLength(0); int h=f.GetLength(1); intgw=w+2*M; intgh=h+2*N; byte[,] g=new byte[gw,gh]; //add top board and bottom board for(inti=0;i

数字图像处理大作业

[HW5][24]SA11009045_张海滨 大作业 1、行模糊、锐化、和直方图均衡化。 程序: I=imread('E:\研一\数字图像处理\作业\HW5\DSC00003.JPG'); figure,imshow(I),title('原始图像'); I1=rgb2gray(I); I1=imresize(I1,0.5); figure,imshow(I1),title('灰度图像'); h=ones(5,5)/25; I2=imfilter(I1,h); figure,imshow(I2),title('模糊处理'); J=double(I1); h1=fspecial('laplacian'); I3=filter2(h1,J); figure,imshow(I3),title('锐化处理'); I4 = histeq(I1,256); figure,imhist(I1),title('原图像直方图'); figure,imshow(I4),title('均衡化处理'); figure,imhist(I4),title('均衡化后直方图'); 进行运算的结果为: 原始图像

此为进行处理的原始图像。进行图像灰度化并把图像的大小进行调整为原来的一半,得到图像: 对图像分别进行均值滤波器模糊、拉普拉斯算子锐化处理,得到的结果如下图:

方图如下所示。

2、边缘检测,程序: I=imread('F:\研一\数字图像处理\作业\HW5\DSC00003.JPG'); I1=rgb2gray(I); I1=imresize(I1,0.5); J=double(I1); H=[0 1 0;1 -4 1;0 1 0]; J=conv2(J,H,'same'); J=I1-J; subplot(1,2,1); imshow(I1),title('灰度图像'); subplot(1,2,2); imshow(J),title('Laplace算子边缘检测'); G1 = [-1 -2 -1;0 0 0;1 2 1]; G2 = G1'; Iedge=I1; I2x = filter2(G1,Iedge); I2y = filter2(G2,Iedge); I2=abs(I2x+I2y); I22 = mat2gray(I2);

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案 第一章和第二章作业:1.简述数字图像处理的研究内容。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 3.列举并简述常用表色系。 1.简述数字图像处理的研究内容? 答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面, 将这几个方面展开,具体有以下的研究方向: 1.图像数字化, 2.图像增强, 3.图像几何变换, 4.图像恢复, 5.图像重建, 6.图像隐藏, 7.图像变换, 8.图像编码, 9.图像识别与理解。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。 根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。 图像处理着重强调在图像之间进行的变换。比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。图像处理主要在图像的像素级上进行处理,处理的数据量非常大。图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。 图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。 第三章图像基本概念

数字图像处理大作业报告

数字图像处理 实验报告 实验选题:选题二 组员: 学号: 班级: 指导老师: 实验日期:2019年5月22日

一、实验目的及原理 1.识别出芯片的引脚 2.熟悉并掌握opencv的某些函数的功能和使用方法 原理:通过滤波、形态学操作得到二值图,再在二值图中设置条件识别引脚部分。 二、实现方案 对图片滤波、调节阈值做边缘检测过滤掉一部分图片中干扰元素;然后通过膨胀、腐蚀操作来减少引脚的空心部分;再通过findContours()函数找到引脚的边缘并得到轮廓的点集,设置特定的长宽比和矩形面积识别引脚部分。 三、实验结果

四、源码 #include #include #include"opencv2/highgui/highgui.hpp" #include"opencv2/imgproc/imgproc.hpp" using namespace std; using namespace cv; int main(int argv, char **argc) { //载入图片 Mat srtImag = imread("2.jpg"); Mat G_blur = srtImag.clone(); //降噪 blur(G_blur, G_blur, Size(5, 5)); //imshow("降噪", G_blur); //Canny边缘检测 Mat Canny_Imag = G_blur; Canny_Imag = Canny_Imag > 176; Canny(G_blur, Canny_Imag, 300, 50, 3); //imshow("边缘检测", Canny_Imag); //膨胀 Mat element = getStructuringElement(MORPH_RECT, Size(10, 10)); dilate(Canny_Imag, Canny_Imag, element); //imshow("膨胀", Canny_Imag); //腐蚀 Mat element_1 = getStructuringElement(MORPH_RECT, Size(11, 11)); erode(Canny_Imag, Canny_Imag, element_1); //imshow("腐蚀", Canny_Imag); //查找轮廓 vector>contours; vectorhierarchy; findContours(Canny_Imag, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); vector> contour_s(contours.size());//该数组共有contours.size()个轮廓的点集 vector Rec_s(contours.size());//逼近多边形的点集数组

数字图像处理习题解答

第二章 (2.1、2.2略) 2.4 图像逼真度就是描述被评价图像与标准图像的偏离程度。 图像的可懂度就是表示它能向人或机器提供信息的能力。 2.5 所以第一副图像中的目标人眼观察时会觉得更亮些。 第三章 3.1 解:(a )??+-= y x dxdy vy ux j y x f v u F ,)](2exp[),(),(π (b ) 由(a )的结果可得: 根据旋转不变性可得: (注:本题由不同方法得到的最终表达式可能有所不同,但通过变形可以互换) 3.2 证:作以下代换: ?? ?==θθ s i n c o s r y r x ,a r ≤≤0,πθ20≤≤ 利用Jacobi 变换式,有: 3.3 二维离散傅立叶变换对的矩阵表达式为 当4N =时 3.4 以3.3 题的DFT 矩阵表达式求下列数字图像的 DFT: 解:(1) 当N=4 时 (2) 3.5解: 3.6 解: 3.11 求下列离散图像信号的二维 DFT , DWT,DHT 解: (1) (2) 第四章 4.1阐述哈夫曼编码和香农编码方法的理论依据,并扼要证明之。 答:哈夫曼编码依据的是可变长度最佳编码定理:在变长编码中,对出现概率大的信息符号赋予短码字,而对出现概率小的信息符号赋予长码字。如果码字长度严格按照所对应符号出现概率大小逆序排列,则编码结果平均码字长度一定小于其它排列方式。 香农编码依据是:可变长度最佳编码的平均码字长度。 证明:变长最佳编码定理 课本88页,第1行到第12行 变长最佳编码的平均码字长度 课本88页,第14行到第22行 4.2设某一幅图像共有8个灰度级,各灰度级出现的概率分别为

数字图像处理大作业-昆明理工大学-尚振宏

数字图像基础 课程名称:数字图像基础 学院:信息工程与自动化学院 专业年级: 2010级计算机系班 学号: 2010104052 学生姓名: 指导教师:尚振宏 日期: 2013-6-11 目录

目录 (1) 1前言 (2) 2图像分割的方法简介 (3) 2.1迭代法 (3) 2.2类间最大距离法 (3) 2.3最大熵法 (4) 2.4最大类内类间方差比法 (4) 2.5局部阈值法 (5) 2.6均匀性度量法 (6) 3简单算法及其实现 (6) 3.1最优阈值算法 (6) 3.2 Canny算法 (8) 4、试验对比 (10) 4.1迭代法试验对比 (10) 4.2类间最大距离法试验对比 (10) 4.3最大熵法试验对比 (11) 4.4最大类内类间方差比法试验对比 (11) 4.5局部阈值法试验对比 (12) 4.6均匀性度量法试验对比 (12) 5、总结体会 (13) 6、参考文献 (13) 7、附录 (14) 7.1迭代法代码 (14) 7.2类间最大距离法代码 (14) 7.3最大熵法代码 (15) 7.4最大类内类间方差比法代码 (16) 7.5局部阈值法代码 (18) 7.6均匀性度量法代码 (18)

1、前言 图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已提出上千种分割算法,但因尚无通用的分割理论,现提出的分割算法大都是针对具体问题的,并没有一种适合所有图像的通用分割算法。另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。最近几年又出现了许多新思路、新方法或改进算法。总的来说,图像分割是图像识别和图像分析的基本前提步骤,图像分割的质量好坏直接影响后续图像处理的效果,甚至决定成败。因此,图像分割在数字图像处理技术中占有非常重要的地位。图像分割时指将一副图像分解为若干互不交叠的、有意义的、具有相同性质的区域。好的图像分割应具备以下特征:⑴分割出来的各个区域对某种特性(例如灰度和纹理)而言具有相似性,区域内部是连通的且没有过多小孔。⑵相似区域对分割所依据的性质有明显的差异。⑶区域边界是明确的。图像分割是一个很关键的图像分析技术,是由图像处理进到图像分析的关键步骤.它的目的就是把图像中感兴趣的那部分分割出来供大家研究、处理和分析,一直都是图像技术研究中的热点。但是由于地域的差别,图像分割一直都没有一个比较通用的算法。 在实际图像处理中,一般情况下我们只是注意到图像中那些我们感兴趣的目标,因为只有这部分也就是我们注意到的有用的目标物才能为我们提供高效、有用的信息。而这些目标一般又都对应着图像中某些特定的、具有独特性质的区域。为了把这些有用的区域提取出来供我们人类使用,图像分割这门技术也就应运而生了。我们通常情况下所说的图像分割就是指把图像划分成若干个有意义的区域的过程,每个区域都是具有相近特性的像素的连通集合,一般情况下我们所关注到的那些有用的目标物就存在与这些区域中。研究者们为了识别和分析图像中的那部分我们感兴趣的目标,例如进行特征提取或者测量,就需要将这些相关的区域从图像背景中提取出来。图像分割就能够把图像中的这些有用的区域分割出来,从而把一幅图像分成一系列的有意义的、各具特征的目标或者区域。 图像分割技术主要分为四大类:区域分割,阈值分割,边缘检测和差分法运动分割(主要针对运动图像的分割)。阈值分割是近年来国际领域上的一个新的研究热点,它是一种最简单的图像分割技术,其基本原理就是:通过设定不同的特征阈值点,从而把图像的象素点分为若干类,然后通过阈值点来分割图像,最终把图像中的有用的部分提取出来。本文将对matlab用于图像分割的基本理论进行简要研究,并对当前matlab用于图像分割的最新研

相关文档
最新文档