matlab中如何获取当前日期时间

matlab中如何获取当前日期时间
matlab中如何获取当前日期时间

HTML中获得当前日期时间星期代码

这代码本人早已使用,现共享一下。

计算方法_全主元消去法_matlab程序

%求四阶线性方程组的MA TLAB程序 clear Ab=[0.001 2 1 5 1; 3 - 4 0.1 -2 2; 2 -1 2 0.01 3; 1.1 6 2.3 9 4];%增广矩阵 num=[1 2 3 4];%未知量x的对应序号 for i=1:3 A=abs(Ab(i:4,i:4));%系数矩阵取绝对值 [r,c]=find(A==max(A(:))); r=r+i-1;%最大值对应行号 c=c+i-1;%最大值对应列号 q=Ab(r,:),Ab(r,:)=Ab(i,:),Ab(i,:)=q;%行变换 w=Ab(:,c),Ab(:,c)=Ab(:,i),Ab(:,i)=w;%列变换 n=num(i),num(i)=num(c),num(c)=n;%列变换引起未知量x次序变化for j=i:3 Ab(j+1,:)=-Ab(j+1,i)*Ab(i,:)/Ab(i,i)+Ab(j+1,:);%消去过程 end end %最后得到系数矩阵为上三角矩阵 %回代算法求解上三角形方程组 x(4)=Ab(4,5)/Ab(4,4); x(3)=(Ab(3,5)-Ab(3,4)*x(4))/Ab(3,3); x(2)=(Ab(2,5)-Ab(2,3)*x(3)-Ab(2,4)*x(4))/Ab(2,2); x(1)=(Ab(1,5)-Ab(1,2)*x(2)-Ab(1,3)*x(3)-Ab(1,4)*x(4))/Ab(1,1); for s=1:4 fprintf('未知量x%g =%g\n',num(s),x(s)) end %验证如下 %A=[0.001 2 1 5 1; 3 -4 0.1 -2 2;2 -1 2 0.01 3; 1.1 6 2.3 9 4]; %b=[1 2 3 4]'; %x=A\b; %x1= 1.0308 %x2= 0.3144 %x3= 0.6267 %x4= -0.0513

JAVA中获取当前时间

Java中获得当前时间的方法 2008年06月16日星期一下午 10:06 有两种方法: 方法一:用java.util.Date类来实现,并结合java.text.DateFormat类来实现时间的格式化,看下面代码: import java.util.*; import java.text.*; //以下默认时间日期显示方式都是汉语语言方式 //一般语言就默认汉语就可以了,时间日期的格式默认为MEDIUM风格,比如:2008-6-16 20:54:53 //以下显示的日期时间都是再Date类的基础上的来的,还可以利用Calendar类来实现见类TestDate2.java public class TestDate { public static void main(String[] args) { Date now = new Date(); Calendar cal = Calendar.getInstance(); DateFormat d1 = DateFormat.getDateInstance(); //默认语言(汉语)下的默认风格(MEDIUM风格,比如:2008-6-16 20:54:53) String str1 = d1.format(now); DateFormat d2 = DateFormat.getDateTimeInstance(); String str2 = d2.format(now); DateFormat d3 = DateFormat.getTimeInstance(); String str3 = d3.format(now); DateFormat d4 = DateFormat.getInstance(); //使用SHORT风格显示日期和时间 String str4 = d4.format(now); DateFormat d5 = DateFormat.getDateTimeInstance(DateFormat.FULL,DateFormat.FULL); //显示日期,周,时间(精确到秒) String str5 = d5.format(now); DateFormat d6 = DateFormat.getDateTimeInstance(DateFormat.LONG,DateFormat.LONG); //显示日期。时间(精确到秒) String str6 = d6.format(now); DateFormat d7 = DateFormat.getDateTimeInstance(DateFormat.SHORT,DateFormat.SHORT); //显示日期,时间(精确到分) String str7 = d7.format(now); DateFormat d8 = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,DateFormat.MEDIUM);

java获取当前时间

有两种方法: 方法一:用java.util.Date类来实现,并结合java.text.DateFormat类来实现时间的格式化,看下面代码: import java.util.*; import java.text.*; //以下默认时间日期显示方式都是汉语语言方式 //一般语言就默认汉语就可以了,时间日期的格式默认为MEDIUM风格,比如:2008-6-16 20:54:53 //以下显示的日期时间都是再Date类的基础上的来的,还可以利用Calendar类来实现见类TestDate2.java public class TestDate { public static void main(String[] args) { Date now = new Date(); Calendar cal = Calendar.getInstance(); DateFormat d1 = DateFormat.getDateInstance(); //默认语言(汉语)下的默认风格(MEDIUM风格,比如:2008-6-16 20:54:53) String str1 = d1.format(now); DateFormat d2 = DateFormat.getDateTimeInstance(); String str2 = d2.format(now); DateFormat d3 = DateFormat.getTimeInstance(); String str3 = d3.format(now); DateFormat d4 = DateFormat.getInstance(); //使用SHORT风格显示日期和时间 String str4 = d4.format(now); DateFormat d5 = DateFormat.getDateTimeInstance(DateFormat.FULL,DateFormat.FULL); //显示日期,周,时间(精确到秒) String str5 = d5.format(now); DateFormat d6 = DateFormat.getDateTimeInstance(DateFormat.LONG,DateFormat.LONG); //显示日期。时间(精确到秒) String str6 = d6.format(now); DateFormat d7 = DateFormat.getDateTimeInstance(DateFormat.SHORT,DateFormat.SHORT); //显示日期,时间(精确到分) String str7 = d7.format(now);

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

Js获取当前日期时间及其它操作

Js获取当前日期时间及其它操作 (2009-06-12 09:54:28) 转载▼ 标签: 分类:JavaScript js 时间 日期 it var myDate = new Date(); myDate.getYear(); //获取当前年份(2位) myDate.getFullYear(); //获取完整的年份(4位,1970-????) myDate.getMonth(); //获取当前月份(0-11,0代表1月) myDate.getDate(); //获取当前日(1-31) myDate.getDay(); //获取当前星期X(0-6,0代表星期天) myDate.getTime(); //获取当前时间(从1970.1.1开始的毫秒数) myDate.getHours(); //获取当前小时数(0-23) myDate.getMinutes(); //获取当前分钟数(0-59) myDate.getSeconds(); //获取当前秒数(0-59) myDate.getMilliseconds(); //获取当前毫秒数(0-999) myDate.toLocaleDateString(); //获取当前日期 var mytime=myDate.toLocaleTimeString(); //获取当前时间myDate.toLocaleString( ); //获取日期与时间 日期时间脚本库方法列表 Date.prototype.isLeapYear 判断闰年 Date.prototype.Format 日期格式化

Date.prototype.DateAdd 日期计算 Date.prototype.DateDiff 比较日期差 Date.prototype.toString 日期转字符串 Date.prototype.toArray 日期分割为数组 Date.prototype.DatePart 取日期的部分信息 Date.prototype.MaxDayOfDate 取日期所在月的最大天数 Date.prototype.WeekNumOfYear 判断日期所在年的第几周 StringToDate 字符串转日期型 IsValidDate 验证日期有效性 CheckDateTime 完整日期时间检查 daysBetween 日期天数差 js代码: //--------------------------------------------------- // 判断闰年 //--------------------------------------------------- Date.prototype.isLeapYear = function() { return (0==this.getYear()%4&&((this.getYear()%100!=0)||(this.getYear()%400==0))); } //--------------------------------------------------- // 日期格式化 // 格式YYYY/yyyy/YY/yy 表示年份 // MM/M 月份 // W/w 星期 // dd/DD/d/D 日期 // hh/HH/h/H 时间 // mm/m 分钟

(整理)matlab16常用计算方法.

常用计算方法 1.超越方程的求解 一超越方程为 x (2ln x – 3) -100 = 0 求超越方程的解。 [算法]方法一:用迭代算法。将方程改为 01002ln()3 x x =- 其中x 0是一个初始值,由此计算终值x 。取最大误差为e = 10-4,当| x - x 0| > e 时,就用x 的值换成x 0的值,重新进行计算;否则| x - x 0| < e 为止。 [程序]P1_1abs.m 如下。 %超越方程的迭代算法 clear %清除变量 x0=30; %初始值 xx=[]; %空向量 while 1 %无限循环 x=100/(2*log(x0)-3); %迭代运算 xx=[xx,x]; %连接结果 if length(xx)>1000,break ,end %如果项数太多则退出循环(暗示发散) if abs(x0-x)<1e-4,break ,end %当精度足够高时退出循环 x0=x; %替换初值 end %结束循环 figure %创建图形窗口 plot(xx,'.-','LineWidth',2,'MarkerSize',12)%画迭代线'.-'表示每个点用.来表示,再用线连接 grid on %加网格 fs=16; %字体大小 title('超越方程的迭代折线','fontsize',fs)%标题 xlabel('\itn','fontsize',fs) %x 标签 ylabel('\itx','fontsize',fs) %y 标签 text(length(xx),xx(end),num2str(xx(end)),'fontsize',fs)%显示结果 [图示]用下标作为自变量画迭代的折线。如P0_20_1图所示,当最大误差为10-4时,需要迭代19次才能达到精度,超越方程的解为27.539。 [算法]方法二:用求零函数和求解函数。将方程改为函数 100()2ln()3f x x x =-- MATLAB 求零函数为fzero ,fzero 函数的格式之一是 x = fzero(f,x0) 其中,f 表示求解的函数文件,x0是估计值。fzero 函数的格式之二是 x = fzero(f,[x1,x2])

Python获取当前时间

python获取当前时间 我有的时候写程序要用到当前时间,我就想用python去取当前的时间,虽然不是很难,但是老是忘记,用一次丢一次, 为了能够更好的记住,我今天特意写下python当前时间这篇文章,如果你觉的对你有用的话,可以收藏下。 取得时间相关的信息的话,要用到python time模块,python time模块里面有很多非常好用的功能,你可以去官方 文档了解下,要取的当前时间的话,要取得当前时间的时间戳,时间戳好像是1970年到现在时间相隔的时间。 你可以试下下面的方式来取得当前时间的时间戳: import time print time.time() 输出的结果是: 1279578704.672 该结果为时间戳(单位:秒) 如果希望得到毫秒将该值*1000,即:time.time()*1000 但是这样是一连串的数字不是我们想要的结果,我们可以利用time模块的格式化时间的方法来处理:time.localtime(time.time()) 用time.localtime()方法,作用是格式化时间戳为本地的时间。 输出的结果是: time.struct_time(tm_year=2010,tm_mon=7,tm_mday=19,tm_hour=22,tm_min=33,tm_sec=39, tm_wday=0,tm_yday=200,tm_isdst=0) 现在看起来更有希望格式成我们想要的时间了。 time.strftime('%Y-%m-%d',time.localtime(time.time())) 最后用time.strftime()方法,把刚才的一大串信息格式化成我们想要的东西,现在的结果是: 2010-07-19 time.strftime里面有很多参数,可以让你能够更随意的输出自己想要的东西: 下面是time.strftime的参数: strftime(format[,tuple])->string 将指定的struct_time(默认为当前时间),根据指定的格式化字符串输出 python中时间日期格式化符号: %y两位数的年份表示(00-99) %Y四位数的年份表示(000-9999) %m月份(01-12) %d月内中的一天(0-31) %H24小时制小时数(0-23)

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

VC 获取当前时间

VC++中其实还是通过调用它自带的CTime类来完成的获取当前系统时间的,我们做一个小程序来了解这个过程吧!对话框里只有两个显示框和两个按钮,点下按钮显示当前时间。就这么一个小程序。 (1)建立应用程序外壳 创建一个新的AppWizard项目,命名为shiyan,选择Dialog based;其他都选用默认属性,单击Finish完成生成应用程序的步骤。进入对话框界面以后,按下图所示布置显示框和功能按钮。 (2)设置参数 其中上面的显示文本框设为CString型,命名为m_show,ID号为IDC_show。下面的显示文本框设为CString型,命名为m_show1,ID号为IDC_show1。 (3)编译程序 start键程序: void CDate1Dlg::Onstart() { //count=0; SetTimer(1,1000,NULL); // TODO: Add your control notification handler code here

} stop键程序: void CDate1Dlg::Onstop() { KillTimer(1); // TODO: Add your control notification handler code here } (4)增加计时器控件 View -> ClassWizard -> MessageMaps -> CUse progressDlg,加入WM_TIMER函数,编辑程序: void CDate1Dlg::OnTimer(UINT nIDEvent) { if(nIDEvent==1) { // count++; UpdateData(1); CTime mtime=CTime::GetCurrentTime();//获取当前时间 char i; CString w; i=char (mtime.GetDayOfWeek()); //获取当前时间的天数是这个星期的第几天,这里要注意了,系统上默认的一个星期的第一天是星期日,最后一天是周六,大家千万不要搞错了。我也是试了才知道的。 switch(i)//将数字状换成字符就不会出现星期7这种情况了 { case 2:

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

计算方法上机实验报告-MATLAB

《计算方法》实验报告 指导教师: 学院: 班级: 团队成员:

一、题目 例2.7应用Newton 迭代法求方程210x x --=在1x =附近的数值解 k x ,并使其满足8110k k x x ---< 原理: 在方程()0f x =解的隔离区间[],a b 上选取合适的迭代初值0x ,过曲线()y f x =的点()() 00x f x ,引切线 ()()()1000:'l y f x f x x x =+- 其与x 轴相交于点:()() 0100 'f x x x f x =-,进一步,过曲线()y f x =的 点()()11x f x , 引切线 ()()()2111: 'l y f x f x x x =+- 其与x 轴相交于点:() () 1211 'f x x x f x =- 如此循环往复,可得一列逼近方程()0f x =精确解*x 的点 01k x x x ,,,,,其一般表达式为: ()() 111 'k k k k f x x x f x ---=- 该公式所表述的求解方法称为Newton 迭代法或切线法。

程序: function y=f(x)%定义原函数 y=x^3-x-1; end function y1=f1(x0)%求导函数在x0点的值 syms x; t=diff(f(x),x); y1=subs(t,x,x0); end function newton_iteration(x0,tol)%输入初始迭代点x0及精度tol x1=x0-f(x0)/f1(x0);k=1;%调用f函数和f1函数 while abs(x1-x0)>=tol x0=x1;x1=x0-f(x0)/f1(x0);k=k+1; end fprintf('满足精度要求的数值为x(%d)=%1.16g\n',k,x1); fprintf('迭代次数为k=%d\n',k); end 结果:

计算方法及其MATLAB实现第二章作业

作者:夏云木子 1、 >> syms re(x) re(y) re(z) >> input('计算相对误差:'),re(x)=10/1991,re(y)=0.0001/1.991,re(y)=0.0000001/0.0001991 所以可知re(y)最小,即y精度最高 2、 >> format short,A=sqrt(2) >> format short e,B=sqrt(2) >> format short g,C=sqrt(2)

>> format long,D=sqrt(2) >> format long e,E=sqrt(2) >> format long g,F=sqrt(2) >> format bank,H=sqrt(2) >> format hex,I=sqrt(2) >> format +,J=sqrt(2) >> format,K=sqrt(2)

3、 >> syms A >> A=[sqrt(3) exp(7);sin(5) log(4)];vpa(pi*A,6) 4、1/6251-1/6252=1/6251*6252 5、(1)1/(1+3x)-(1-x)/(1+x)=x*(3*x-1)/[(1+3*x)*(1+x)] (2) sqrt(x+1/x)-sqrt(x-1/x)=2/x/[sqrt(x-1/x)+sqrt(x+1/x)] (3) log10(x1)-log(x2)=log10(x1/x2) (4) [1-cos(2*x)]/x =x^2/factorial(2)-x^4/factorial(4)+x^6/factorial(6)-…

数值计算方法matlab程序

function [x0,k]=bisect1(fun1,a,b,ep) if nargin<4 ep=1e-5; end fa=feval(fun1,a); fb=feval(fun1,b); if fa*fb>0 x0=[fa,fb]; k=0; return; end k=1; while abs(b-a)/2>ep x=(a+b)/2; fx=feval(fun1,x); if fx*fa<0 b=x; fb=fx; else a=x; fa=fx;

end end x0=(a+b)/2; >> fun1=inline('x^3-x-1'); >> [x0,k]=bisect1(fun1,1.3,1.4,1e-4) x0 = 1.3247 k = 7 >> 简单迭代法 function [x0,k]=iterate1(fun1,x0,ep,N) if nargin<4 N=500; end if nargin<3 ep=1e-5; end x=x0; x0=x+2*ep;

while abs(x-x0)>ep & k> fun1=inline('(x+1)^(1/3)'); >> [x0,k]=iterate1(fun1,1.5) x0 = 1.3247 k = 7 >> fun1=inline('x^3-1'); >> [x0,k]=iterate1(fun1,1.5) x0 = Inf k =

层次分析法计算权重在matlab中的实现

信息系统分析与设计作业 层次分析法确定绩效评价权重在matlab中的实现 小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述 编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。 具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。 通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。 2 程序在matlab中实现的具体步骤 function [w,lam,CR] = ccfx(A) %A为成对比较矩阵,返回值w为近似特征向量 % lam为近似最大特征值λmax,CR为一致性比率 n=length(A(:,1)); a=sum(A); B=A %用B代替A做计算 for j=1:n %将A的列向量归一化 B(:,j)=B(:,j)./a(j); end s=B(:,1); for j=2:n s=s+B(:,j); end c=sum(s);%计算近似最大特征值λmax w=s./c; d=A*w lam=1/n*sum((d./w)); CI=(lam-n)/(n-1);%一致性指标 RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致

性指标 CR=CI/RI(n);%求一致性比率 if CR>0.1 disp('没有通过一致性检验'); else disp('通过一致性检验'); end end 3 案例应用 我们拟构建公司员工绩效评价分析权重,完整操作步骤如下: 3.1构建的评价指标体系 我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。 3.2专家打分,构建两两比较矩阵 A = 1.0000 0.5000 3.0000 4.0000 2.0000 1.0000 5.0000 3.0000 0.3333 0.2000 1.0000 2.0000 0.2500 0.3333 0.5000 1.0000 3.3在MATLAB中运用编写好的程序实现 直接在MATLAB命令窗口中输入 [w,lam,CR]=ccfx(A) 继而直接得出 d = 1.3035 2.0000 0.5145 0.3926 w = 0.3102 0.4691 0.1242 0.0966 lam =4.1687

VS2010 MFC 获取当前系统时间

1.使用CTime类 CString str; //获取系统时间 CTime tm; tm=CTime::GetCurrentTime(); str=tm.Format("现在时间是%Y年%m月%d日%X"); MessageBox(str,NULL,MB_OK); 2: 得到系统时间日期(使用GetLocalTime) SYSTEMTIME st; CString strDate,strTime; GetLocalTime(&st); strDate.Format("%4d-%2d-%2d",st.wYear,st.wMonth,st.wDay); strTime.Format("%2d:%2d:%2d",st.wHour,st.wMinute,st.wSecond); 3.使用GetTickCount//获取程序运行时间 long t1=GetTickCount();//程序段开始前取得系统运行时间(ms) Sleep(500); long t2=GetTickCount();//程序段结束后取得系统运行时间(ms) str.Format("time:%dms",t2-t1);//前后之差即程序运行时间AfxMessageBox(str);//获取系统运行时间 long t=GetTickCount(); CString str,str1; str1.Format("系统已运行%d时",t/3600000); str=str1; t%=3600000; str1.Format("%d分",t/60000); str+=str1; t%=60000; str1.Format("%d秒",t/1000); str+=str1; AfxMessageBox(str);

计算方法及其MATLAB实现第一章作业

计算方法作业(作者:夏云木子) 1、help linspace type linspace 2、a1=[5 12 47;13 41 2;9 6 71];a2=[12 9;6 15;7 21];B=a1*a2, C=a1(:,1:2).*a2, D=a1.^2,

E=a1(:).^2 3、a1=[5 12 47;13 41 2;9 6 71];a2=[12 9;6 15;7 21];a1(4:5,1:3)=a2.';a1([4 5],:)=a1([5 4],:);b1=a1

c1=b1(4,1),c2=b1(5,3),D=b1(3:4,:)*a2 4、a1=[5 12 47;13 41 2;9 6 71]; E=eye(3,3); S = a1 + 5*a1' - E, S1=a1^3-rot90(a1)^2+6*E 5、a1=[5 12 47;13 41 2;9 6 71];s=5;A=s-a1,B=s*a1,C=s.*a1,D=s./a1,E=a1./s

6、c=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16];A=c^-4,B=(c^3)^-1,C=(3*c+5*c^-1)/5

7、a=[1 i 3;9i 2-i 8;7 4 8+i];A=a.' 8、abc=[-2.57 8.87;-0.57 3.2-5.5i];m1=sign(abc),m2=round(abc),m3=floor(abc) Sign为符号函数,round表示四舍五入取整,floor表示舍去小数部分取整

9、x=[1 4 3 2 0 8 10 5]';y=[8 0 0 4 2 1 9 11]';A=dot(x,y) 10、a=[3.82 5.71 9.62];b=[7.31 6.42 2.48];A=dot(a,b),B=cross(a,b) 11、P=[5 7 8 0 1];Pf=poly(P);Px=poly2str(Pf,'x') 12、P=[3 0 9 60 0 -90];K1=polyval(P,45),K2=polyval(P,-123),K3=polyval(P,579) 13、P1=[13 55 0 -17 9];P2=[63 0 26 -85 0 105];PP=conv(P1,P2);P1P2=poly2str(PP,'x'),[Q,r]=deconv(P2,P1)

相关文档
最新文档