无向图与有向图的全部生成树的计算机算法[1]

无向图与有向图的全部生成树的计算机算法[1]
无向图与有向图的全部生成树的计算机算法[1]

数据结构课程设计图的遍历和生成树求解

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 6014389 题目: 图的遍历和生成树求解实现 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 12 月 09 日 完成时间: 2012 年 12 月 26 日 课程设计成绩: 指导教师签名:年月日

目录 摘要 (3) 引言 (4) 1 需求分析 (5) 1.1任务与分析 (5) 1.2测试数据 (5) 2 概要设计 (5) 2.1 ADT描述 (5) 2.2程序模块结构 (7) 软件结构设计: (7) 2.3各功能模块 (7) 3 详细设计 (8) 3.1结构体定义 (19) 3.2 初始化 (22) 3.3 插入操作(四号黑体) (22) 4 调试分析 (22) 5 用户使用说明 (23) 6 测试结果 (24) 结论 (26)

摘要 《数据结构》课程主要介绍最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。进行数据结构课程设计要达到以下目的: ?了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; ?初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; ?提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。 这次课程设计我们主要是应用以前学习的数据结构与面向对象程序设计知识,结合起来才完成了这个程序。 因为图是一种较线形表和树更为复杂的数据结构。在线形表中,数据元素之间仅有线性关系,每个元素只有一个直接前驱和一个直接后继,并且在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,本程序是采用邻接矩阵、邻接表、十字链表等多种结构存储来实现对图的存储。采用邻接矩阵即为数组表示法,邻接表和十字链表都是图的一种链式存储结构。对图的遍历分别采用了广度优先遍历和深度优先遍历。 关键词:计算机;图;算法。

算法初步知识点

高中数学必修3知识点总结 第一章算法初步 1.1.1算法的概念 1、算法概念: 在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点: (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可. (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 1.1.2程序框图 1、程序框图基本概念: (一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。(二)构成程序框的图形符号及其作用

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。 2、框图一般按从上到下、从左到右的方向画。 3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。 4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。 5、在图形符号内描述的语言要非常简练清楚。 (三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。 1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的, 顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中,A 框和B 框是依次执行的,只有在执行完A 框指定的操作后,才能接着执 行B 框所指定的操作。 2、条件结构: 条件结构是指在算法中通过对条件的判断 根据条件是否成立而选择不同流向的算法结构。 条件P 是否成立而选择执行A 框或 B 框。无论P 条件是否成立,只能执行A 框或B 框之一,不可 能同时执行A 框和B 框,也不可能A 框、B 框都不执行。一个判断结构可以有多个判断框。 3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类: (1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P 成立时,执行A 框,A 框执行完毕后,再判断条件P 是否成立,如果仍然成立,再执行A 框,如此反复执行A 框,直到某一次条件P 不成立为止,此时不再执行A 框,离开循环结构。 (2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P 是否成立,如果P 仍然不成立,则继续执行A 框,直到某一次给定的条件P 成立为止,此时不再执行A 框,离开循环结构。

实习三--求无向连通图的生成树

实习三求无向连通图的生成树 1?需求分析 问题描述: 若要在n个城市之间建设通信网络,只需要架设n-1条路线即可。如何以最低的经济代价建设这个通信网,是一个网的最小生成树问题。 基本要求: (1) 利用克鲁斯卡尔算法求网的最小生成树,其中,以课本8.7节中的等 价类表示构造生成树过程中的连通分量。 (2) 利用普里姆算法求网的最小生成树。 (3) 以文本文件形式输出生成树中各条边以及他们的权值。 2.设计 (1) 设计思想:创建邻接矩阵存储结构。本程序主要分为两个模块:创建邻接矩阵模块,最小生成树模块。创建邻接矩阵模块:以邻接矩阵的存储形式创建无向网。最小生成树模块:生成最小生成树,输出其各条边及权值。 (2) 概要设计:int型LocateVex函数判断权值在矩阵的位置;声明CraeteGraph 函数创建邻接矩阵;声明kruskal函数用于生成最小生成树;声明main函数为程序调用步骤。 (3) 设计详细:a.将程序分为两个模块: B. 主函数流程图:

C. 最小生成树流程图 (4) 调试分析:--变量没定义就使用 --子函数嵌套定义; --使用数组是越界; (5) 用户手册:a.主页面: 解决:定义完变量在使用。 解决:子函数单独定义,可调用。 解决:注意数组的值,注意不能越界 b.输入顶点数及边数的信息:

d.输入顶点及权值 c.输入顶点信息 (6)测试结果:输出最小生成树及 权值 #i nclude #i nclude #i nclude #defi ne MAX 100 #defi ne MAX_VERTEXNUM 20 typedef char Vertex[MAX];〃 顶点字符串 typedef int Adjmatrix[MAX_VERTEXNUM][MAX_VERTEXNUM];〃 邻接矩阵 typedef struct//定义图 〔用空格隔 卷迎建设通 请输入顶蕉 譎入m 个顶点的信息* :青紹3条边的两个顶点及权値;〔用空格隔开) 欢迎建 i 珮入 请输入彳个顶点的信息; 論条迪的两个顶点及权值;(用空格隔开) 嚴费矗数颓边数’(用空槨研) 歸 个顶点的信息:(压空格隔开) 最小生成树的各条边及权值 为 1-2-1 飯黑边数:(用空格隔 开) (用空格隔开) 長和边数:(用空格隔开) (用空格隔开) 嬲边数

思维导图和知识树有什么区别

思维导图和知识树有什么区别 思维导图与知识树的区别 第一,他们对于知识的记录内容要求不同。 知识树记录的为课程知识或是简化的内容,需要记录大量的文字信息。如果要对一本书作知识树,可以根据书的目录进行制作,然后再把相关的知识添加进去。所需要记录的信息量很大。 而作为的发展是有一个中心的主题或知识点开始,向四周放射性扩展和记录所有的与中心主题或知识点,及其相关的内容的关键词,以及图片图表等等。记录的语言文字相对比较少,因为里面的关键词,都是与所学课程资料息息相关的信息,往往一幅就能够包含整个课程的主要的关键性的信息资料。 第二,知识树在人的大脑的思维模式上,属于线性思维。 整个的知识架构偏向一个方向发展,知识架构的样式如同一个树的剖面图。也正是因为如此人们把这种知识加构成做知识树。优点:整个知识图看起来比较符合人们传统的思维方式,因而觉得比较美观。缺点,如同大纲一样,很难使人对于整个的知识架构一个整体的全面的了解和认识。不同的知识点之间的前后上下联系,很难表现出来。 整个图形呈放射性结构,符合大脑的放射性思维模式,它更加的符合大脑神经细胞的生理结构,而且也符合大脑记

忆的原理和机制模式。整个看起来就是整个所要掌握的知识的学习地图。知识点和不同分主题之间联系可以用箭头和符号,进行表示和连接。通过阅读可以使人对整个知识结构做出整体性的认识和了解。缺点,对于对没有了解和认识的可能,觉得比较混乱。这点可以通过别人对于的讲解和在自己使用过程中,很快消失。 第三,知识树在大脑潜能开发方面,并没有什么特别的地方。 所使用的主要还是人的左脑的部分功能,偏重于线性思维,逻辑关系,词汇、数字等。 是全脑开发,除了左脑的语言文字、逻辑关系、词汇、数字等,同时也使用的右脑的色彩、图像、符号、韵律、节奏等。对大脑的潜能的开发起到了积极有效的促进作用。经常的在个人的学习和生活中应用,对于人的思维模式和思考方式,特别是在创造性思维的培养和提高解决问题的能力方面,都会起到潜移默化的影响。 第四,知识树的表现形式,样式比较单一,不同的人制作的知识树没有什么特别的变化。 无法表现出不同的人对于知识的掌握和理解情况。 针对于,不同的人绘制的,因为不同的人的知识背景,对问题的看法的不同的,所以制作的,也不尽相同。它更加的展现了不同的人的思维模式和思考问题的方式。所以说是

《算法初步》知识点总结.

《算法初步》知识点总结 1、在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题. 算法的特征:①确定性②逻辑性③有穷性 2、程序框图 图形符号名称功能 终端框(起止框)表示一个算法的起始和结束 输入、输出框表示一个算法输入和输出的信息 处理框(执行框)赋值、计算 判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N” 流程线连接程序框 连接点连接程序框图的两部分 3、输入、输出和赋值语句 (1)输入语句 输入语句的格式:INPUT“提示内容”;变量 例如:INPUT “x=”;x 功能:实现算法的输入变量信息(数值或字符)的功能. 要求: 1°输入语句要求输入的值是具体的常量. 2°提示内容提示用户输入的是什么信息,必须加双引号,提示内容“原原本本”的在计算机屏幕上显示,提示内容与变量之间要用分号隔开. 3°一个输入语句可以给多个变量赋值,中间用“,”分隔. 形式如:INPUT“a=,b=,c=,”;a,b,c (2)输出语句 输出语句的一般格式:PRINT“提示内容”;表达式 例如:PRINT“S=”;S 功能:实现算法输出信息(表达式)的功能. 要求: 1°表达式是指算法和程序要求输出的信息. 2°提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开. 3°如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔. 形式如:PRINT “a,b,c:”;a,b,c (3)赋值语句 赋值语句的一般格式:变量=表达式. 赋值语句中的“=”称作赋值号.

思维导图和知识树有什么区别

思维导图和知识树有什么区别 最近一段时间和一些朋友谈起,都会涉及到一个问题,那就是思维导图和知识树以及大纲有什么区别?谈到知识树,具体是谁最先提出来的,无从考究。你想知道思维导图和知识树的区别吗?下面小编为你整理思维导图和知识树的区别,希望能帮到你。 思维导图与知识树的区别 第一,他们对于知识的记录内容要求不同。 知识树记录的为课程知识或是简化的内容,需要记录大量的文字信息。如果要对一本书作知识树,可以根据书的目录进行制作,然后再把相关的知识添加进去。所需要记录的信息量很大。 而作为的发展是有一个中心的主题或知识点开始,向四周放射性扩展和记录所有的与中心主题或知识点,及其相关的内容的关键词,以及图片图表等等。记录的语言文字相对比较少,因为里面的关键词,都是与所学课程资料息息相关的信息,往往一幅就能够包含整个课程的主要的关键性的信息资料。 第二,知识树在人的大脑的思维模式上,属于线性思维。 整个的知识架构偏向一个方向发展,知识架构的样式如同一个树的剖面图。也正是因为如此人们把这种知识加构成做知识树。优点:整个知识图看起来比较符合人们传统的思维方式,因而觉得比较美观。缺点,如同大纲一样,很难使人对于整个的知识架构一个整体的全面的了解和认识。不同的知识点之间的前后上下联系,很难表现出来。 整个图形呈放射性结构,符合大脑的放射性思维模式,它更加的符合大脑神经细胞的生理结构,而且也符合大脑记忆的原理和机制模式。整个看起来就是整个所要掌握的知识的学习地图。知识点和不同分主题之间联系可以用箭头和符号,进行表示和连接。通过阅读可以使人对整个知识结构做出整体性的认识和了解。缺点,对于对没有了解和认识的可能,觉得比较混乱。这点可以通过别人对于的讲解和在自己使用过程中,很快消失。 第三,知识树在大脑潜能开发方面,并没有什么特别的地方。 所使用的主要还是人的左脑的部分功能,偏重于线性思维,逻辑关系,词汇、数字等。

专题1:算法初步知识点及典型例题(原卷版)

专题1:算法初步知识点及典型例题(原卷版) 【知识梳理】 知识点一、算法 1.算法的概念 (1)古代定义:指的是用阿拉伯数字进行算术运算的过程。 (2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。 (3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。 2.算法的特征: ①指向性:能解决某一个或某一类问题; ②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续. ③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行. ④构造性:一个问题可以构造多个算法,算法有优劣之分。 3.算法的表示方法: (1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义; (2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。 注:泛泛地谈算法是没有意义的,算法一定以问题为载体。 例1.下面给出一个问题的算法: S1输入x; S2若x≤2,则执行S3;否则,执行S4; S3输出-2x-1; S4输出x2-6x+3. 问题: (1)这个算法解决的是什么问题? (2)当输入的x值为多大时,输出的数值最小? 知识点二:流程图 1. 流程图的概念:

流程图,是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符合表示操作的内容,流程线表示操作的先后次序。 2. 图形符号名称含义 开始/结束框 用于表示算法的开始与结束 输入/输出框 用于表示数据的输入或结果的输出 处理框描述基本的操作功能,如“赋值”操作、数学 运算等 判断框判断某一条件是否成立,成立时在出口处标明 “是”或“Y”;不成立时标明“否”或“N” 流程线 表示流程的路径和方向 连接点 用于连接另一页或另一部分的框图 注释框 框中内容是对某部分流程图做的解释说明 3. (1)使用标准的框图的符号; (2)框图一般按从上到下、从左到右的方向画; (3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。判断框是具有超过一个退出点的唯一符号; (4)一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果; (5)在图形符号内描述的语言要非常简练清楚。 4.算法的三种基本逻辑结构: (1)顺序结构:由若干个按从上到下的顺序依次进行的处理步骤(语句或框)组成。这是任何一个算法都离不开的基本结构。 (2)条件结构:算法流程中通过对一些条件的判断,根据条件是否成立而取不同的分支流向的结构。它是依据指定条件选择执行不同指令的控制结构。 (3)循环结构:根据指定条件,决定是否重复执行一条或多条指令的控制结构称为循环结构。 知识点三:基本算法语句 程序设计语言由一些有特定含义的程序语句构成,与算法程序框图的三种基本结构相对应,任何程序设计语言都包含输入输出语句、赋值语句、条件语句和循环语句。以下均为BASIC

分别利用prim算法和kruskal算法实现求图的最小生成树

/*分别利用prim算法和kruskal算法实现求图的最小生成树*/ #include #include #define MaxVertexNum 12 #define MaxEdgeNum 20 #define MaxValue 1000 typedef int Vertextype; typedef int adjmatrix[MaxVertexNum][MaxVertexNum]; typedef Vertextype vexlist[MaxVertexNum]; int visited[MaxVertexNum]={0}; struct edgeElem {int fromvex; int endvex; int weight; }; typedef struct edgeElem edgeset[MaxVertexNum]; void Creat_adjmatrix(vexlist GV,adjmatrix GA,int n,int e) {int i,j,k,w; printf("输入%d个顶点数据",n); for(i=0;i

if(i==j) GA[i][j]=0; else GA[i][j]=MaxValue; printf("输入%d条无向带权边",e); for(k=0;k

高一数学必修三算法初步知识点

高一数学必修三算法初步知识点 【一】 (1)算法概念:在数学上,现代意义上的“算法”通常是指能够 用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是 明确和有效的,而且能够在有限步之内完成. (2)算法的特点: ①有限性:一个算法的步骤序列是有限的,必须在有限操作之后 停止,不能是无限的. ②确定性:算法中的每一步应该是确定的并且能有效地执行且得 到确定的结果,而不理应是模棱两可. ③顺序性与准确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只 有执行完前一步才能实行下一步,并且每一步都准确无误,才能完成 问题. ④不性:求解某一个问题的解法不一定是的,对于一个问题能够 有不同的算法. ⑤普遍性:很多具体的问题,都能够设计合理的算法去解决,如 心算、计算器计算都要经过有限、事先设计好的步骤加以解决。 【二】 (1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序实行的,它是由若干个依次执行的处 理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 顺序结构在程序框图中的体现就是用流程线将程序框自上而下地 连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所

指定的操作。 (2)条件结构:条件结构是指在算法中通过对条件的判断根据条 件是否成立而选择不同流向的 算法结构。 条件P是否成立而选择执行A框或B框。无论P条件是否成立, 只能执行A框或B框之一,不可能同时执行 A框和B框,也不可能A框、B框都不执行。一个判断结构能够 有多个判断框。 (3)循环结构:在一些算法中,经常会出现从某处开始,按照一 定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行 的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结 构又称重复结构,循环结构可细分为两类: ①一类是当型循环结构,如下左图所示,它的功能是当给定的条 件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不 成立为止,此时不再执行A框,离开循环结构。 ②另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A 框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循 环结构。 注意:1循环结构要在某个条件下终止循环,这就需要条件结构 来判断。所以,循环结构中一定包含条件结构,但不允许“死循环”。 2在循环结构中都有一个计数变量和累加变量。计数变量用于记 录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同 步执行的,累加一次,计数一次。 【三】

最小生成树算法分析

最小生成树算法分析 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs 或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于加权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。

例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 [输入] n(城市数,1<=n<=100) e(边数) 以下e行,每行3个数i,j,w ij,表示在城市i,j之间修建高速公路的造价。 [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边。那么选哪n-1条边呢?设图G的度为n,G=(V,E),我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE)

高中数学算法初步知识点与题型总结

第十一章 算法初步与框图 一、知识网络 第一节 算法与程序框图 ※知识回顾 1.算法的概念:算法通常是指按一定规则解决某一类问题的明确和有限的步骤. 2.程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形. 3.程序框图的三种基本逻辑结构是顺序结构、条件结构、循环结构. 4.算法的描述方式有:自然语言、程序框图、程序语言. 5.算法的基本特征:①明确性:算法的每一步执行什么是明确的;②顺序性:算法的“前一步”是“后一步”的前提, “后一步”是“前一步”的继续;③有限性:算法必须在有限步内完成任务,不能无限制的持续进行;④通用性:算法应能解决某一类问题. ※典例精析 例1.如图所示是一个算法的程序框图,则该程序框图所表示的功能是 解析:首先要理解各程序框的含义,输入a,b,c 三个数之后,接着判断a,b 的大小,若b 小,则把b 赋给a,否则执行下一步,即判断a 与c 的大小,若c 小,则把c 赋给a, 否则执行下一步,这样输出的a 是a,b,c 三个数中的最小值.所以该程序框图所表示的功能是求a,b,c 三个数中的最小值. 评注: 求a,b,c 三个数中的最小值的算法设计也可以用下面程序框图来表示. 例2.下列程序框图表示的算法功能是( ) (1)计算小于100的奇数的连乘积 (2)计算从1开始的连续奇数的连乘积 (3)计算从1开始的连续奇数的连乘积,当乘积大于100时,计算奇数的个数 (4)计算≥1×3×5××n 100成立时n 的最小值 解析:为了正确地理解程序框图表示的算法,可以将执行过程分解,分析每一步执行的结果.可以看出程序框图中含有当型的循环结构,故分析每一次循环的情况,列表如下: 第一次:13,5S i =?=; 第二次:135,7S i =??=; 第三次:1357,9S i =???=,此时100S <不成立,输出结果是7,程序框图表示的算法功能是求使≥1×3×5××n 100成立时n 的最小值. 选D. 算法初步 算法与程序框图 算法语句 算法案例 算法概念 框图的逻辑结构 输入语句 赋值语句 循环语句 条件语句 输出语句 顺序结构 循环结构 条件结构

必修三算法初步知识点

第一章算法初步 1.1.1算法的概念 1、算法概念: 在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点: (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可. (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 1.1.2程序框图 1、程序框图基本概念: (一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。 (二)构成程序框的图形符号及其作用

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。 4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。 5、在图形符号内描述的语言要非常简练清楚。(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。 1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B 框是依次执行的,只有在执行完A框指定的操作后,才能接着执 行B框所指定的操作。 2、条件结构: 条件结构是指在算法中通过对条件的判断 根据条件是否成立而选择不同流向的算法结构。 条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一, 不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断 框。 3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理 步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含 条件结构。循环结构又称重复结构,循环结构可细分为两类: (1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A 框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执 行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

求出下图的最小生成树

求出下图的最小生成树 解:MATLAB程序: % 求图的最小生成树的prim算法。 % result的第一、二、三行分别表示生成树边的起点、终点、权集合 % p——记录生成树的的顶点,tb=V\p clc;clear; % a(1,2)=50; a(1,3)=60; % a(2,4)=65; a(2,5)=40; % a(3,4)=52;a(3,7)=45; % a(4,5)=50; a(4,6)=30;a(4,7)=42; % a(5,6)=70; % a=[a;zeros(2,7)]; e=[1 2 20;1 4 7;2 3 18;2 13 8;3 5 14;3 14 14;4 7 10;5 6 30;5 9 25;5 10 9;6 10 30;6 11 30;7 8 2;7 13 5;8 9 4;8 14 2;9 10 6;9 14 3;10 11 11;11 12 30]; n=max([e(:,1);e(:,2)]); % 顶点数 m=size(e,1); % 边数 M=sum(e(:,3)); % 代表无穷大 a=zeros(n,n); for k=1:m a(e(k,1),e(k,2))=e(k,3); end a=a+a';

a(find(a==0))=M; % 形成图的邻接矩阵 result=[];p=1; % 设置生成树的起始顶点 tb=2:length(a); % 设置生成树以外顶点 while length(result)~=length(a)-1 % 边数不足顶点数-1 temp=a(p,tb);temp=temp(:); % 取出与p关联的所有边 d=min(temp); % 取上述边中的最小边 [jb,kb]=find(a(p,tb)==d); % 寻找最小边的两个端点(可能不止一个) j=p(jb(1));k=tb(kb(1)); % 确定最小边的两个端点 result=[result,[j;k;d]]; % 记录最小生成树的新边 p=[p,k]; % 扩展生成树的顶点 tb(find(tb==k))=[]; % 缩减生成树以外顶点 end result % 显示生成树(点、点、边长) weight=sum(result(3,:)) % 计算生成树的权 程序结果: result = 1 4 7 8 14 7 9 13 10 10 14 10 11 4 7 8 14 9 13 10 2 5 11 3 6 12 7 10 2 2 3 5 6 8 9 11 1 4 30 30 weight = 137 附图 最小生成树的权是137

离散数学--最小生成树实验报告

一、实验目的:掌握图的存储表示和以及图的最小生成树算法。 二、实验内容: 1.实现图的存储,并且读入图的内容。 2.利用克鲁斯卡尔算法求网络的最小生成树。 3.实现构造生成树过程中的连通分量抽象数据类型。 4.以文本形式输出对应图的最小生成树各条边及权值。 三、实验要求: 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 需求分析: 1、利用克鲁斯卡尔算法求网的最小生成树; 2、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列; 3、输入为存在边的顶点对,以及它们之间的权值;输出为所得到的邻接矩 阵以及按权排序后的边和最后得到的最小生成树; 克鲁斯卡尔算法:假设WN=(V,{E}) 是一个含有n 个顶点的连通网,按照构造最小生成树的过程为:先构造一个只含n 个顶点,而边集为空的子图,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至只有一棵树,也即子图中含有n-1条边为止。 测试数据: 自行指定图进行运算

四、详细设计 源程序 #include #include #define M 20 #define MAX 20 typedef struct { int begin; int end; int weight; }edge; typedef struct { int adj; int weight; }AdjMatrix[MAX][MAX]; typedef struct { AdjMatrix arc; int vexnum, arcnum; }MGraph; void CreatGraph(MGraph *); void sort(edge* ,MGraph *); void MiniSpanTree(MGraph *); int Find(int *, int ); void Swapn(edge *, int, int); void CreatGraph(MGraph *G) {

图的遍历及最小生成树实验报告

实验三最小生成树问题 班级:计科1101班 学号:05 姓名:杜茂鹏 2013年5月23日

一、实验目的 掌握图的存储表示和以及图的最小生成树算法。 二、实验内容 1.实现图的存储,并且读入图的内容。 2.利用普里姆算法求网络的最小生成树。 3.实现构造生成树过程中的连通分量抽象数据类型。 4.以文本形式输出对应图的最小生成树各条边及权值。 三、实验要求 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 四、概要设计、 首先采用图的邻接矩阵存储结构,然后从终端输入图的顶点名称、弧以及弧的权值建立邻接矩阵,并将图存储在文件中。 然后利用已经建好的图,分别对其进行深度、广度优先遍历,一次输出遍历的顶点 最后建立此图的最小生成树,并将对应的边及权值写入文件中。 六、详细设计 实验内容(原理、操作步骤、程序代码) #include<> #include<> #include<> #define INFINITY INT_MAX owcost!=0&&mini>cld[i].lowcost) { mini=cld[i].lowcost; s1=i; } } return s1; } void CreateUDN(MGraph &G) { int IncInfo; printf("请分别输入顶点数/弧数/以及弧所含信息:"); scanf("%d %d %d",&,&,&IncInfo);

getchar(); for(int i=0;i<;i++){ dj=INFINITY; [i][j].info=NULL; } for(int k=0;k<;k++) { char v1,v2; int w,i,j; printf("输入一条边依附的顶点及权值:"); dj=w; if(IncInfo) *[i][j].info=IncInfo; [j][i]=[i][j]; getchar(); } } dj!=INFINITY) DFS(G,j); } void BFSTraverse(MGraph G,void(*Visit)(MGraph G,int v)) { LinkQueue Q; for(int v=0;v<;v++) visited[v]=0; InitQueue(Q); for(int v=0;v<;v++) if(!visited[v]) { visited[v]=1; Visit(G,v); EnQueue(Q,[v]); while(!QueueEmpty(Q)) { DeQueue(Q); for(int j=0;j<;j++) if(!visited[j]&&[v][j].adj!=INFINITY) { visited[j]=1; Visit(G,j); EnQueue(Q,[j]); } } } } void MiniSpanTree_PRIM(MGraph G,char u)

求无向连通图的生成树

求无向连通图的生成树

————————————————————————————————作者:————————————————————————————————日期:

求无向连通图的生成树 一、实验目的 ⑴掌握图的逻辑结构 ⑵掌握图的邻接矩阵存储结构 ⑶验证图的邻接矩阵存储及其遍历操作的实现 二、实验内容 (1)建立无向图的邻接矩阵存储 (2)对建立的无向图,进行深度优先遍历 (3)对建立的无向图进行广度优先遍历 三、设计与编码 (1)本实验用到的理论知识 (2)算法设计 (3)编码 // 图抽象类型及其实现.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include"Graph.h" #include"iostream.h" int Graph::Find(int key,int &k) { ?int flag=0; ?for(int i=0;i<VertexLen;i++) ?if(A[i].data.key==key){k=i;flag=1;break;}; return flag; }; int Graph::CreateGraph(int vertexnum,Edge *E,int edgenum) {//由边的集合E(E[0]~E[VertexNum-1]),生成该图的邻接表

表示 if(vertexnum<1)return(-1);//参数vertexnum非法int i,front,rear,k; ?Enode *q; ?//先生成不带边表的顶点表--即顶点为孤立顶点集 ?A=newVnode[vertexnum]; if(!A)return(0);//堆耗尽 ?for(i=0;ikey=front; q->Weight=E[i].weight; ??q->next=A[rear].first; ?A[rear].first=q; ?A[rear].data.OutDegree++; A[front].data.InDegree++; ?if(Type>2) { ??q=new Enode;

2019高二数学必修3算法初步知识点:算法基本逻辑结构语文

高二数学必修3算法初步知识点:算法基本逻辑结构 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。查字典数学网为大家推荐了高二数学必修3算法初步知识点,请大家仔细阅读,希望你喜欢。 算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。 (1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A 框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所 指定的操作。 (2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的 算法结构。

条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行 A框和B框,也不可能A框、B框都不执行。一个判断结构页 1 第 可以有多个判断框。 (3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:①一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A 框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。 ②另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。 注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许死循环。2在循环结构中都有一个计数变量和累加变量。

相关文档
最新文档