数学模型试验讲解

数学模型试验讲解
数学模型试验讲解

重庆交通大学学生实验报告

实验课程名称数学建模B

开课实验室数学实验室

学院***** 院10 级水利专业班 1 班学生姓名倪** 学号************

开课时间2011 至2012 学年第 2 学期

实验一 人、猫、鸡、米安全过河问题

一、摘要

.本文研究的的是人带着猫、鸡、米过河问题,船除人划以外,至多可以载猫、鸡、米三者之一,但当人不在场时猫要吃鸡、鸡要吃米、需要设计一个安全过河方案,并使渡河次数尽量减少。

二、问题的重述

人带着猫、鸡、米过河问题,船除人划以外,至多可以载猫、鸡、米三者之一,但当人不在场,时猫要吃鸡、鸡要吃米。需要设计一个安全过河方案,并使渡河次数尽量减少。

三、基本假设与符号说明

(一)基本假设

1、人必须划船。

2、船载猫、鸡、米三者之一。

3、当人不在场,时猫要吃鸡、鸡要吃米。

(二)符号说明

我们将人,狗,鸡,米依次用四维向量1234(,,,)s x x x x =中的分量表示,当一物在此岸时,相应分量记为1i x =,在彼岸时记为0i x =.如向量(1,1,1,1)表示人,猫,鸡,米四者都在此岸,彼岸什么也没有。

四、问题的分析

这个问题与商人怎样安全过河一样,问题比较简单,研究对象少。所以可以用穷举法,简单运算和图论即可解题。

五、模型的建立

人、猫、鸡、米分别记为i=1、2、3、4.当在此岸是记为1i x =,在彼岸是记为0i x =,因此,在此岸的状态为1234(,,,)s x x x x =,在彼岸的状态为'1234(1,1,1,1)s x x x x =----,允许状态集合为{(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0)}以及它的5个反状态。

决策为乘船方案:记为1234(,,,)d u u u u =当i 在船上是记为1i u =,否则即为0i u =,允许决策集合为{(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)}。 记第k 次渡河前此岸的状态为k s ,第k 次渡河决策为k d ,得状态转移规律为 1(1)k k k k s s d +=+-

设计安全渡河方案归结为求决策序列123

,,n d d d d ,使状态k s s ∈,按状态转移规律由初状态1(1,1,1,1)s =经n 次达到1(0,0,0,0)n s +=

六、模型的求解

所以得出此问题的最优方案为:人先带鸡过河然后人再回来,把米带过河,然后把鸡带回河岸,人再把猫带过河,最后人回来把鸡带过河。

七、模型的评价与推广

(一)优点:

1、模型简单,符合实际,更容易让人理解

2、建立了合理科学的状态转移的模型

3、通过实例对问题进行分析,使模型有很好的通用性和推广性。

(二)缺点:由于问题的求解没有使用LINGO或MATLAB软件,当状态和决策过多时,采用此方法太过繁琐,容易出错。

(三)推广:正如课本上的商人们安全过河问题,当商人和随从人数增加或小船容量加大是靠逻辑思考就有些困难了,而适当地设置状态和决策,确定状态转移律,建立多步决策模型,仍然可以有效地解决此类型问题。

八、参考文献

【1】姜启源,谢金星,叶俊,数学模型,第三版。北京:高等教育出版社。

实验二、生产计划安排问题

一、摘要

本文研究的是用四种不同含硫量的液体原料如何混合生产成两种产品?根据市场的需求量安排如何生产的问题。建模时我们必须考虑原料如何的分配顺序,以及四种原料的含硫量,供应量和限制问题。

二、问题的重述

某公司将四种不同含硫量的液体原料(分别记为甲,乙,丙,丁)混合生产两种产品(分别记为A,B ).按照生产工艺的要求,原料甲,乙,丁必须先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A,B 。已知原料甲乙丙丁的含硫量分别是3,2,3,1(%),进货价格分别为6,16,10,15(千克/吨)。根据市场信息,原料甲乙丙夫人供应没有限制,原料丁的供应量最多为50吨;产品A,B 的市场需求量分别为100吨,200吨。问应如何安排生产?

三、问题的分析

问题的意思是我们用怎样的方法生产让利润最大,即用尽量少的原料生产出最多的合格产品;由于理想和现实有差别,使原料产生了限制条件,这是我们必须考虑的,产品要符合市场需求,还有原料的进价以及商品的售价都对我们的利润有很大的关联,因此我们要先建立一系列的方程,最后用LINGO 求解出最后的结果。

四、模型的假设

设产品A 中的来自混合池和原料病的吨数为11,y z 。产品B 中来自混合池和原料丙的吨数为于,中。混合池中原料甲乙丁所占的比例分别12 4.,,x x x

五、模型的建立

安排生产就等于优化目标是生产的利润最大,即

Max 1241124212(961615)(1561615)(910)(1510)x x x y x x x y z z ---+---+-+- 约束条件为:

1)原料最大供应量的限制:412()x y y +<=50

2)产品最大需求量限制:11y z +<=100,22y z +<200 3)产品最大含硫量的限制: 对产品A :

12411

11

(3)2x x x y z y z ++++<=2.5,即:12411(3 2.5)0.5x x x y z ++--<=0

对产品B,类似可得12422(3 1.5)0.5x x x y z ++-+<=0 4)其他限制:12412412220,,,,,,,,x x x x x x y z y z ++=>=0

六、模型的求解:用LINDO 求解过程如下:

Max =(9-6*x1-16*x2-15*x4)*y1+(15-6*x1-16*x2-15*x4)*y2+(9-10)*z1+(15-10)*z2;

(y1+y2)*x4<=50; y1+z1<=100; y2+z2<=200;

(3*x1+x2+x4 -2.5)*y1-0.5*z1<=0; (3*x1+x2+x4 -1.5)*y2+0.5*z2<=0; X1>=0; X2>=0; X4>=0; Y1>=0; Z1>=0 Y2>=0 Z2>=0

x1+x2+x4=1; 用LINGO 解的

Local optimal solution found.

Objective value: 450.0000 Total solver iterations: 27

Variable Value Reduced Cost X1 0.000000 0.000000 X2 0.5000000 0.000000 X4 0.5000000 0.000000 Y1 0.000000 0.000000 Y2 100.0000 0.000000 Z1 0.000000 0.000000 Z2 100.0000 0.000000

Row Slack or Surplus Dual Price 1 450.0000 1.000000 2 0.000000 1.000000 3 100.0000 0.000000 4 0.000000 2.000000 5 0.000000 2.000000 6 0.000000 6.000000 7 0.000000 -200.0000 8 0.5000000 0.000000 9 0.5000000 0.000000 10 0.000000 -4.000000 11 0.000000 0.000000 12 100.0000 0.000000 13 100.0000 0.000000 14 0.000000 -2200.000

因此用LINGO 解的结果为:

24220.5,100

x x y z ====,其余为0,目标函数值为450.

七、模型的评价和推广

(a)优点:1、模型简单,符合实际,更容易让人理解.

2、用LINGO对模型求解不容易出错。

3、通过实例对问题进行分析,使模型有很好的通用性和推广性。

(b)缺点:这是在各个条件不变下求解得的结果,还没有考虑其他的突变情况,因此只能用于特定的一段时间。

八、参考文献:【1】姜启源,谢金星,叶俊,数学模型,第三版。北京:高等教育出版社。

实验三、捕鱼策略问题

一、摘要

本题研究的是渔场的最大持续产量以及在此基础上的捕捞强度和渔场鱼量水平问题 。 二、问题多的重述 与logistic 模型不同的另一种描述种群增长规律的是gompertz 模型:.

()ln N

t rx x

x =,其中r 和N 的意义与logistic 模型相同。

设渔场鱼量的自然增长模型服从这个模型,且单位时间捕捞量为h Ex =。讨论渔场鱼量的平衡点及其稳定性,求最大持续产量的m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平0x .

三、基本假设与符号说明

(1)时刻t 渔场中鱼量为x (t ).

(2)假设在自然情况下渔场鱼量增长规律的是gompertz 模型:.

()ln N

t rx x

x =(r

为固有增长率,N 为环境最大容量.)

(3)假设单位时间捕捞量为h Ex =(E 为捕捞强度). (4)用f (x )表示单位时间的增长量.

四、模型的分析

可持续发展是一项基本国策,对于渔业这样的再生资源,要注意适度的开发,不可因为一时的高产就“竭泽而渔”,应该在持续稳产的前提下追求产量或效益的最大化。 鱼量在天然的环境下市按一定的规律增长,如果捕捞量恰好等于增长量,那么渔场鱼量将保持不变,这个捕捞量就可以持续下去,本题就是在捕捞情况下,利用渔场鱼量遵从的方程,分析鱼量稳定的条件,并且在稳定的前提下讨论如何控制捕捞市持续产量达到最大。

五、模型的建立:由假设得在自然情况下x (t )服从.

()ln N

t rx x

x =,且单位时间捕捞

量为h Ex =.所以的捕捞情况下渔场鱼量满足的方程F (x )=f(x)-h(x)

即为: .x ()()l n N

t F x r x E x

x

==- (1) 我们不需要解方程(1)以得到x (t )的动态变化方程,只希望知道渔场的稳定鱼量和保持稳定的条件,即时间t 足够长以后渔场鱼量x (t )的趋向,并由此确定最大持续产量。

六、模型的求解

(1)求其平衡点:

令()ln 0N

F x rx Ex x

=-= 得到两个平衡点

r

0E x Ne =,10x = (2)

不难得出:

'

()ln N x

F x r r E =+-(可知x=0不合题意,即x=0时 ,不稳定)

且 '0()F X r E N =--明显得 '

0()0F X <

所以0x 稳定 .E 是捕捞率,r 是最大的增长率,上述分析表明当渔场鱼量稳定在0x 处,得到持续产量00()h x Ex =;但将渔场鱼量10x =时,当然谈不上持续长了了。

(2)进一步讨论渔场鱼量稳定在0x 的前提下,如何控制捕捞强度E 使持续产量最大的问题,用图解法可以简单地得到结果。

根据方程.

()ln N

t rx x

x =与h Ex =作得抛物线和直线()y h x Ex ==,可得二

者交点p ,p 的横坐标就是稳定平衡点0x .

又根据假设3,p 点的纵坐标h 为稳定条件小单位时间的持续产量,由图得在其顶点式可获得最大的持续产量,此时的稳定平衡点

*

0N x e

=

且单位的最大持续产量为

/m h rN e =

由(2)式不难得出保持渔场鱼量稳定在*

0x 的捕捞率

m E r =

综上所述,此模型的结论是将捕捞率控制在固有增长率r 的一倍时,可以得到最大持续产量.

实验四:校车最优的安排问题

一、摘要

本文研究了如何合理安排车辆并让教师和工作人员满意的问题。

问题1:本文利用Floyd算法求出了最短路距离矩阵,在此基础上,本文以各区域到最近乘车点的距离和最小为目标函数对50个区域进行遍历分析,建立模型一,找出n 个最优乘车点。并利用模型求出了如果设立2个乘车点则区号为18区和31区,其最短总距离为24492米。如果设立3个乘车个点则分别为15区、21区和31区,其最短总距离为19660米。

问题2:为了表示满意度随距离的增大而减小的关系,本文建立满意度函数,然后以所有区域人员平均满意度最大为目标函数建立模型二。并依据模型求出当建立2个乘车点时最优解为区域24和32,总满意度为0.7239。当建立3个乘车点时的最优解为区域16、23和32。平均满意度为0.7811。

问题3:本文在模型二的基础上,设立满意度最低标准,添加满意度的约束条件H k>h,建立车辆数模型。求得满意度最大的情况下的3个乘车点车辆使用情况,确定车辆最少需要54辆,三个站点所在的区域分别为2、26、31,对应的车辆数分别为12、19、23。

问题4:我们结合模型对校车的安排问题提供了建议。

二、问题的重述

许多学校都建有新校区,常常需要将老校区的教师和工作人员用校车送到新校区。由于每天到新校区的教师和工作人员很多,往往需要安排许多车辆。有效的安排车辆并让教师和工作人员尽量满意是个十分重要的问题。现有如下四个问题需要设计解决。

假设老校区的教室和工作人员分布在50个区,各区的距离见附录中表1。各区人员分布见附录中表2。

问题1:如果建立n个乘车点,为使各区人员到最近乘车点的距离最小,建立模型,并n2,3时的结果。

分别给出

问题2:考虑每个区的乘车人数,使工作人员和教室的满意度最大,建立模型,并分别建立两个和三个乘车点的校车安排方案。(假定车只在起始点载人)

问题3:若建立3个乘车点,为使教师和工作人员尽量满意,至少需要安排多少辆车。假设每辆车最多载客47人(假设车只在起始站点载人)。

问题4:关于校车安排问题,你还有什么好的建议和考虑。可以提高乘车人员的满意度,

又可节省运行成本。

三、基本假设与符号说明

(1)基本假设1.假设未给出距离的两个区可以通过其他区间接到达。

2.每位教师及工作人员均选择最短路径乘车。

3.乘车点均建在各区内,不考虑区与区之间。

4. 教师及工作人员到各站点乘车的满意度与到该站点的距离有关系,距离近则满意度高,距离远则满意度低。

5. 假设任意时刻任意站点均有车,不考虑教师及工作人员的等车时间。

6. 在乘车点区内的人员乘车距离为零。

7. 根据实际情况,我们假设所设置的乘车点数不大于50。

8. 假设所有人员均乘车。

9. 假设每辆车只载一次人。

10. 假设汽车中途不再载人。

11. 假设每辆车的型号一致。

12. 假设每个乘车点的乘车人数固定不变。

(2)符号说明:(,)

B i j:各个区通路的邻接矩阵.

*(,)

B i j:各个区完备图的邻接矩阵.

p:第i乘车点所在的区.

i

l:第k个区到最近乘车点的距离.

k

Z:50个区到各自最近乘车点的距离之和.

H:第k区乘客的满意度.

k

H:所有乘客的平均满意度.

W:第i个乘车点的车辆数.

i

W:所有乘车点的总车辆数.

m:第k区的人数.

k

h:每个区满意度的下限(0

n :共要建的站点数

四、问题的分析

问题1:要求建立n 个乘车点,使各区人员到最近乘车点的距离最小。首先结合表1,利用Floyd 算法求得任意两点之间最短距离;其次在50个区域中任意选取n 个区域作为乘车点,,找出每个区域所对应的最近乘车点,最后以50个区域到各自最近乘车点的最短距离和的最小值为目标函数建立模型一。并对设立2个和3个乘车点时的校车安排问题进行求解。

问题2:要求在教师和工作人员的满意度最大为前提条件下选出最佳乘车点。为此需要建立关于满意度的函数,然后以平均满意度最高为目标函数建立模型二,并对设立2个和3个乘车点时的校车安排问题进行求解。

问题3:要求建立3个乘车点,在尽量使教师和工作人员满意的前提下,所需的车辆最少,我们利用模型二和总车辆数最少函数的双目标函数进行优化求解,得出最优解。

问题4:我们结合第3问的结果对车辆的安排情况提出了建议。

五、问题1的模型的建立与求解

(1)、 Floy d 算法简介:Floyd 算法是弗洛伊德(floyd )提出的一种解决每对节点之间最短路径问题的的算法。

算法的基本思想:直接在图的带权邻接矩阵中,用插入顶点的方法依次构造出v 个矩阵D (1)、D (2)、…、D (v),使最后得到的矩阵D (v)为图的距离矩阵,同时也求出插入点矩阵以便得到两点间的最短路径。

1.在邻接矩阵G 中ij G 表示第i 个区域到第j 个区域之间的距离;

2.用矩阵R 来记录插入点的信息,其中ij R 表示第i 个区域到达第j 个区域所要经过点的记录,把各个区域插入图中,比较插入区域后的距离与原来的距离,

min(,)ij ij ik kj G G G G =+,如果ij G 的距离变小,则ij R =k ,并把最短距离记录在矩阵D 中。

算法完成后则R 中包含了最短通路的信息,ij D 中包含了最短路径的信息。

关于本文具体问题的算法(算法程序见程序1)如下:

1.先根据题目所给的各个连通区域之间距离的数据为初始矩阵(,)B i j 赋值,其中没有给出距离的赋给无穷大,其中B(i,j)=0(i=j)。

2.进行迭代计算。对任意两点(,)i j ,若存在k ,使(,)(,)(,)B i k B k j B i j +<,则更新

(,)(,)(,)B i j B i k B k j =+。

3.直到所有点的距离不再更新停止计算,则得到最短路距离矩阵

B *(i,j)(,1,2,...,50)i j =。

(2)、模型一的建立

在上述最短路距离矩阵B *(i,j)的基础上,分析建立n 个乘车点的情况: 首先,在50个区域中任意选取n 个区域作为乘车点

{}n p p p ,...,,21{}50,...,2,1∈

其次,由于每个区的乘客都选距离本区最近的乘车点乘车,引入变量k l ,表示第个k 区域到最近乘车点的距离

{}),(),...,,(),,(m in 21n k p k B p k B p k B l =(k=1,2,…50)

然后,求出50个区域到各自最近乘车点的最短距离之和

∑==50

1

k k l Z

最后,建立针对问题1所述的数学模型。最佳乘车点是使得50个区域到各自最近乘车点的距离之和最小的点,基于此建立目标函数 min ∑==

50

1

k k

l

Z (1)

其中{}),(),...,,(),,(m in 21n k p k B p k B p k B l =,{}n p p p ,...,,21{

}50,...,2,1∈为选出的n 个最佳乘车点所在的区域号。 (3)、模型一的求解

依据模型一,利用MATLAB 软件(程序见附录中程序2)求得结果如下 当2=n 时:

乘车点设立在18区和31区,各个区域到各自最近乘车点的最短距离之和为Z =24492米。

选18区域有:1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、24、25、22、26、27、47。

选31区域有:23、28、29、30、31、32、33、34、35、36、37、38、38、40、41、42、43、44、45、46、48、49、50。 当3=n 时:

乘车点设立在15区、21区和31区,各个区域到各自最近乘车点的最短距离之和Z =19660米。

选15区域有:5、6、7、8、9、10、11、12、13、14、15、16、17、18、24 25、26、27。

选21区域有:1、2、3、4、19、20、21、22、23、24、44、45、46、47、48、49。 选31区域有:28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、50。

由结果可看出当乘车点越多时,Z 值越小。

六、问题2的模型建立与求解

(1)、建立满意度函数

如果车站就建在自己的区,则乘客就非常的满意,如果离自己区最近的车站比较远,则乘客就不满意。乘客对车站点的满意度取决于自己区到最近乘车点的距离。为此我们建立满意度函数

m in

m ax m ax l l l l H k

k --= (1)

其中,m ax l 为第k 个区离本区最远区的距离,min l 为第k 个区离本区最近区的距离,当然离自己区的距离最近,即0min =l 。化简得

m ax

1l l H k k -

= (2)

H k 的值越大,满意度就越大。如果乘车点就建在自己的区,则d=0, H k =1,该区的乘客非常满意;如果让乘客去距离本区最远的区乘车,则H k =0,为极度不满意。 (2)模型二的建立

结合满意度函数,在模型一的基础上,建立最高满意度乘车点选择模型, 由于每个区乘客的满意度不同,每个区的人数也不同,我们不可能使每个区乘客的满意度都最大,因此我们关注的是全体乘客的平均满意度H

∑∑==?=

501

50

1

k k

k k

k

m

m H

H

为使教师和工作人员的满意度最大,为此我们将全体人的平均满意度作为目标函数

Max ∑∑==?=

501

50

1

k k

k k

k

m

m H

H (3)

(3)模型二的求解

依据模型二,利用MATLAB 软件求得结果如下(程序见附录附录中程序3): 当2=n 时:

选择的2个乘车点为区域24和区域32,平均满意度为0.7239。

选区域有36个:1、2、3、4、5、6、7、8、9、10、11、12、13、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、43、44、45、46、47、48、49、50。 选区域有14个:14、30、31、32、33、34、35、36、37、38、39、40、41、42。 当3=n 时:

选择的三个乘车点为区域16、区域23和区域32。平均满意度为0.7811。 选16有:1、2、25、26、27。

选23有:3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、42、43、44、45、46、47、48、49。

选32有:20、21、22、23、24、28、29、30、31、32、33、34、35、36、37、38、39、40、41、50。

由计算结果可看出,建立车站数越多,乘客的平均满意度越高。

七、问题三的模型建立与求解

(1)模型三的建立

对所需车辆数w k 的分析。

设到第i 个乘车点的区域的子集合为i A

47

i k k A i P w ∈????=??????∑。

(????表示向上取整) (4) 123min W w w w =++

由于每个站点的人数不恰好是车辆满载乘客数的整数倍,每个站点就有可能有一辆车不能满载,所以当站点数越多,不能满载的车辆数就越多,从而导致所需车辆总数的增加。当n=1时,w=54,这也是所需车辆数的最小值。

关于模型二当n =3时结出的结果,其中平均满意度是在建立3个站点的请况下最大的结果,经运算得需车辆数为56,但车辆数不是最小。

在模型二中,虽然使得平均满意度最大,但个别区的满意度却相当的小,比如第三个区的满意度仅为0.4434。

为了兼顾平均满意度尽可能的大、车辆数尽可能小,建立以下模型:在每个区的满意度都大于最低满意度标准的情况下,即H k >h ,其中h 可人为地设定且0

Max ∑∑==?=

50

1

50

1

k k

k k

k

m

m H

H (5)

s.t. H k >h (0

依据模型三利用MATLAB 软件球的结果如下(程序见附录中的程序4)

当3=n 时,H 取不同的值时,算得在平均满意度较高的几种情况下,站点、平均满意度及车辆数的情况如表1所示:

表1 站点、平均满意度及车辆数

于是可取得在H=0.533,车辆数达到了最小值54,平均满意度为0.769,相对比较高。三个站点所在的区域分别为2、26、31,对应站点的车辆数分别为12、19、23。

八、问题四的解答

通过对第三问的结果的分析可知,每个站点都存在空座的情况,所以我们建议在站点校车空座率较高的情况下时,在其他站点进行一次巡游。当校车型号单一时,很容易造成某些站点乘客难以乘车而其他某些站点又大量空座的情况,这种方案最大限度的节省了成本,相当于所有乘客集中乘车,同时因为乘客依然可以在对自己满意度高的站点候车,也达到了使满意度逼近甚至达到最大的效果。

九、模型的改进及其推广

改进方案:本文模型适合于区域较少的情况,当区域量十分庞大的时候,模型的误差变大,所以我们考虑到,对于区域量很大的情况,以区域密集度为决策量,选出密集度高的区域作为乘车点被选区,在对乘车点被选区利用本文模型进行求解,这样使得问题变得简单化。

十、参考文献

[1] 陈恩水,王峰,朱道元.数学建模与实验.北京:科学出版社,2008

[2] 邬学军,周凯.数学建模竞赛铺导教程.杭州:浙江大学出版社,2009

十一、附录

表1 各区距离表

Matlab程序:

程序1:

clear;clc;

n=50;a=zeros(n);

a(1,2)=400;a(1,3)=450;

a(2,4)=300;a(2,21)=230;a(2,47)=140;

a(3,4)=600;a(4,5)=210;a(4,19)=310;

a(5,6)=230;a(5,7)=200;a(6,7)=320;a(6,8)=340;

a(7,8)=170;a(7,18)=160;a(8,9)=200;a(8,15)=285;

a(9,10)=180;a(10,11)=150;a(10,15)=160;

a(11,12)=140;a(11,14)=130;a(12,13)=200;a(13,34)=400; a(14,15)=190;a(14,26)=190;a(15,16)=170;a(15,17)=250; a(16,17)=140;a(16,18)=130;a(17,27)=240;

a(18,19)=204;a(18,25)=180;a(19,20)=140;a(19,24)=175; a(20,21)=180;a(20,24)=190;a(21,22)=300;a(21,23)=270; a(21,47)=350;a(22,44)=160;a(22,45)=270;a(22,48)=180; a(23,24)=240;a(23,29)=210;a(23,30)=290;a(23,44)=150; a(24,28)=130;a(24,25)=170;a(26,27)=140;a(26,34)=320; a(27,28)=190;a(28,29)=260;a(29,31)=190;a(30,31)=240; a(30,42)=130;a(30,43)=210;a(31,32)=230;a(31,36)=260; a(31,50)=210;a(32,33)=190;a(32,35)=140;a(32,36)=240; a(35,37)=160;a(36,39)=180;a(36,40)=190;a(37,38)=135; a(38,39)=130;a(39,41)=310;a(40,41)=140;a(40,50)=190; a(42,50)=200;a(43,44)=260;a(43,45)=210;a(33,34)=210; a(45,46)=240;a(46,48)=280;a(48,49)=200;

a=a+a';M=max(max(a))*n^2;

a=a+((a==0)-eye(n))*M;

path=zeros(n);

for k=1:n

for i=1:n

for j=1:n

if a(i,j)>a(i,k)+a(k,j)

a(i,j)=a(i,k)+a(k,j);

path(i,j)=k;

end

end

end

end

a;

程序2:

sl=inf;

for b=1:n

for c=1:n

for d=1:n

if a(b,d)

l(d)=a(b,d);

else l(d)=a(c,d);

end

end

L=sum(l);

if sl>L

sl=L;p1=b;p2=c;

end

end

end

sl,p1,p2

for i=1:n

if a(i,p1)<=a(i,p2)

qulu(1,i)=p1;

else qulu(1,i)=p2;

end

end

qulu

程序3:

q=sum(ren);

sl=0;

A=max(a);

for b=1:n

for c=1:n

for d=1:n

for e=1:n

mm=[a(b,e),a(c,e),a(d,e)];

l(e)=min(mm);

lren(e)=(A(e)-l(e))/A(e)*ren(e);

end

L=sum(lren);

if sl

sl=L;p1=b;p2=c;p3=d;

end

end

end

end

manyidu=sl/q,p1,p2,p3

for i=1:n

if a(i,p1)<=a(i,p2)&a(i,p1)<=a(i,p3)

qulu(1,i)=p1;

elseif a(i,p2)<=a(i,p1)&a(i,p2)

qulu(1,i)=p2;

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模知识及常用方法

数学建模知识——之新手上路 一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。二、建立数学模型的方法和步骤 1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。例题:一个笼子里装有鸡和兔若干只,已知它们共有 8 个头和 22 只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡 x 只,有兔 y 只,由已知条件有 x+y=8 2x+4y=22 求解如上二元方程后,得解 x=5,y=3,即该笼子中有鸡 5 只,有兔 3 只。将此结果代入原题进行验证可知所求结果正确。根据例题可以得出如下的数学建模步骤: 1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外) 2)用字母表示要求的未知量 3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有 2 只脚,兔有 4 只脚) 4)求出数学式子的解答 5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分: 1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个

数学模型与数学建模实验五

实验报告五 学院名称:理学院 专业年级: 姓 名: 学 号: 课 程:数学模型与数学建模 报告日期:2015年12月8日 一、实验题目 例2.2.1 水库库容量与高程 设一水库将河道分为上、下游两个河段,降雨的开始时刻为8时,这是水位的高程为 168m ,水库容量为38109.21m ?,预测上游的流量()()s m t Q /3,d 取值如表2.2.1所示。 表2.2.1 上有流量()t Q 的预测 已知水库中水的容量( )3 810m V 与水位高程H (m )的数值关系为表2.2.2 表2.2.2 水库库容量与水位高程的关系 如果当日从8时开始,水一直保持s m /10003 的泄流量,根据所给数据,预报从降雨时刻到56h 以内每小时整点时刻水库中水的库容量与水位高程。 例2.2.2 地下含沙量 某地区有优质细沙埋在地下,某公司拟在此处采沙,已得到该地区钻探资料图的一角如 下表,在每个格点上有三个数字列,都是相对于选定基点的高度(m ),最上面的数字是覆盖表面的标高,中间的数字是沙层顶部的标高最下面的数字是沙层底部的标高,每个格子都是正方形,边长50m 。画星号处,即沼泽表层地带,没有钻探数据。试估计整个矩形区域内的含沙量。

二、实验目的 插值模型是数据挖掘的另一类模型,插值(Interpolation )的目的是根据能够获得的观测数据推测缺损的数据,此时观测数据(){}n i i i y x 1,=被视为精确的基准数据,寻找一个至少 满足条件的函数()x y y =,使得()n i x y y i i ,,2,1,Λ==,在本节我们强调的是插值模型的应用,而不是插值方法的构造。 三、问题陈述 2.2.1 一维插值 例2.2.1 水库库容量与高程 2.2.2 二维插值 例2.2.2 地下含沙量 2.2.3 泛克里金插值 四、模型及求解结果 2.2.1 一维插值 一元函数差值公式为 ()() ∑==n i i i x y x y 1 λ 其中 () x i λ是满足条件 ()ij i x δ=λ的函数,依据插值的公式,如最近邻差值,线性插值、分

数学建模习题

数学建模与数学实验课程练习 练习集锦 1简述数学建模的一般过程及建模过程中需要注意的问题。 2 简述数学模型及数学建模的特点。 3 简述数学建模的常用分类方法。 4求方程 06 /12 625 .05 .04 )(=------=x x x x f 的模最大的根的近似 值(精确到小数点后两位)。 5在抢渡长江模型中,如果水流速度 1.8/v m s =为常数,人的游泳速度 1.5/u m s =为常数,江面宽度为1200H m =,终点位置在起点下游 1000L m =处的条件,确定游泳者的最佳游泳路径及最短游泳时间。 6沿江的某一侧区域将建两个水厂,在江边建一个取水口。现需要设计最优的管线铺设方案,通过管线从取水口向水厂送水。水厂与江岸的位置见右图。 如果不用共用管线,城区单位建设费用是郊区的2倍。 (1) 对于最优方案,用α表示,βγ。 (2) 求最优取 水口位置。 7在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 (,0) P x

31/52a b P c d e f ?? ??=?? ???? , (1)确定矩阵P 的未知元素。 (2)求P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取)。 8在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取)。 9考虑下表数据 (1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 10考虑微分方程

数学模型实验报告

数学模型实验报告 实验内容1. 实验目的:学习使用lingo和MATLAB解决数学模型问题 实验原理: 实验环境:MATLAB7.0 实验结论: 源程序 第4章:实验目的,学会使用lingo解决数学模型中线性规划问题1.习题第一题 实验原理: 源程序: 运行结果: 、 管 路 敷 设 技 术 通 过 管 线 不 仅 可 以 解 决 吊 顶 层 配 置 不 规 范 高 中 资 料 试 卷 问 题 , 而 且 可 保 障 各 类 管 路 习 题 到 位 。 在 管 路 敷 设 过 程 中 , 要 加 强 看 护 关 于 管 路 高 中 资 料 试 卷 连 接 管 口 处 理 高 中 资 料 试 卷 弯 扁 度 固 定 盒 位 置 保 护 层 防 腐 跨 接 地 线 弯 曲 半 径 标 等 , 要 求 技 术 交 底 。 管 线 敷 设 技 术 中 包 含 线 槽 、 管 架 等 多 项 方 式 , 为 解 决 高 中 语 文 电 气 课 件 中 管 壁 薄 、 接 口 不 严 等 问 题 , 合 理 利 用 管 线 敷 设 技 术 。 线 缆 敷 设 原 则 : 在 分 线 盒 处 , 当 不 同 电 压 回 路 交 叉 时 , 应 采 用 金 属 隔 板 进 行 隔 开 处 理 ; 同 一 线 槽 内 强 电 回 路 须 同 时 切 断 习 题 电 源 , 线 缆 敷 设 完 毕 , 要 进 行 检 查 和 检 测 处 理 。 、 电 气 课 件 中 调 试 对 全 部 高 中 资 料 试 卷 电 气 设 备 , 在 安 装 过 程 中 以 及 安 装 结 束 后 进 行 高 中 资 料 试 卷 调 整 试 验 ; 通 电 检 查 所 有 设 备 高 中 资 料 试 卷 相 互 作 用 与 相 互 关 系 , 根 据 生 产 工 艺 高 中 资 料 试 卷 要 求 , 对 电 气 设 备 进 行 空 载 与 带 负 荷 下 高 中 资 料 试 卷 调 控 试 验 ; 对 设 备 进 行 调 整 使 其 在 正 常 工 况 下 与 过 度 工 作 下 都 可 以 正 常 工 作 ; 对 于 继 电 保 护 进 行 整 核 对 定 值 , 审 核 与 校 对 图 纸 , 编 写 复 杂 设 备 与 装 置 高 中 资 料 试 卷 调 试 方 案 , 编 写 重 要 设 备 高 中 资 料 试 卷 试 验 方 案 以 及 系 统 启 动 方 案 ; 对 整 套 启 动 过 程 中 高 中 资 料 试 卷 电 气 设 备 进 行 调 试 工 作 并 且 进 行 过 关 运 行 高 中 资 料 试 卷 技 术 指 导 。 对 于 调 试 过 程 中 高 中 资 料 试 卷 技 术 问 题 , 作 为 调 试 人 员 , 需 要 在 事 前 掌 握 图 纸 资 料 、 设 备 制 造 厂 家 出 具 高 中 资 料 试 卷 试 验 报 告 与 相 关 技 术 资 料 , 并 且 了 解 现 场 设 备 高 中 资 料 试 卷 布 置 情 况 与 有 关 高 中 资 料 试 卷 电 气 系 统 接 线 等 情 况 , 然 后 根 据 规 范 与 规 程 规 定 , 制 定 设 备 调 试 高 中 资 料 试 卷 方 案 。 、 电 气 设 备 调 试 高 中 资 料 试 卷 技 术 电 力 保 护 装 置 调 试 技 术 , 电 力 保 护 高 中 资 料 试 卷 配 置 技 术 是 指 机 组 在 进 行 继 电 保 护 高 中 资 料 试 卷 总 体 配 置 时 , 需 要 在 最 大 限 度 内 来 确 保 机 组 高 中 资 料 试 卷 安 全 , 并 且 尽 可 能 地 缩 小 故 障 高 中 资 料 试 卷 破 坏 范 围 , 或 者 对 某 些 异 常 高 中 资 料 试 卷 工 况 进 行 自 动 处 理 , 尤 其 要 避 免 错 误 高 中 资 料 试 卷 保 护 装 置 动 作 , 并 且 拒 绝 动 作 , 来 避 免 不 必 要 高 中 资 料 试 卷 突 然 停 机 。 因 此 , 电 力 高 中 资 料 试 卷 保 护 装 置 调 试 技 术 , 要 求 电 力 保 护 装 置 做 到 准 确 灵 活 。 对 于 差 动 保 护 装 置 高 中 资 料 试 卷 调 试 技 术 是 指 发 电 机 一 变 压 器 组 在 发 生 内 部 故 障 时 , 需 要 进 行 外 部 电 源 高 中 资 料 试 卷 切 除 从 而 采 用 高 中 资 料 试 卷 主 要 保 护 装 置 。

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学模型与实验报告习题

数学模型与实验报告 姓名:王珂 班级:121111 学号:442 指导老师:沈远彤

数学模型与实验 一、数学规划模型 某企业将铝加工成A,B两种铝型材,每5吨铝原料就能在甲设备上用12小时加工成3吨A型材,每吨A获利2400元,或者在乙设备上用8小时加工成4吨B型材,每吨B获利1600元。现在加工厂每天最多能得到250吨铝原料,每天工人的总工作时间不能超过为480小时,并且甲种设备每天至多能加工100吨A,乙设备的加工能力没有限制。 (1)请为该企业制定一个生产计划,使每天获利最大。 (2)若用1000元可买到1吨铝原料,是否应该做这项投资若投资,每天最多购买多少吨铝原料 (3)如果可以聘用临时工人以增加劳动时间,付给工人的工资最多是每小时几元 (4)如果每吨A型材的获利增加到3000元,应否改变生产计划 题目分析: 每5吨原料可以有如下两种选择: 1、在甲机器上用12小时加工成3吨A每吨盈利2400元 2、在乙机器上用8小时加工成4吨B每吨盈利1600元 限制条件: 原料最多不可超过250吨,产品A不可超过100吨。工作时间不可超过480小时线性规划模型: 设在甲设备上加工的材料为x1吨,在乙设备上加工的原材料为x2吨,获利为z,由题意易得约束条件有: Max z = 7200x1/5 +6400x2/5 x1 + x2 ≦ 250

12x1/5 + 8x2/5 ≦ 480 0≦3x1/5 ≦ 100, x2 ≧ 0 用LINGO求解得: VARIABLE VALUE REDUCED COST X1 X2 ROW SLACK OR SURPLUS DUAI PRICE 1 2 3 4 做敏感性分析为: VARIABLE CURRENT ALLOWABLE ALLOWABLE COFF INCREASE DECREASE X1 X2 ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 3 4 INFINITY 1、可见最优解为x1=100,x2=150,MAXz=336000。因此最优解为在甲设备上用100吨原料生产A产品,在乙设备上用150吨原料生产B产品。最大盈利为336000. 2、由运算结果看约束条件1(原料)的影子价格是960,即每增加1吨原料可收入960,小于1000元,因此不购入。 3、同理可得,每小时的影子价格是40元,因此聘用员工的工资不可超过每小时40元。

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

数学建模实验三--Lorenz模型与食饵模型

数学建模实验三 Lorenz 模型与食饵模型 一、实验目的 1、学习用Mathematica 求常微分方程的解析解和数值解,并进行定性分析; 2、学习用MATLAB 求常微分方程的解析解和数值解,并进行定性分析。 二、实验材料 2.1问题 图3.3.1是著名的洛仑兹(E.N.Lorenz)混沌吸引子,洛仑兹吸引子已成为混沌理论的徽标,好比行星轨道图代表着哥白尼、开普勒理论一样。洛仑兹是学数学出身的,1948年起在美国麻省理工学院(MIT )作动力气象学博士后工作,1963年他在《大气科学杂志》上发表的论文《确定性非周期流》是混沌研究史上光辉的著作。以前科学家们不自觉地认为微分方程的解只有那么几类:1)发散轨道;2)不动点;3)极限环 ;4)极限环面。除此以外,大概没有新的运动类型了,这是人们的一种主观猜测,谁也没有给出证明。事实上这种想法是非常错误的。1963年美国麻省理工学院气象科学家洛仑兹给出一个具体模型,就是著名的Lorenz 模型,清楚地展示了一种新型运动体制:混沌运动,轨道既不收敛到极限环上也不跑掉。而今Lorenz 模型在科学与工程计算中经常运用的问题。例如,数据加密中。我们能否绘制出洛仑兹吸引子呢? 图3.3.1 洛仑兹(E.N.Lorenz)混沌吸引子 假设狐狸和兔子共同生活在同一个有限区域内,有足够多的食物供兔子享用,而狐狸仅以兔子为食物.x 为兔子数量,y 表狐狸数量。假定在没有狐狸的情况下,兔子增长率为400%。如果没有兔子,狐狸将被饿死,死亡率为90%。狐狸与兔子相互作用的关系是,狐狸的存在使兔子受到威胁,且狐狸越多兔子增长受到阻碍越大,设增长的减小与狐狸总数成正比,比例系数为0.02。而兔子的存在又为狐狸提供食物,设狐狸在单位时间的死亡率的减少与兔子的数量成正比,设比例系数为0.001。建立数学模型,并说明这个简单的生态系统是如何变化的。 2.2预备知识 1、求解常微分方程的Euler 折线法 求初值问题 ? ??=='00)(),,(y x y y x f y (12.1)

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模与实验

? 1.1.3 初识MATLAB 例1-1 绘制正弦曲线和余弦曲线。 x=[0:0.5:360]*pi/180; plot(x,sin(x),x,cos(x)); ?例1-2 求方程 3x4+7x3 +9x2-23=0的全部根。 p=[3,7,9,0,-23]; %建立多项式系数向量 x=roots(p) %求根 ?例1-3 求积分 quad('x.*log(1+x)',0,1) ?例1-4 求解线性方程组。 a=[2,-3,1;8,3,2;45,1,-9]; b=[4;2;17]; x=inv(a)*b ? 1.2.1 MATLAB的运行环境 硬件环境: (1) CPU (2) 内存 (3) 硬盘 (4) CD-ROM驱动器和鼠标。 软件环境: (1) Windows 98/NT/2000 或Windows XP (2) 其他软件根据需要选用 ? 1.3.1 启动与退出MATLAB集成环境 1.MATLAB系统的启动 与一般的Windows程序一样,启动MATLAB系统有3种常见方法: (1)使用Windows“开始”菜单。 (2)运行MATLAB系统启动程序matlab.exe。 (3) 利用快捷方式。 ?启动MATLAB后,将进入MATLAB 6.5集成环境。MATLAB 6.5集成环境包括MATLAB 主窗口、命令窗口(Command Window)、工作空间窗口(Workspace)、命令历史窗口(Command History)、当前目录窗口(Current Directory)和启动平台窗口(Launch Pad)。 ?2.MATLAB系统的退出 要退出MATLAB系统,也有3种常见方法: (1) 在MATLAB主窗口File菜单中选择Exit MATLAB命令。 (2) 在MATLAB命令窗口输入Exit或Quit命令。 (3) 单击MATLAB主窗口的“关闭”按钮。 ? 1.3.2 主窗口 MATLAB主窗口是MATLAB的主要工作界面。主窗口除了嵌入一些子窗口外,还主要包括菜单栏和工具栏。 1.菜单栏 在MATLAB 6.5主窗口的菜单栏,共包含File、Edit、View、Web、Window和Help 6个菜单项。

数学建模实验报告

内江师范学院 中学数学建模 实验报告册 编制数学建模组审定牟廉明 专业: 班级:级班 学号: 姓名: 数学与信息科学学院 2016年3月 说明 1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告; 2.要求学生要认真做实验,主要就是指不得迟到、早退与旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格; 3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求与目的,不得抄袭她人的实验报告; 4.实验成绩评定分为优秀、合格、不合格,实验只就是对学生的动手能力进

行考核,跟据所做的的情况酌情给分。根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。

实验名称:数学规划模型(实验一)指导教师: 实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机 实验日期:年月日实验地点: 实验目的: 掌握优化问题的建模思想与方法,熟悉优化问题的软件实现。 实验准备: 1.在开始本实验之前,请回顾教科书的相关内容; 2.需要一台准备安装Windows XP Professional操作系统与装有数学软件的计算机。 实验内容及要求 原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产与管理成本,规定切割模式不能超过3种,如何下料最节省? 实验过程: 摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。按工艺要求,确定下料方案,使用料最省,或利润最大就是典型的优化问题。以此次钢管下料问题我们采用数学中的线性规划模型、对模型进行了合理的理论证明与推导,然后借助于解决线性规划的专业软件Lingo 11、0对题目所提供的数据进行计算从而得出最优解。 关键词:钢管下料、线性规划、最优解 问题一 一、问题分析: (1)我们要分析应该怎样去切割才能满足客户的需要而且又能使得所用原料比较少; (2)我们要去确定应该怎样去切割才就是比较合理的,我们切割时要保证使用原料的较少 的前提下又能保证浪费得比较少; (3)由题意我们易得一根长为17米的原料钢管可以分别切割成如下6种情况(如表一): 表一:切割模式表 模式 4m钢管根数 6m钢管根数8m钢管根数余料/m 1 4 0 0 1 2 1 2 0 1 3 2 0 1 1 4 2 1 0 3 5 0 1 1 3 6 0 0 2 1

建立数学模型的方法、步骤、特点及分类 ()

薅§16.3建立数学模型的方法、步骤、特点及分类 螁[学习目标] 蚀1.能表述建立数学模型的方法、步骤; 蒆2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 羆3.能表述数学建模的分类; 蒃4.会采用灵活的表述方法建立数学模型; 葿5.培养建模的想象力和洞察力。 薆一、建立数学模型的方法和步骤 膃—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 袁可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 膈建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 薆§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 薄图16-5建模步骤示意图 蚃模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 芁模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

相关文档
最新文档