电力电子课程设计

电力电子课程设计
电力电子课程设计

《电力电子系统综合训练》课程设计任务书

题目: _______________ 单极性模式PWM逆变电路的仿真___________ 学生姓名:单兴银___________ 班级:电气工程及其自动化8班

学号: _______________ 指导教师:魏祥林______________________

一、设计目的

《电力电子技术系统综合训练》是自动化、电气工程及其自动化专业的一门重要的专

业实践课,要求学生综合运用电子技术、微机原理、自动控制原理、电力电子技术、计算

机仿真技术等课程知识,完成某一电力电子系统系的设计和仿真验证。通过该综合训练培养学生以下几个方面的能力:

1 ?综合运用所学知识,进行电力电子电路和系统设计的能力;

2 ?了解与熟悉常用的电力电子电路的电路拓扑、控制方法;

3 ?掌握常用的电力电子电路及系统的主电路、控制电路和保护电路的设计方法,掌

握元器件的选择计算方法;

4 ?具有一定的电力电子电路及系统实验和调试的能力。

二、设计内容

本综合训练要达到综合运用所学知识,培养和提高学生的分析问题和解决问题的能力

的目的。本综合训练包括如下几个内容:

1. 介绍常用的电力电子系统计算机仿真方法(小信号分析、离散时域仿真方法、等效电路法、Laplace变换法、周期时间序列分析法);

2 .进行仿真软件(MATLAB/PSPICE/Saber)的基础训练;

3 ?掌握电力电子基本单元电路的设计、分析和仿真方法;

4 ?完成一些典型电力电子系统的计算机仿真(三相桥式全控整流电路、桥式直流PWM 变流器、三相电压源型SPWM逆变器、电流跟踪型逆变器、三相交流调压器、斩波器供电的直流电机传动系统、逆变器供电的感应电机传动系统等) ,掌握电力电子系统基本的设

计方法、分析方法和相关仿真软件( MATLAB/PSPICE/Sabe)的使用方法。

三、设计要求及工作量

1 .设计部分

设计一单相PWM逆变电路,工作方式为单极性PWM方式,开关器件选用IGBT,直流电

压为300V,电阻负载,电阻1欧姆,电感2md根据上述要求完成主电路设计。

2 .仿真部分

完成上述单相PWM逆变电路的计算机仿真,观察输出电压波形、系统输入电流波形、电压电流波形的谐波情况、不同仿真条件时系统输入输出的变化情况、死区时间的影响、和理论分析的结果进行比较。

四、要提交的成果

1. 综合训练总结报告(不少于20页,约1万字左右)需包括:1)前言。2)目录。3)主电路工作原理说明。4)主电路设计详细过程。5)仿真模型的建立、各模块参数的设置。6)仿真结果分析。7)总结。8)参考文献。9)体会。

2. 综合训练总结报告要求采用A4页面打印,小四宋体,单倍行距,采用word默认的页边距,仿真模型、模块参数设置、仿真结果等都要在总结报告中进行详细说明。

五、设计进度计划及时间安排

六、主要参考资料

1 ?王兆安等。电力电子技术(M)。北京:机械工业出版社,2001。

2 ?李传琦。电力电子技术计算机仿真实验(M。北京:机械工业出版社,2006。

3. 李维波。MATLAB在电气工程中的应用(M。北京:中国电力出版社,2007。

4?洪乃刚。电力电子、电机控制系统的建模和仿真(M)。北京:机械工业出版社, 2010。

、尸■、■

前言

逆变电路是PWM控制技术最为重要的应用场合。这里在研究单相桥式PWM逆变电路的理论基础上,采用Matl ab的可视化仿真工具Si muli nk建立单相桥式单极性控制方式下PWM逆变电路的仿真模型,通过动态仿真,研究了调制深度、载波频率对输出电压、负载上电流的影响;并分析了输出电压、负载上电流的谐波特性。仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术教学和研究中提供了一种较好的辅助工具。

关键词:Matlab/Simulink ;PWM逆变电路;动态仿真;建模

目录

1 逆变电路相关概述 (1)

1.1 MATLAB 的介绍 (1)

1.2 PWM技术 (1)

1.3 PWM控制方法 (1)

2 主电路工作原理说明 (5)

2.1 PWM控制的基本原理 (5)

2.2 PWM逆变电路及其控制方法 (5)

3 主电路设计的详细过程 (6)

4 仿真模型的建立及各模块参数设置 (7)

4.1单极性PWM控制发生电路模型 (7)

4.2单极性SPW方式下的单相桥式逆变电路 (9)

5 总结 (16)

参考文献 (17)

体会 (18)

1 逆变电路相关概述

1.1 MATLAB的介绍

MATLA将矩阵运算、数值分析、图形处理、编程技术结合在一起,为用户提供了一个强有力的科学及工程问题的分析计算和程序设计工具,它还提供了专业水平的符号计算、文字处理、可视化建模仿真和实时控制等功能,是具有全部语言功能和特征的新一代软件开发平台。

MATLAB已发展成为适合众多学科,多种工作平台、功能强大的大型软件。MATLAB^成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的基本教学工具。

1.2 PWM技术

PWM技术的的应用十分广泛,它使电力电子装置的性能大大提高,因此它在电力电子技术的发展史上占有十分重要的地位。PWMI制技术正是有赖于

在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。脉宽调制(PWM( Pulse Width Modulation )是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。简而言之,PWMI一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWMI号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PW进行编码。

1.3 PWM 控制方法

采样控制理论中有一个重要结论: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM空制技术就是以该结论为理论基础, 对半导体开关器件的导通和关断进行控制, 使输出端得到一系列幅值相等而宽度不相等的脉冲, 用这些脉冲来代替正弦波或其他所需要的波形. 按一定的规则对各脉冲的宽度进行调制, 既可改变逆变电路输出电压的大小, 也可改变输出频率。

PWh控制的基本原理很早就已经提出,但是受电力电子器件发展水平

的制约, 在上世纪80 年代以前一直未能实现. 直到进入上世纪80 年代, 随着全控型电力电子器件的出现和迅速发展,PWM空制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。

1 相电压控制PWM

(1)等脉宽PWM法

VVVF(Variable Voltage Variable Frequency) 装置在早期是采用PAM(Pulse Amplitude Modulation) 控制技术来实现的, 其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM fe中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变

脉冲的宽度或占空比可以调压, 采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功

率因数, 但同时也存在输出电压中除基波外, 还包含较大的谐波分量。

(2)随机PWM

在上世纪70 年代开始至上世纪80 年代初, 由于当时大功率晶体管主要为双极性达林顿三极管, 载波频率一般不超过5kHz, 电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运

而生. 其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在

线性频率坐标系中, 各频率能量分布是均匀的), 尽管噪音的总分贝数未变, 但以固定开关频率为特征的有色噪音强度大大削弱. 正因为如此, 即使在IGBT 已被广泛应用的今天, 对于载波频率必须限制在较低频率的场合, 随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最

佳方法不是盲目地提高工作频率,随机PWMi术正是提供了一个分析,解

决这种问题的全新思路。

(3)S PWM fe

SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM 法. 前面提到的采样控制理论中的一个重要结论: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM fe就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM^形即SPW波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等, 通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。该方法的实现有以下几种

( 一)等面积法

该方案实际上就是SPWMfc原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM言号控制开关器件的通断,以达到预期的目的。由于此方法是以SPW MI制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点。

(二)硬件调制法

硬件调制法是为解决等面积法计算繁琐的缺点而提出的, 其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波, 通过对载波的调制得到所期望的PWM波形.通常采用等腰三角波作为载波,当调制信

号波为正弦波时,所得到的就是SPWM波形。其实现方法简单,可以用模拟电路构

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1 Matlab仿真图 (17) 3.2仿真结果 (18) 3.3 仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致谢 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产

生PWM控制信号。 设计方案: 1、电源电路 电源电路采用电容滤波的二极管不控整流电路,220V单相交流电经220V/24V变压器,降为24V交流电,再经二极管不控整流电路及滤波电容滤波后,变为平直的直流电,其幅值在22V~36V之间。 2、主电路 2.1主电路选用升压斩波电路,开关管选用电力MOSFET。 2.2Boost电路的负载为110V、25W白炽灯, 2.3boost电路中,占空比不要超过65%,否则电压大于100V。 3、控制电路的选择与确定 3.1 脉冲发生器TL494 3.2 驱动电路IR2110 二.设计原理分析 2.1总体结构分析 电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断。来完成整个系统的功能。因此,一个完整的降压斩波电路也应包括主电路,控制电路,驱动电路和保护电路这些环节。 直流斩波电路由电源、变压器、整流电路、滤波电路、主电路、控制和驱动电路及保护电路组成。如图2—1所示:

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号:Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理,设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

电力电子课程学习心得

前沿 在大二学习模电之后,这学期我们开始接触电力电子器件和多种变换器。其中包括直流变直流,无源逆变电路,整流和有源逆变电路,交流变交流电路,软开关变换器。电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装置的综合性学科,包括电压、电流、频率和波形变换,涉及电子学、自动控制原理和计算机技术等学科。电力电子技术与信息电子技术的主要不同就是效率问题,对于信息处理电路来说,效率大于15%就可以接受,而对于电力电子技术而言,大功率装置效率低于85%还是无法忍受。目前能源问题已是我国面临的主要问题之一,提高电源变换效率是电力电子工程师主要任务. 电力电子器件及应用 电力电子器件特点:1.具有较大的耗散功率2.工作在开关状态3.需要专门驱动电路来控制4.需要缓冲和保护电路。我们在本章学习了功率二极管,场效应二极管,电力二极管,IGBT . 可控整流器与有源逆变器: 主要内容: 整流器的结构形式、工作原理,分析整流器的工作波形,整流器各参数的数学关系和设计方法;整流器工作在逆变状态时的工作原理、工作波形。变压器漏抗对整流器的影响、整流器带电动机负载时的机械特性、触发电路等内容。 学习重点包括: (1) 学习不同型式整流电路的工作原理,波形分析与数值计算、各种负载对 整流电路工作情况的影响。 (2) 变压器漏抗对整流电路的影响,重点建立换相压降、换相重叠角等概念, 并掌握相关的计算,熟悉漏抗对整流电路工作情况的影响。 (3) 掌握产生有源逆变的条件、逆变失败及最小逆变角的限制等。 (4) 熟悉锯齿波移相触发电路的原理,建立同步的概念,掌握同步电压信号的 选取方法。 交-交变换器: 主要内容: 晶闸管单相和三相交流调压器;全控型器件的交流斩波电路;交-交变频器;交-交(AC-AC)变换器的应用。 交流调压电路通常由晶闸管组成,用于调节输出电压的有效值。与常规的调压变压器相比,晶闸管交流调压器有体积小、重量轻的特点。其输出是交流电压,但它不是正弦波形,其谐波分量较大,功率因数也较低。 控制方法: (1) 通断控制。即把晶闸管作为开关,通过改变通断时间比值达到调压的目的。这种控制方式电路简单,功率因数高,适用于有较大时间常数的负载;缺点是输出电压或功率调节不平滑。 (2) 相位控制。它是使晶闸管在电源电压每一周期中、在选定的时刻将负载与电源接通,改变选定的时刻可达到调压的目的。 基本结构和工作原理

电力电子课程设计.doc

姓名: 李渺 学号: 1002160112 系(院): 邮电与信息工程学院专业: 电气自动化 班级: 01班 授课老师: 胡为兵 总成绩:

变频技术简介 设计说明,含设计题目,作用,设计依据(技术要求) 正文 小结 参考资料 一、变频技术简介 随着科学的发展,变频器的使用也越来越广泛,不管是工业设备上还是家用电器上都会使用到变频器,可以说,只要有三相异步电动机的地方,就有变频器的存在,要熟练地使用变频器,还必须掌握三相异步电动机的特性,因为变频器与三相异步电动机有着密切的联系。 1、变频调速基本原理 交流变频调速器(简称变频器)是建立在微处理器、电力电子学、电机学、现代控制理论基础之上的现代机电一体化高新技术产品。其工作原理是将三相工频交流电整流成直流电,再由直流电转换成交流电(交-直-交)。根据要求,可以从0~50Hz(或更高频率)之间输出任意频率。因此,通过对变频器输出频率的控制,实现交流电动机的调速,最终达到对传动负载的精确定量控制。:是应用当今国际最新变频技术产品——交流变频调速器,对交流电机进行无级调速控制的高新技术。变频调速控制系统主要由电控设备、变频器、交流电动机、传动机械及传感器等部分组成。变频控制系统可进行开环控制,也可进行闭环控制。开环系统的控制是通过设定值的改变,来实现对被控制对象输出值的直接控制。闭环控制系统是通过被控制对象反馈系统与设定值的动态比较,自动调节被控电机的转速,从而实现对被控制对象输出的控制。 2、变频调速的特点 变频调速的主要特点是通过变频器改变输出频率及输出电压,实现交流电机转速或被控对象输出的控制。此外,还具有以下优点: ①.由于变频器在启动过程中,输出频率由0Hz平滑地逐渐上升,电压从0V按比例上升到额定电压,电机无任何启动冲击,避免了由于电机启动产生的大电流对电机、电网、电气元件及所拖动机械设备的冲击和损坏。变频器在停止过程中,输出频率由运行频率平滑地逐渐下降到0Hz,电压从运行电压按比例逐渐到0V,实现了电动机软停止。 ②.变频启动可防止运输机械类载重物体受冲击和翻滚,提高传动设备的使用寿命。

电力电子技术课程设计报告

课程设计说明书 设计题目:单相交流调压技术 专业班级: 2009级电气工程及其自动化 姓名:王昊 学号: 0915140068 指导教师:褚晓锐 2011年12月23日 (提交报告时间)

一.课程设计题目:单项交流调压技术的工程应用 二.课程设计日期: 2011年12月19日 三.课程设计目的: “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,要求学生能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。 四.课程设计要求: :按课程设计指导书提供的课题,根据第下表给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容: 1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的具体型号。 4、确定变压器变比及容量。 5、确定平波电抗器。 7、触发电路设计或选择。 8、课程设计总结。 9、完成4000字左右说明书,有系统电气原理图,内容完整、字迹工整、图表整齐规范、数据详实。 设计技术参数工作量工作计划 1、单相交流220V电源。 2、交流输出电压U d 在0~220V连续可调。 3、交输出电2000W。1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的 具体型号。 第一周: 周一:收集资料。 周二~三:方案论证。 周四:主电路设计。

4、触发电路设计。 5、绘制主电路图。 周五:理论计算。 第二周: 周一:选择器件的具体型号 周二~三:触发电路设计。。 周四~五:总结并撰写说明书。 五.课程设计内容: 设计方案图及论证 将一种交流电能转换为另一种交流电能的过程称为交流-交流变换过程,凡能实现这种变换的电路为交流变换电路。对单相交流电的电压进行调节的电路。用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。结构原理简单。该方案是由变压器、触发电路、整流器、以及一些电路构成的,为一台电阻炉提供电源。输入的电压为单相交流220V ,经电路变换后,为连续可调的交流电。 各部分电路作用 220V 交流输入部分作用:为电路提供电源,主要是市电输入。 调压环节的作用:将交流220V 电源经过变压器、整流器等电路转换为连续可调的交 220V 交流输入 调压环节 输出连续可调的交流电 触发电路

电力电子课程设计报告模板

西安交通工程学院 《电力电子技术》课程设计报告 题目: 专业班级: 姓名: 时间: 指导教师: 完成日期:年月日

设计任务书 1.设计目的与要求 设计一个交通灯控制器,要认真并准确地理解有关要求,独立完成系统设计,在双干线的路口上,交通信号灯的变化按照下面假定进行计时: (1)放行线,绿灯亮放行25秒,黄灯亮警告5秒,然后红灯亮禁止。 (2)禁止线,红灯亮禁止30秒,然后绿灯亮放行。 使两条路线交替的成为放行线和禁止线,便可实现交通控制。 (3)特殊情况下能实现手动操作。 2.设计内容 (1)画出电路原理图,正确使用逻辑关系; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出。 3.编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4.答辩 在规定时间内,完成叙述并回答问题。

目录(四号仿宋_GB2312加粗居中) (空一行) 1 引言 (1) 2 总体设计方案 (1) 2.1 设计思路 (1) 2.1.1交通灯控制系统的流程图 (2) 2.1.2 交通灯控制系统的流程 (2) 2.2总体设计框图 (2) 3 设计原理分析 (3) 3.1 秒脉冲产生器 (3) 3.2分频器 (4) 3.3 总控制电路 (4) 3.4预置校正电路 (8) 3.5译码显示电路 (8) 4 总结与体会 (11) 参考文献 (11) 附录1 (12) 附录2 (13) (目录内容左右顶格,小四仿宋_GB2312,行距固定值20磅) (页码从正文部分开始)

多功能电子表(三号仿宋_GB231,居中) (空一行) 摘要:本设计提出使交通灯的控制电路用数字信号自动控制十字路口的东西,南北方向两组红、绿、黄车辆行驶和人行道交通信号灯以及LED显示倒记时的状态转换的新方法,指挥各种车辆和行人安全通行,实现十字路口交通管理的自动化。{五号仿宋_GB231,行距固定值20磅} (一般3~5行) 关键词:交通灯控制;秒脉冲发生;译码显示;LED信号灯(一般3~4个)(空一行) 1 引言(1级标题:顶格,四号仿宋_GB2312加粗) 随着社会经济的发展,交通问题越来越引起人们的关注。人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。交通控制系统是用于交通流量数据监测、……………..。 (正文:小四仿宋_GB2312,每段首行缩进2字符,行距固定值20。下同) 2 总体设计方案 2.1 设计思路(2级标题:顶格,小四仿宋_GB2312 加粗) 为了克服常规设计思想中的弊端,本电路采用了建模的灰箱系统模型的设计思想…………。 交通灯的控制系统主要由总控制电路、东西向及南北向的译码显示电路和秒脉冲信号发生电路等部分组成…………。 2.1.1 交通灯控制流程(3级标题:顶格,小四仿宋_GB2312) 交通灯控制系统流程图如图1所示。 图 1 交通灯控制系统流程图 (图与图名均居中,图要有名称,图名五号仿宋_GB231,图中字符不大于正文字体大小) (注意:文中所有插图的图序依次为图1 、图2、图3......)

电力电子课设报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电力电子技术 设计题目:可逆直流PWM驱动电源的设计 院系:电气工程系 班级:0706111 设计者:王勃 学号:1070610602 指导教师:李久胜 设计时间:2010年11月 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

H型单极性同频可逆直流PWM驱动电源的设计 技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转 速2000rpm。驱动系统的调速范围:大于1:100。驱动系统应具有软启动功能,软启动时间约为2s。详细设计要求见附录2. 1.整体方案设计 本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H 型单极模式同频可逆PWM控制电路,IPM接口电路及稳压电源。同时具有软启动功能,软启动时间为2s左右。控制原理如图1所示: 功率转换电路 图1 直流PWM驱动电源的控制原理框图 脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。 2.主电路设计 2.1主电路设计要求 直流PWM驱动电源的主电路图如图2所示。此部分电路的设计包括整流电路和H桥可逆斩波电路。二极管整流桥把输入的交流电变为直流电。四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。 主电路部分的设计要求如下: 1)整流部分采用4 个二极管集成在一起的整流桥模块。 2)斩波部分H 桥不采用分立元件,而是选用IPM(智能功率模块)PS21564来实现。该模块的主电路为三相逆变桥,在本设计中只采用其中U、V 两相即可。

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

电力电子技术课程设计报告

成都理工大学工程技术学院T h e E n g i n e e r i n g&T e c h n i c a l C o l l e g e o f C h e n g d u U n i v e r s i t y o f T e c h n o l o g y 电力电子技术课程设计报告 姓名 学号 年级 专业 系(院) 指导教师

三相半波整流电路的设计 1设计意义及要求 1.1设计意义 整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。其交流侧由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。 1.2初始条件 设计一三相半波整流电路,直流电动机负载,电机技术数据如下:220nom U V =, I =308A nom ,=1000r/min nom n ,C =0.196V min/r e ,0.18a R =。 1.3要求完成的主要任务 1)方案设计 2)完成主电路的原理分析 3)触发电路、保护电路的设计 4)利用MATLAB 仿真软件建模并仿真,获取电压电流波形,对结果进行分析 5)撰写设计说明书

2方案设计分析 本文主要完成三相半波整流电路的设计,通过MATLAB软件的SIMULINK模块建模并仿真,进而得到仿真电压电流波形。 分析采用三相半波整流电路反电动势负载电路,如图1所示。为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。三个晶闸管分别接入b c a、、三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 图1 三相半波整流电路共阴极接法反电动势负载原理图 直流电动机负载除本身有电阻、电感外,还有一个反电动势E。如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。此时负载电流时断续的,这对整流电路和电动机负载的工作都是不利的,实际应用中要尽量避免出现负载电流断续的工作情况。 3主电路原理分析及主要元器件选择 3.1主电路原理分析 主电路理论图如图1所示。假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路。此时,三个二极管对应的相电压中哪一个的值最大,则该相对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。在相电压的交点处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。自然换相点是各相晶闸管能触发导通的最早时刻,将其作 α=。,要改变触发角只能是在此基础上增大它,即为计算各晶闸管触发角α的起点,即0 沿时间坐标轴向右移。

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子实训心得体会

电力电子技术实验总结 随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。 本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验. 单结晶体管触发电路实验 实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的基本调试步骤。 实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。v6为单结晶体管,其常用型号有 bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。由同步变压器副边输出60v的交流同步电压,经vd1半波整流,再由稳压管v1、v2 进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容c1的充电时间常数由等效电阻等决定,调节rp1电位器改变c1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。 实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 单相半波整流电路实验 实验目的 1、熟悉强电实验的操作规程; 2、进一步了解晶闸管的工作原理; 3、掌握单相半波可控整流电路的工作原理。 4、了解不同负载下单相半波可控整流电路的工作情况。 实验原理 1、晶闸管的工作原理晶闸管的双晶体管模型和内部结构如下:晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降 到接近于零的某一数值一下。 2.单相半波可控整流电路(电阻性负载) 2.1电路结构若用晶闸管t替代单相半波整流电路中的二极管d,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50hz正弦波,负载 rl为电阻性负载。 三相半波有源逆变电路实验 实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

电力电子技术课程设计心得体会

电力电子技术课程设计心得体会 电力电子技术课程设计时候学习机电的人需要接触的,我们看看下面的心得体会,大家一起阅读吧! 电力电子技术课程设计心得体会本学期实时测量技术实验以电子设计大赛的形式,老师命题,学生可以选择老师的题目也可以自己命题,并且组队操作其他的事情。趣味性强,同时也可以学到很多东西。 我们认为,在这学期的实验中,在收获知识的同时,还收获了阅历,收获了成熟,在此过程中,我们通过查找大量资料,请教老师,以及不懈的努力,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。 之所以使用avr单片机作为我们的执行核心,不仅是因为老师说avr现在是社会上应用比较多的单片机,也因为想通过使用avr锻炼自己的c 语言编程能力,养成良好的c语言编程风格。不管怎样,这些都是一种锻炼,一种知识的积累,能力的提高。完全可以把这个当作基础东西,只有掌握了这些最基础的,才可以更进一步,取得更好的成绩。很少有人会一步登天吧。永不言弃才是最重要的。 而且,这对于我们的将来也有很大的帮助。以后,不管

有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。就像中国提倡的艰苦奋斗一样,我们都可以在实验结束之后变的更加成熟,会面对需要面对的事情。 与队友的合作更是一件快乐的事情,只有彼此都付出,彼此都努力维护才能将作品做的更加完美。而团队合作也是当今社会最提倡的。曾经听过,mba之所以最近不受欢迎就是因为欠缺团队合作的精神和技巧。 电压电流测量装置虽然结束了,也留下了很多遗憾,因为由于时间的紧缺和许多课业的繁忙,并没有做到最好,但是,最起码我们没有放弃,它是我们的骄傲! 相信以后我们会以更加积极地态度对待我们的学习、对待我们的生活。我们的激情永远不会结束,相反,我们会更加努力,努力的去弥补自己的缺点,发展自己的优点,去充实自己,只有在了解了自己的长短之后,我们会更加珍惜拥有的,更加努力的去完善它,增进它。只有不断的测试自己,挑战自己,才能拥有更多的成功和快乐! to us, happiness equals success! 快乐至上,享受过程,而不是结果! 认真对待每一个实验,珍惜每一分一秒,学到最多的知识和方法,锻炼自己的能力,这个是我们在实时测量技术试验上学到的最重要的东西,也是以后都将受益匪浅的!

电力电子技术课程设计-240w半桥型开关稳压电源设计讲解

辽宁工业大学 电力电子技术课程设计(论文)题目:240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级:电气102 学号:100303044 学生姓名:邹伟龙 指导教师:(签字) 起止时间:2012-12-31至2012-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气教研室Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要形式, 受到人们的青睐.随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用反激式开关电源,以UC3842作为控制核心器件,运用脉宽调制的基本原理。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障。 关键词:整流电路;逆变电路;驱动电路

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章开关稳压电源电路设计 (3) 2.1半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (5) 2.2.1主电路设计 (5) 2.2.2整流电路设计 (6) 2.2.3逆变电路设计 (7) 2.2.4驱动电路设计 (8) 2.2.5 整体电路设计 (10) 2.3元器件型号选择 (12) 第3章课程设计总结 (15) 参考文献 (16)

电力电子课程设计报告

电力电子课程设计报告 目前电子课程设计教学方式方法面临的问题进行了分析,提出了分层次、环环相扣、逐步深入的新的教学层次结构,设计了以增强学生的工程实践能力为目的,以培养创新意识和创新能力为核心的新的教学模式。下面是小编整理的电力电子课程设计报告,欢迎来参考! 电子课程设计是在先修理论课:电路理论、模拟电子、数字电子,以及与其相对应的实验课:电路理论实验、模拟电子实验、数字电子实验的基础上开设的一门以培养学生的设计能力、综合应用能力和工程实践能力为目标的必修课。 我国经济、科技的发展和国际范围内电子技术的发展、电子新产品的涌现,对电子类人才的培养提出了一个更高的标准和要求。而我国传统的教育思想和教学方法中重知识、轻能力,重理论、轻实践的教育思想已经不能适应现阶段人才培养的需要。实践教学对于提高学生的综合素质,培养学生的创新精神和实践能力具有特殊的作用。 以“走出去,用得上”为目标,顺应现代科技的发展态势出发,采取工程集成的教学观点,加强课程设计的数字化、综合化、系统化实验。

重视设计方法学的变革,逐步培养学生熟练应用现代互设计工具,增强学生应用大规模复杂系统的能力。 在理论课教学和基础实验教学中,注重加强基础拓展知识面,增强学生的工程实践能力。 以人为本,把情感因素考虑进去,充分发展个性,因材施教。把培养创新意识和创新能力放在核心地位。 打破院系甚至学校的壁垒,充分利用现有资源,本着“宁可用坏,不许放坏”的原则,为学生提供尽量多的 实践环境和实践仪器设备。 分层次。把理论教学、基础实验教学和课程设计融为一体,做到一条龙、不断线、重基础、分层次。在新的教学模式中,电子技术分为三个层次:基础理论教学,基础实验教学,综合应用实验教学和科技创新实验教学。其中电子设计课程属于第三层即综合应用层。 教学内容有着必然的连续性,“我要的是葫芦”使不得,既不能像传统的教学体制中重理论、轻实践,但也不能“改革过度”,片面强调实验的重要性。学理论是为了应用,实验也是为了应用,仅仅是在实践中所起的作用不尽相同而已。 基础实验教学又分为两个小的层次:基础实验和设计型实验。基础实验是为了验证理论,使学生对理论有更深的理

电力电子技术课程设计分析解析

摘要 高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。 关键词:稳压电源;buck变换器

Abstract Has been widely used in the DC power supply, AC power supply, industry power supply of high frequency switching power supply, communication power supply, communication power supply, inverter power supply, computer power supply etc.. It can provide high power and coarse grid electricity, it is an important system of modern electronic equipment "the blood flow to the heart". BUCK converter is a switch for power supply the basic topology of BUCK converter, also called buck converter, a DC chopper for buck to input and output voltage, the output voltage is less than the input voltage, because of its variable function superior, therefore, it can be directly used for the need for direct step-down place. Keyword:regulated power supply;BUCK converter

电力电子技术课程设计报告书

石油大学 课程设计 电子工程学院自动化专业1203班 题目变频感应加热电源主电路设计学生蔡辉武 指导老师 二○一五年六月

《电力电子技术》课程设计任务书

目录 一绪论……………………………………………………………………… 1.1感应加热的工作原理………………………………………………… 1.2 感应加热电源技术发展现状与趋势………………………………… (1)感应加热电源技术发展现状…………………………………… (2)感应加热电源技术发展与趋势………………………………… 二感应加热电源及其实现方案研究………………………………………… 2.1 串并联谐振电路的比较……………………………………………… 2.2 电路的功率调节原理………………………………………………… 三变频感应加热电源主电路设计…………………………………………… 3.1主电路设计原始数据及主要技术指标……………………………… 3.2设计要求……………………………………………………………… 3.3设计思想……………………………………………………………… 3.4变频感应加热电源主电路图………………………………………… 3.5设计容……………………………………………………………… 3.5.1整流电路的设计………………………………………………… 3.5.1.1整流电路的选择…………………………………………… 3.5.1.2整流侧参数计算…………………………………………… 3.5.1.3整流侧电路 图…………………………………………………………………… 3.5.2逆变电路的设计………………………………………………… 3.5.2.1逆变电路的选择…………………………………………… 3.5.2.2逆变侧参数计算…………………………………………… 3.5.2.3逆变侧电路图……………………………………………… 3.6电路保护……………………………………………………………… 3.6.1.整流侧晶闸管过电压保护…………………………………… 3.6.2.逆变侧晶闸管过电压保护…………………………………… 3.7波形仿真……………………………………………………………… 四设计心得体会……………………………………………………………… 参考文献…………………………………………………………………………

电力电子专业技术课程设计任务大全

电力电子技术课程设计任务大全

————————————————————————————————作者:————————————————————————————————日期:

《电力电子技术》课程设计任务书(一) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求; 4、电网供电电压:三相380V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 7.5 220 40.8 1500 4.42 二、设计内容及要求 1、方案论证及选择; 2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电 抗器容量等计算); 3、控制电路设计(触发电路的选择与设计); 4、保护电路设计(包括过流和过压保护等); 5、总结及心得体会; 6、参考文献设计; 7、完成电路原理图1份。 《电力电子技术》课程设计任务书(二) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求。 4、电网供电电压:单相220V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 3 220 17.4 750 17.69

相关文档
最新文档