建筑能耗与碳排放的系统计量

建筑能耗与碳排放的系统计量
建筑能耗与碳排放的系统计量

建筑能耗与碳排放的系统计量

邵玲;郭珊;韩梦瑶

【期刊名称】《世界环境》

【年(卷),期】2011(000)005

【摘要】与建筑相关的能源消耗和温室气体排放在总能源消耗和人为温室气体排放中占有很高的比例.IPCC(政府间气候变化专门委员会)报告指出,建筑部门在2004年造成了全球近30%的二氧化碳排放.美国能源信息署(EIA)则认为,2007年全球能源消耗中约有29%与建筑相关.对中国而言,与建筑相关的能源消耗约占全国商品能源消耗的1/4.rn建筑节能减排的有效与否直接关系到中国能否兑现向同际承诺的减碳目标.然而,目前建筑领域还没有能够完整计量建筑能耗与碳排放的行业标准.然而,对建筑进行系统能耗和碳排放的计量,进而形成规范的行业标准,意义深远.

【总页数】2页(30-31)

【关键词】

【作者】邵玲;郭珊;韩梦瑶

【作者单位】北京大学工学院能源政策与系统碳计量课题组;北京大学工学院能源政策与系统碳计量课题组;北京大学工学院能源政策与系统碳计量课题组

【正文语种】中文

【中图分类】

【相关文献】

1.区域建筑能源系统生命周期能耗及碳排放量的测算模型[J], 李祥立; 任志勇; 端木琳

碳排放与低碳建筑

碳排放与低碳建筑 1.碳排放 所谓碳排放是关于温室气体排放的一个总称或简称。1997年于日本京都召开的联合国气候变化纲要公约第三次 缔约国大会中所通过的〔京都议定书〕,明确针对六种温室气体排放进行削减,包括:二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)、氢氟碳化物(HFCs)、全氟碳化物(PFCs)及六氟化硫(SF6)。其中,后三类气体造成温室效应的能力最强,但对全球升温的影响百分比来说,由于二氧化碳含量较多,所占的比例也最大,约为55%。因此用碳(Carbon)一词作为代表。 随着世界工业经济的发展、人口的剧增和人类生产生活方式的无节制,温室气体排放量越来越大,世界气候面临越来越严重的问题,地球环境正遭受前所未有的危机,全球灾难性气候变化屡屡出现,已经严重危害到人类的生存环境和健康安全。 1997年的12月,《联合国气候变化框架公约》第三次缔约方大会在日本京都召开。149个国家和地区的代表通过了旨在限制发达国家温室气体排放量以抑制全球变暖的《京都议定书》。2003年,在英国发表的能源白皮书中首次提到“低

碳经济”一词,2007年中国国家主席胡锦涛明确提出中国要“发展低碳经济”,2009年末召开的“哥本哈根气候峰会”让低碳、减排成为全球关注的焦点。 2. 低碳建筑 2.1 什么是低碳建筑 低碳建筑指在建筑材料与设备制造、施工建造和建筑物使用的整个生命周期内,减少化石能源的使用,提高能效,降低二氧化碳排放量。目前低碳建筑已逐渐成为国际建筑界的主流趋势。 2.2为什么发展低碳建筑 人们越来越清晰的认识到二氧化碳排放量猛增,会导致全球气候变暖,而全球气候变暖会对整个人类的生存和发展产生严重威胁。一个经常被忽略的事实是:建筑在二氧化碳排放总量中,几乎占到了50%,这一比例远远高于运输和工业领域。实际上,城市里碳排放,60%来源于建筑维持功能本身上,而交通汽车只占到30%。 具体到房地产行业就更是能耗大户。统计数据显示,中国每建成1平方米的房屋,约释放出0.8吨碳。另外,在房地产的开发过程中建筑采暖、空调、通风、照明等方面的能源都参与其中,碳排放量很大。因此,尽快建设绿色低碳住宅项目,实现节能技术创新,建立建筑低碳排放体系,注重建设过程的每一个环节,以有效控制和降低建筑的碳排放,

碳排放计算方式

碳排放计算方式 大气中主要的温室气体是水汽(H2O),水汽所产生的温室效应大约占整体温室效应的60%~70%,其次是二氧化碳(CO2)大约占了26%,其他的还有臭氧(O3),甲烷(CH4),氧化亚氮(N2O)全氟碳化物(PFCs)、氢氟碳化物(HFCs)、含氯氟烃(HCFCs)及六氟化硫(SF6)等。 有5种气体: 二氧化碳; 甲烷; 氧化亚氮(一氧化二氮); 臭氧; 氯氟烃(CFC). 烃:烃是化学家发明的字,就是用“碳”的声母加上“氢”的韵母合成一个字,用“碳”和“氢”两个字的内部结构组成字型,烃类是所有有机化合物的母体,可以说所有有机化合物都不过是用其他原子取代烃中某些原子的结果。碳氢化合物,只含有碳和氢的一大类有机化合物之一,它包括烷烃、烯烃、炔烃的成员、脂环烃(如环状萜烯烃及甾族化合物)和芳香烃(如苯、萘、联苯),在许多情况中它们存在于石油、天然气、煤和沥青(石油、天然气、煤、沥青等资源属于不可再生资源)中。 沥青分为煤焦沥青、石油沥青和天然沥青。天然沥青类似原油,可以制成汽油、柴油或作为燃料油。 氯氟烃的英文缩写为CFCs,是20世纪30年代初发明并且开始使用的一种人造的含有氯、氟元素的碳氢化学物质,在人类的生产和生活中还有不少的用途。在一般条件下,氯氟烃的化学性质很稳定,在很低的温度下会蒸发,因此是冰箱冷冻机的理想制冷剂。它还可以用来做罐装发胶、杀虫剂的气雾剂。另外电视机、计算机等电器产品的印刷线路板的清洗也离不开它们。氯氟烃的另一大用途是作塑料泡沫材料的发泡剂,日常生活中许许多多的地方都要用到泡沫塑料,如冰箱的隔热层、家用电器减震包装材料等。 然而,氯氟烃有个特点:它在地球表面很稳定,可是,一蹿到距地球表面15~50千米的高空,受到紫外线的照射,就会生成新的物质和氯离子,氯离子可产生一系列破坏多达上千到十万个臭氧分子的反应,而本身不受损害。这样,臭氧层中的臭氧被消耗得越来越多,臭氧层变得越来越薄,局部区域例如南极上空甚至出现臭氧层空洞。 甲烷(CH4):甲烷是在缺氧环境中由产甲烷细菌或生物体腐败产生的,沼泽地每年会产生150Tg (1T=1012)消耗50Tg,稻田产生100Tg消耗50Tg,牛羊等牲畜消化系统的发酵过程产生100-150Tg,生物体腐败产生10-100Tg,合计每年大气层中的甲烷含量会净增350Tg左右。它在大气中存在的平均寿命在8年左右,可以通过下面的化学反应:CH4 + OH --> CH3 + H2O 消耗掉,而用于此反应的氢氧根(OH)的重量每年就达到500Tg。

北京市二氧化碳排放与核算地方标准解读

北京市二氧化碳排放与核算地方标准解读(是否合适) 2020年1月5日,北京市生态环境局发布了7个二氧化碳排放与核算地方标准(以下简称“标准”),涉及电力生产、水泥制造、石化生产、热力生产和供应、服务、道路运输和其他等7个行业,这些标准于2020年1月1日起实施。这是北京市首次以标准方式明确上述7个行业二氧化碳排放核算报告的范围、核算步骤与方法、数据质量管理、报告要求等,并提出具有可操作性、统一的、标准化的要求和数据收集与监测方法。这些标准将应用于支撑北京市碳排放权交易市场工作,进一步规范北京市碳市场的管理工作。 北京市碳排放主管部门每年都发布碳排放核算和报告指南,指导上一年度的碳排放核算与核查工作,2019年北京市碳排放工作由北京市发改委转到北京市生态环境局。 本文将标准与《北京市生态环境局关于做好2020年重点碳排放单位管理和碳排放权交易试点工作的通知》附件1《北京市碳排放单位二氧化碳排放核算和报告指南》(以下简称“指南”)进行比较,发现标准在术语和定义、核算和报告范围、核算方法等方面进行了较大的调整。 1、行业划分的变化 指南涵盖8个行业,标准涉及7个行业,“民用航空运输企业”与“其他行业”使用同样的标准。 图1 指南与标准行业划分的对比 2、术语和定义的变化 每个标准给出的术语和定义只有5-6个,无既有设施、新增设施和准确度等指南中给出的3个术语的定义。

根据指南,北京市碳排放配额分为既有设施配额与新增设施配额,标准中未给出既有设施与新增设施2个术语的定义,意味着北京市将来的碳排放配额可能采用行业基准值法。 标准中未给出准确度的定义,将来在核算报告中不要求进行不确定度的分析。 3、核算和报告范围 与指南相比,标准核算固定设施与移动设施产生的排放,核算和报告范围扩大。 表2 指南与标准核算和报告范围的比较 4、排放单位提交的报告变化 1)排放报告内容减少

碳排放计算公式

碳排放计算公式(部分)【自己算一算】 家居用电的二氧化碳排放量(千克)=耗电量×0.785 开私家车的二氧化碳排放量(千克)=油耗公升数×2.7 乘坐飞机的二氧化碳排放量(千克): 200公里以内=公里数×0.275 200公里至1000公里=55+0.105×(公里数-200) 1000公里以上=公里数×0.139 家用天然气二氧化碳排放量(千克)=天然气使用度数×0.19 家用自来水二氧化碳排放量(千克)=自来水使用度数×0.91 走楼梯上下一层楼能减少0.218千克碳排放,少开空调一小时减少0.621千克碳排放,少用一吨水减少0.194千克碳排放……哥本哈根气候变化大会结束之后,“低碳”概念开始高频率地走进人们日常生活。现在,杭州开始建设低碳城市,大家对碳排放量的多少非常关心,但又知道得很模糊,不知道到底该怎么算的。 事实上,碳排放和我们每天的衣食住行息息相关。至于碳排放量有多少,有关专家给出碳排放的计算公式: 家居用电的二氧化碳排放量(公斤)=耗电度数×0.785; 开车的二氧化碳排放量(公斤)=油耗公升数×0.785; 坐飞机的二氧化碳排放量(公斤): 短途旅行:200公里以内=公里数×0.275; 中途旅行:200至1000公里=55+0.105×(公里数-200); 长途旅行:1000公里以上=公里数×0.139。 火车旅行的二氧化碳排放量=公里数×0.04 此外,还有人发布了肉食的二氧化碳排放量—— 肉食的二氧化碳排放量(公斤)=公斤数×1.24。 这些计算公式是如何得出的? 据了解,碳足迹计算国际上有很多通用公式,这些公式是由联合国及一些环保组织共同制作的。在这些公式的基础上使用中国本土的统计数据和转换因子,使计算更符合中国国情,也更准确地反映你的实际碳足迹。

低碳建筑评价标准文献综述

低碳建筑评价标准文献综述 低碳建筑评价标准文献综述 摘要:低碳建筑在全生命周期的能源消耗低于普通建筑,从而改善了人类的生存环境。低碳建筑是当前形势下绿色建筑对能源要求的具体化体现,各国对绿色建筑已有成熟的评价标准。低碳建筑的评价方法主要有全寿命期周期法和自上而下的评价方法。通过对文献的详细分析,总结了在不同阶段低碳建筑的评价内容,并对低碳建筑标准提出了新的发展要求。 关键词:低碳建筑;评价标准;绿色建筑 中图分类号:TU201.5 文献标志码:A 文章编号:1673-291X (2014)08-0265-02 一、低碳建筑的内涵 达到什么标准的建筑可以称之为低碳建筑?学术界和工业界对此尚未能有明确的定义。Mlecnik[1]将低于标准建筑碳排放量的建筑定义为低碳建筑。 李启明等人认为,可参照低碳经济等相关概念,低碳经济是以减少温室气体排放为目标,以低能耗、低污染为基础的经济模式,其实质是能源高效利用、清洁能源开发、追求绿色GDP,核心是能源技术和减排技术创新、产业结构和制度创新以及人类生存发展观念的根本性转变[2]。 本文认为,低于标准建筑碳排放量的建筑,或者达到国际或国家绿色认证的建筑,且在使用过程中居住者行为符合低碳要求的建筑可称之为低碳建筑。 低碳建筑是当前研究的重点,相对而言零能耗建筑是一个更为前沿的课题,零能耗建筑是建设领域内减少二氧化排放和减少能源消耗的解决方案[3]。 中国建筑行业的低碳发展主要体现在建筑节能和绿色建筑的推广方面。绿色建筑的“绿色”主要体现在能最大限度地节约资源(节能、节地、节水、节材)和保护环境减少污染上,它的推广采用能带

来巨大的低碳效应:节能30%―50%;减碳35%;减少废物排放70%;减少水资源利用40%。它所带来的巨大影响力已经在行业内逐步体现。绿色建筑的推广将不仅能降低建筑全寿命周期的综合成本,降耗减碳,提高投入产出效应;而且能够带动诸多上、下游企业对生产和使用低碳产品的追求[4]。 二、低碳建筑评价标准的现状分析 建筑业需消耗大量的建筑材料,建材在生产过程中一方面消耗了大量能源,另一方面还会产生污染排放到空气中[5]。建材从原材料提取、制造和运输到工地过程中会产生“次级效应”,由于对能源消耗所引起的副作用对当地乃至整个国家的环境带来严重的破坏[6]。为了正确评价建设项目对环境的影响可以考虑建设项目整个生命周 期的每个阶段[7]。生命周期评价(Lifecycle Assessment,LCA)对建设项目或建筑产品的可持续能力有定量化的掌握。 建设项目的碳排放来源于建筑材料的制造、建材的运输、建筑设备的运输、建筑设备的能源消耗、建筑工人的交通、建筑物的废物处理等方面,国内外学者研究不同阶段的碳排放。 Hacker,De Saulles and Minson等[8]测算了建材的隐含碳排放和施工用具能耗碳排放。Yan,Shen and Fan等[9]计算了建材的制造和运输、建筑设备的能耗、原料处理的能耗及建筑废弃物的处置阶段的碳排放。 国内有不少学者对低碳建筑测评估做了研究,采用了国际上碳排放的测算方法[10-14]。不同文献对全寿命周期碳排放测算所侧重的阶段有所不同,详见表1。 在瑞典,政府部门采用自上而下的投入产出碳排放评价方法来代替LCA评价法,按建筑项目的活动和部门来分解测算碳排放[15]。该方法将建设领域分为新住宅建设、房屋重建和装修、道路基础设施建设三大部门来分析,与全生命周期评价不同的是,该投入产出评价未考虑原材料的供暖值。通过研究发现,道路基础设施建设的碳排放量最大,而房屋重建和装修部门的碳排放量较低。 在绿色建筑评价体系方面,比较知名的有美国的LEED (Leadership in Energy and Environmental Design)、英国的BREEAM

碳排放介绍及相关计算方法

碳排放介绍及相关计算方法 二氧化碳排放的计算可以通过实际能源使用情况,比如燃料账单/水电费上的说明,来乘以一个相应的“碳强度系数”,从而得出您或您家庭二氧化碳排放量的精确数字。 典型的系数 大气污染物排放系数(t/tce)(吨/吨标煤) SO2(二氧化硫)0.0165 NOX(氮氧化合物)0.0156 烟尘0.0096 CO2(二氧化碳)排放系数(t/tce)(吨/吨标煤) 推荐值:0.67(国家发改委能源研究所) 参考值:0.68(日本能源经济研究所) 0.69(美国能源部能源信息署) 火力发电大气污染物排放系数(g/kWh)(克/度) SO2(二氧化硫)8.03 NOX(氮氧化合物)6.90 烟尘3.35 如何计算减排量 近年来,全球变暖已成为全世界最关心的环保问题,造成全球变暖的主要原因是大量的温室气体产生,而温室气体的主要组成部分就是二氧化碳(CO2),而二氧化碳的大量排放是现代人类的生产生活造成的,归根到底是大量使用各种化石能源(煤炭、石油、天然气)造成的,根据《京都议定书》的规定,各国纷纷制定了减排二氧化碳的计划。 通过节约化石能源和使用可再生能源,是减少二氧化碳排放的两个关键。在节能工作中,经常需要统计分析二氧化碳减排量的问题,现将网络收集的相关统计方法做一个简单整理,仅供参考。 1、二氧化碳和碳有什么不同? 二氧化碳(CO2)包含1个碳原子和2个氧原子,分子量为44(C-12、O-16)。二氧化碳在常温常压下是一种无色无味气体,空气中含有约1%二氧化碳。液碳和固碳是生物体(动物植物的组成物质)和矿物燃料(天然气,石油和煤)的主要组成部分。

一吨碳在氧气中燃烧后能产生大约3.67吨二氧化碳(C的分子量为12,CO2的分子量为44,44/12=3.67)。 我们在查看减排二氧化碳的相关计算资料时,有些提到的是“减排二氧化碳量”(即CO2),有些提到的是“碳排放减少量”(以碳计,即C),因此,减排CO2与减排C,其结果是相差很大的。因此要分清楚作者对减排量的具体含义,它们之间是可以转换的,即减排1吨碳(液碳或固碳)就相当于减排3.67吨二氧化碳。 2、节约1度电或1公斤煤到底减排了多少“二氧化碳”或“碳”? 发电厂按使用能源划分有几种类型:一是火力发电厂,利用燃烧燃料(煤、石油及其制品、天然气等)所得到的热能发电;二是水力发电厂,是将高处的河水通过导流引到下游形成落差推动水轮机旋转带动发电机发电;三是核能发电厂,利用原子反应堆中核燃料慢慢裂变所放出的热能产生蒸汽(代替了火力发电厂中的锅炉)驱动汽轮机再带动发电机旋转发电;四是风力发电场,利用风力吹动建造在塔顶上的大型桨叶旋转带动发电机发电称为风力发电,由数座、十数座甚至数十座风力发电机组成的发电场地称为风力发电场。 以上几种方式的发电厂中,只有火力发电厂是燃烧化石能源的,才会产生二氧化碳,而我国是以火力发电为主的国家(据统计,2006年全国发电总量2.83万亿kWh,其中火电占83.2%,水电占14.7%),同时,火力发电厂所使用的燃料基本上都是煤炭(有小部分的天然气和石油),全国煤炭消费总量的49%用于发电。 因此,我们以燃烧煤炭的火力发电为参考,计算节电的减排效益。根据专家统计:每节约1度(千瓦时)电,就相应节约了0.4千克标准煤,同时减少污染排放0.272千克碳粉尘、0.997千克二氧化碳(CO2)、0.03千克二氧化硫(SO2)、0.015千克氮氧化物(NOX)。 为此可以推算出以下公式计算: 节约1度电=减排0.997千克“二氧化碳”=减排0.272千克“碳” 节约1千克标准煤=减排2.493千克“二氧化碳”=减排0.68千克“碳” 节约1千克原煤=减排1.781千克“二氧化碳”=减排0.486千克“碳” (说明:以上电的折标煤按等价值,即系数为1度电=0.4千克标准煤,而1千克原煤=0.7143千克标准煤) 根据相关资料报道,CO2(二氧化碳)的碳(C)排放系数(t/tce)(吨/吨标煤)中,国家发改委能源研究所推荐值为0.67、日本能源经济研究所参考值为0.68、美国能源部能源信息署参考值为0.69,与以上的推算值(0.68)基本相当。应该说,该系数与火电厂的发电煤耗息息相关,发电煤耗降低、排放系数自然也有所降低。 用同样方法,也可以推算出节能所减排的碳粉尘、二氧化硫和氮氧化物的排放系数。

建筑碳排放量的科学计算方法-20151019

全球进入“低碳”时代 人类进入工业社会以后,城市的工业生产、加工制造、交通建设等各领域由于大量的燃烧或使用一次性的能源,由此产生并排放出大量的二氧化碳气体,导致地球气候迅速变暖。于是,最终可能引发灾害性的气候与环境的变化,严重威胁到人类正常的生存、生活。对此,国际上已达成共识,要发动全球各国人民从各方面减少二氧化碳气体的排放,以保护人类共同的生存空间。 DGNB:科学计算建筑的碳排放量 建筑业的二氧化碳气体的排放量约占人类温室气体排放总量的30%,但对于如何计算建筑物的碳排放量,除德国2008年推出的DGNB可持续建筑评估技术体系外,目前还没有其他更为科学、专业的计算方法。以德国DGNB为代表的世界上第二代可持续建筑评估技术体系,首次对建筑的碳排放量提出了完整明确的计算方法,在此基础之上提出的碳排放度量指标(Common Carbon Metrics)计算方法已得到包括联合国环境规划署(UNEP)机构在内的多方国际机构的认可。 建筑的碳排放量表现在建筑全寿命周期中一次性能源的消耗, 进而排放出二氧化碳气体。DGNB可持续建筑评估技术体系对于建筑碳排放量的计算原则是:分别计算建筑材料在生产、建造、使用、拆除及重新利用过程中每个步骤的碳排放量并相加,形成建筑全寿命周期的碳排放总量。计算单位是每年每平米建筑排放二氧化碳当量的公斤数。 DGNB:建筑物碳排放的四大方面与计算方法 DGNB体系对建筑物碳排放量首次提出了系统可操作的计算方法。建筑全寿命周期主要表现在建筑的材料生产与建造、使用期间能耗、维护与更新、拆除和重新利用这四大方面。建筑物的碳排放的四大方面与计算方法分别为: 1.材料生产与建造:考虑原料提取,材料生产,运输,建造等各方面过程中的碳排放量。计算方法是根据DIN276体系将建筑分解,按照结构与装修的部位及构造区分对待,计算所有应用在建筑上KG300和KG400组别的建筑材料及建筑设备的体积,考虑材料施工损耗及材料运输等因素,与相关数据库进行比较,得出每种材料和设备在其生产过程中相应产生的二氧化碳当量,以所用应用在建筑上的材料碳排放量相加得出总量。材料碳排放量的计算时间按100年考虑,每年的碳排放量即为其1/100。这样就可计算出建筑物的材料在生产与建造的部分每年的碳排放量。单位是kg CO 2- Equivalent / m2 *y。 2.使用期间能耗:主要包含建筑采暖,制冷,通风,照明等维持建筑正常使用功能的能耗。对于建筑使用部分的碳排放量计算,要根据建筑在使用过程中的能耗,区分不同能源种类(石油、煤、电、天然气及可再生能源等),计算其一次性能源消耗量,然后折算出相应的二氧化碳排放量。 3.维护与更新:指在建筑使用寿命周期内,为保证建筑处于满足全部功能需求的状态,对此进行必要的更新和维护以及设备更换等。材料和设备的寿命与更新及维护间隔频率,按照VDI2067和德国可持续建筑导则(Leitfaden Nachhaltiges Bauen)相关规定计算。计算所有建筑使用周期内(按50年计算)需要更换的材料设备的种类体积,对比相关数据库,可以得到建筑在使用寿命周期内维护与更新过程中的碳排放量数据。 4.拆除和重新利用:DGNB对建筑达到使用寿命周期终点时的拆除和重新利用的二氧化碳排放量的计算方法如下:将建筑达到使用寿命周期终点时所有的建筑材料和设备进行分类,分为可回收利用材料和需要加工处理的建筑垃圾。对比相应的数据库,可以得到建筑拆除和重新利用过程中的碳排放量数据。 DGNB:注重建筑拆除与重新利用过程中的减碳 DGNB可持续建筑评估技术体系认为同样重要的是计算和降低建筑在拆除和重新利用过程中所产生的二氧化碳。这是由于在建筑全寿命周期中,需要不断地更新和维护。因而,在开发和设计过程中,对材料设备的选择就提出了新的要求:即在保证功能的前提下,选择坚固耐用的产品,在户型和规划设计上满足未来可能的发展要求,以减少维

碳排放计算方法

碳排放计算 二氧化碳排放的计算可以通过实际能源使用情况,比如燃料账单/水电费上的说明,来乘以一个相应的“碳强度系数”,从而得出您或您家庭二氧化碳排放量的精确数字。 典型的系数 大气污染物排放系数(t/tce)(吨/吨标煤) SO2(二氧化硫)0.0165 NOX(氮氧化合物)0.0156 烟尘0.0096 CO2(二氧化碳)排放系数(t/tce)(吨/吨标煤) 推荐值:0.67(国家发改委能源研究所) 参考值:0.68(日本能源经济研究所) 0.69(美国能源部能源信息署) 火力发电大气污染物排放系数(g/kWh)(克/度) SO2(二氧化硫)8.03 NOX(氮氧化合物)6.90 烟尘 3.35 如何计算减排量 近年来,全球变暖已成为全世界最关心的环保问题,造成全球变暖的主要原因是大量的温室气体产生,而温室气体的主要组成部分就是二氧化碳(CO2),而二氧化碳的大量排放是现代人类的生产生活造成的,归根到底是大量使

用各种化石能源(煤炭、石油、天然气)造成的,根据《京都议定书》的规定,各国纷纷制定了减排二氧化碳的计划。 通过节约化石能源和使用可再生能源,是减少二氧化 碳排放的两个关键。在节能工作中,经常需要统计分析二 氧化碳减排量的问题,现将网络收集的相关统计方法做一 个简单整理,仅供参考。 1、二氧化碳和碳有什么不同? 二氧化碳(CO2)包含1个碳原子和2个氧原子,分子量为44(C-12、O-16)。二氧化碳在常温常压下是一种无色无味气体,空气中含有约1%二氧化碳。液碳和固碳是生物体(动物植物的组成物质)和矿物燃料(天然气,石油和煤)的主要组成部分。一吨碳在氧气中燃烧后能产生大约3.67 吨二氧化碳(C的分子量为12,CO2的分子量为44, 44/12=3.67)。 我们在查看减排二氧化碳的相关计算资料时,有些提 到的是“减排二氧化碳量”(即CO2),有些提到的是“碳排放减少量”(以碳计,即C),因此,减排CO2与减排C,其结果是相差很大的。因此要分清楚作者对减排量的具体 含义,它们之间是可以转换的,即减排1吨碳(液碳或固碳)就相当于减排3.67吨二氧化碳。 2、节约1度电或1公斤煤到底减排了多少“二氧化碳”或“碳”?

【VIP专享】碳排放量计算(蒸汽)

蒸汽碳排放量 关于热力的统计 1、什么是热力? 【热力】是指可提供热源的热水、蒸汽。在统计上要求外供热量作为产量统计,外购热力作为消费 统计。自产自用热力不统计。 2、热力的计算 热力的计算:蒸汽和热水的热力计算,与锅炉出口蒸汽、热水的温度和压力有关,计算方法: 第一步:确定锅炉出口蒸汽和热水的温度和压力,根据温度和压力值,在焓熵图(表)(详见本网站“热焓表(饱和蒸汽或过热蒸汽)”)查出对应的每千克蒸汽、热水的热焓; 第二步:确定锅炉给水(或回水)的温度和压力,根据温度和压力值,在焓熵图(表)查出对应的每千克 给水(或回水)的热焓; 第三步:求第一步和第二步查出的热焓之差,再乘以蒸汽或热水的数量(按流量表读数计算),所得 值即为热力的量。 如果企业不具备上述计算热力的条件,可参考下列方法估算: 第一步:确定锅炉蒸汽或热水的产量。产量=锅炉的给水量-排污等损失量; 第二步:确定蒸汽或热水的热焓。热焓的确定分以下几种情况: (1)热水:假定出口温度为90℃,回水温度为20℃的情况下,闭路循环系统每千克热水的热焓按20 千卡计算,开路供热系统每千克热水的热焓按70 千卡计算。 (2)饱和蒸汽: 压力1—2.5 千克/平方厘米,温度127℃以下,每千克蒸汽的热焓按620 千卡计算; 压力3—7 千克/平方厘米,温度135—165℃,每千克蒸汽的热焓按630 千卡计算; 压力8 千克/平方厘米,温度170℃以上,每千克蒸汽的热焓按640 千卡计算。 (3)过热蒸汽:压力150 千克/平方厘米

200℃以下,每千克蒸汽的热焓按650 千卡计算; 220—260℃,每千克蒸汽的热焓按680 千卡计算; 280—320℃,每千克蒸汽的热焓按700 千卡计算; 350—500℃,每千克蒸汽的热焓按750 千卡计算。 第三步:根据确定的热焓,乘以产量,所得值即为热力的量。 对于中小企业,若以上条件均不具备,如果锅炉的功率在0.7 兆瓦左右,1 吨/小时的热水或蒸汽按 相当于60 万千卡的热力计算。 3、热力的折标系数0.03412吨/百万千焦是怎么计算出来的? 根据《综合能耗计算通则》(GB/T 2589—2008)规定:“低(位)发热量等于29307千焦(kJ)的燃料,称为1千克标准煤(1 kgce)。1百万千焦(1000000kJ)折合为标准煤为34.12千克标准煤(即0.03412吨标准煤)。 因此,热力折算为标准煤是按照其实际热量的多少折算的(当量值计算),一般企业都能将热力按其流量、温度、压力的多少(通过计量表)换算成热值,再折算成标准煤。具体可查询本网站“热焓表(饱和蒸汽或过热蒸汽)”或“能源统计报表制度(新疆)”一文。 如果没有安装热量计的热力外购单位,吨蒸汽可按折标系数0.0948折标准煤计算(蒸汽热焓按2780kJ/kg计,即664千卡热值/kg蒸汽)。即每吨蒸汽折0.0948吨标准煤。 反应釜夹套使用循环冷冻盐水降温,已知冷冻盐水进水温度-15℃,回水温度-12℃,管道 内盐水流速选择为1米/秒,管道直径DN50,则流量为: Q=3600×V×管道的截面积 Q---单位为立方米/小时 V---单位为米/秒 管道的截面积---单位为平方米=0.785×D2 D=管道的直径---单位为米 Q=3600×V×管道的截面积=3600×1×0.785×0.052=7.065立方米/小时 二、7.065立方米/小时冷冻盐水提供的能量 Q=cm(T1-T2)=4.18KJ/Kg.℃×7065×Kg×3℃=88595 KJ=88595 KJ ÷4.18=21195Kcal=2万大卡 已知:

046公共建筑能耗及碳排放强度影响因素分析

公共建筑能耗及碳排放强度影响因素分析 加雨灵王雅捷 【摘要】北京市的公共建筑数量多、规模大,成为各类建筑中能耗占比很大的建筑类型。现有公共建筑存在实际能耗及碳排放量远高于规划设计指标、生产和建筑本身的能耗分不开、对标工作没有展开等一系列的问题。但是由于其职能特点,大多有较好的管理体系,能耗数据相比居住建筑更细化,也更容易获取。北京市城市规划设计研究院于2012年承担了《北京低碳城市规划核算体系及技术导则研究》课题,课题组通过调研获得了161个单位的公共建筑在各类能源使用方面的数据,运用规划的思维对北京市公共建筑能耗进行整理、计算、分析,找到影响公共建筑能耗强度和碳排放强度的关键因素,提出可行的节能管理对策和建议。城市规划管理的是物质空间,将公共建筑落到城市规划分类用地空间上进行分析,把用地作为建筑与规划之间的衔接点,能为建筑层面的低碳城市规划导则指标体系的建立提供可操作的方法和一定的研究依据。 【关键词】公共建筑;能耗强度;碳排放强度 2011年5月11日,财政部和住建部发布了《关于进一步推进公共建筑节能工作的通知》,称将确定各类型公共建筑的能耗基线,并逐步推进高能耗公共建筑的节能改造,提出争取在“十二五”期间,实现公共建筑单位面积能耗下降10%,其中大型公共建筑能耗降低15%的目标,彰显了中国进一步强化公共建筑能耗控制的决心。公共建筑一直是能耗大户,却有很大的节能减排潜力,在快速城镇化的发展背景下,是公共建筑实现高效率、低污染、低排放的新型发展模式的机遇期。因此,研究影响公共建筑的能耗强度和碳排放强度的关键因素是非常必要的。 1.研究对象 根据建筑的使用功能、用地类别划分标准及能耗特征,可将建筑划分为居住用地上的城镇住宅、村镇居住用地上的乡村住宅和各类公共设施用地上的公共建筑三类。 建筑碳排放的来源主要包括建筑运行能耗带来的碳排放、建筑相关能耗带来的碳排放和土地生态占用带来的碳汇损失。 本次研究对象为北京市公共设施用地上161个单位的公共建筑,研究在建筑使用过程中的运行能耗及带来的碳排放,并对影响公共建筑碳排放强度的关键因素进行分析。

(整理)DGNB-建筑碳排放量的科学计算方法.

DGNB - 建筑碳排放量的科学计算方法 作者:卢求未分类2009-12-21 DGNB - 建筑碳排放量的科学计算方法 德国可持续建筑建筑协会(DGNB) 中国首席代表 洲联集团(WWW5A)副总经理卢求先生 全球进入“低碳”时代 人类进入工业社会以后,城市工业生产、加工制造、交通建设等各领域往往大量燃烧或使用一次性能源,由此产生并排放出大量二氧化碳气体,导致地球气候环境迅速变暖。于是,最终可能引发灾害性气候与环境变化频频发生,严重威胁人类正常的生存环境。对此,国际上已达成共识,要发动全球各国人民从各方面减少二氧化碳气体的排放,保护人类共同的生存空间。 DGNB:科学计算建筑的碳排放量 建筑业的二氧化碳气体的排放量约占人类温室气体排放总量的30%, 但对于如何计算建筑物的碳排放量,除德国2008年推出的DGNB可持续建筑评估技术体系外,目前还没有其他更为科学、专业的计算方法。以德国DGNB为代表的世界上第二代可持续建筑评估技术体系,首次对建筑的碳排放量提出完整明确的计算方法,在此基础之上提出的碳排放度量指标(Common Carbon Metrics)计算方法已得到包括联合国环境规划署(UNEP)机构在内多方国际机构的认可。 建筑的碳排放量表现在建筑全寿命周期中一次性能源的消耗, 进而排放出二氧化碳气体。DGNB可持续建筑评估技术体系对于建筑碳排放量的计算原则是:分别计算建筑材料在生产、建造、使用、拆除及重新利用过程中每个步骤的碳排放量并相加,形成建筑全寿命周期的碳排放总量。计算单位是每年每平米建筑排放二氧化碳当量的公斤数。 DGNB:建筑物碳排放的四大方面与计算方法 DGNB体系对建筑物碳排放量首次提出了系统而可操作的计算方法。建筑全寿命周期主要表现在建筑的材料生产与建造、使用期间能耗、维护与更新、拆除和重新利用这四大方面。建筑物的碳排放四大方面与计算方法分别为: 1.材料生产与建造:考虑原料提取,材料生产,运输,建造等各方面过程中的碳排放量。计算方法是根据DIN276体系将建筑分解,按结构与装修的部位及构造区分对待,计算所有应用在建筑上KG300和 KG400组别的建筑材料及建筑设备的体积,考虑材料施工损耗及材料运输等因素,与相关数据库进行比较,得出每种材料和设备在其生产过程中相应产生的二氧化碳当量。所用应用在建筑上的材料碳排放量相加得出总量。材料碳排放量的计算时间按100年考虑,每年的碳排放量即为其1/100。这样就可计算出建筑物的材料生产与建造部分每年的碳排放量。单位是kg CO 2- Equivalent / m2 *y。 2.使用期间能耗:主要包含建筑采暖,制冷,通风,照明等维持建筑正常使用功能的能耗。

碳排放计算方法

二氧化碳排放的计算可以通过实际能源使用情况,比如燃料账单/水电费上的说明,来乘以一个相应的“碳强度系数”,从而得出您或您家庭二氧化碳排放量的精确数字。典型的系数 大气污染物排放系数(t/tce)(吨/吨标煤) SO2(二氧化硫) NOX(氮氧化合物) 烟尘 CO2(二氧化碳)排放系数(t/tce)(吨/吨标煤) 推荐值:(国家发改委能源研究所) 参考值:(日本能源经济研究所) (美国能源部能源信息署) 火力发电大气污染物排放系数(g/kWh)(克/度) SO2(二氧化硫) NOX(氮氧化合物) 烟尘 如何计算减排量 近年来,全球变暖已成为全世界最关心的环保问题,造成全球变暖的主要原因是大量的温室气体产生,而温室气体的主要组成部分就是二氧化碳(CO2),而二氧化碳的大量排放是现代人类的生产生活造成的,归根到底是大量使用各种化石能源(煤炭、石油、天然气)造成的,根据《京都议定书》的规定,各国纷纷制定了减排二氧化碳的计划。

通过节约化石能源和使用可再生能源,是减少二氧化碳排放的两个关键。在节能工作中,经常需要统计分析二氧化碳减排量的问题,现将网络收集的相关统计方法做一个简单整理,仅供参考。 1、二氧化碳和碳有什么不同? 二氧化碳(CO2)包含1个碳原子和2个氧原子,分子量为44(C-12、O-16)。二氧化碳在常温常压下是一种无色无味气体,空气中含有约1%二氧化碳。液碳和固碳是生物体(动物植物的组成物质)和矿物燃料(天然气,石油和煤)的主要组成部分。一吨碳在氧气中燃烧后能产生大约吨二氧化碳(C的分子量为12,CO2的分子量为44,44/12=)。 我们在查看减排二氧化碳的相关计算资料时,有些提到的是“减排二氧化碳量”(即CO2),有些提到的是“碳排放减少量”(以碳计,即C),因此,减排CO2与减排C,其结果是相差很大的。因此要分清楚作者对减排量的具体含义,它们之间是可以转换的,即减排1吨碳(液碳或固碳)就相当于减排吨二氧化碳。 2、节约1度电或1公斤煤到底减排了多少“二氧化碳”或“碳”? 发电厂按使用能源划分有几种类型:一是火力发电厂,利用燃烧燃料(煤、石油及其制品、天然气等)所得到的热能发电;二是水力发电厂,是将高处的河水通过导流引到下游形成落差推动水轮机旋转带动发电机发电;三是核能发电

国内外建筑物生命周期碳排放度量进展-2019年文档

国内外建筑物生命周期碳排放度量进展 近年来,二氧化碳在内的温室气体大量排放引致了严重的环境问题,影响了人类的生存和发展。建筑物在建材生产、运输、建造、使用、维护、拆除等生命周期都产生二氧化碳,使得建筑业与工业、交通运输业一起成为全社会碳排放的三大重要源头。 据统计,全球36%的二氧化碳源自建筑业,我国建筑业二氧化碳排放量也占社会总排放量的40%左右。因此,降低建筑物生命周期碳排放量,发展绿色环保的低碳建筑的任务迫在眉睫,这都需要全面、客观地度量建筑物生命周期碳排放。近年来,随着“低碳经济”、“低碳建筑”、“节能减排”等思想理念的深入人心,以及“碳关税”、“碳标签”、“碳交易”、“碳期权”、“碳汇”、“碳基金”、“碳盘查”等新名词的风生水起和大行其道,多国政府、组织机构和业界学者基于不同的数据源,运用多样的计算方法,多方位地度量建筑物的碳排放。本文拟从建筑物碳排量度量的生命周期阶段划分、度量方法、评价标准 3 个方面,总结国内外已有相关研究的进展和不足,并展望可能的研究方向。 国外相关研究进展 1.度量阶段。由于研究内容、侧重点、目的等不同,国外学者对建筑物生命周期碳排放阶段的划分不尽相同,但大多采用材料生产、建造施工、使用维护、拆除及材料处置 4 个阶段,如表 1 所示。有的研究将建筑物生命周期中的某个阶段进一步分成 两个或多个环节,如将使用阶段细分为运行和维护两个部分或将建筑生命周期终结分为拆除和建材处置两个阶段;而有的研究则将几个阶段整合成一个阶段,如将建筑材料的原料提取及加工过程纳入建造阶段或将维护阶段和拆除阶段合并分析。 2.度量方法。国外众多学者度量建筑物生命周期整体或个 别阶段碳排量时主要采用碳排放系数法,其计算原理简单、所需数据较少、计算结果直观且精读较高,特别适用于度量单个建筑生命周期碳排放。但是,建筑的复杂性、地域性、可复制性差等特点,给应用碳排放系数法时相关数据的收集带来较多困难。而且,碳排放系数是社会平均水平下的统计平均值,受技术水平、生产状况、能源使用情况、工艺过程等因素的影响大,区域性和时效性等特点显著,也是碳排放系数法受质

碳排放与城市化:低碳城市规划将减少碳排放

编者按:国内外研究发现,碳排放与城市化过程相互交织,发展低碳城市成为遏制全球变暖的首要选择。我国正处在经济快速增长、城市化进程加速、碳排放日益增加的时期。清华大学顾朝林教授研究团队的下述研究工作指出,城市是全球碳排放的高度密集区,其温室气体排放量占世界的80%;城市化过程也将成为我国未来温室气体排放增量的重要来源,低碳城市规划将成为碳减排的关键技术。 碳排放与城市化:低碳城市规划将减少碳排放全球气候变化和持续升温将导致地球自然生态系统危机,并给人类社会带来巨大灾难!早在1896年,诺贝尔化学奖获得者斯凡特·阿列纽斯(Svante Arrhenius )就预测:化石燃料燃烧增加大气中CO2浓度,从而导致全球变暖。根据气象观测资料,过去100多年来,全球平均气温上升了0.74?C,与此同时,人类向大气中排放了大量的CO2和其他温室气体,大气CO2当量浓度增加了约60%左右。不言而喻,要控制大气中CO2浓度,首要的是弄清大气CO2的产生机制。事实上,自然过程和人类活动都向大气排放CO2,例如植物生长过程和能源化石燃料的燃烧等。研究人员已经证实,他们测量的CO2排放量的空间分布与人口密度具有较高的相关性。 1 CO2排放与人类活动作用 1.1 人类活动是气候变化的重要因素 2007年政府间气候变化专门委员会(IPCC)第四次评估报告指出:当前气候变暖的原因90%以上的可能性是由人类活动造成的1。世界气象组织全球大气监测(WMO-GAW)全球温室气体监测网络(Global Greenhouse Gas Monitoring Network)认为:自工业化以来,CO2、CH4、N2O以及CFC-11、CFC-12等5种温室气体引起的辐射强迫达到了97%(表1)。 表 1 全球主要温室气体浓度及WMO-GAW监测的全球温室气体趋势 CO2(ppm) CH4(ppb)N2O(ppb)全球平均温度升高(?C)极值 3852 2007年383.1 1789 320.9 0.74 2006年381.2 1783 320.1 1998年381.1 1786.3 320.13 0.4 工业化前280 700 270 0.0 资料来源:中国科学院国家科学图书馆科学气候变化科学研究动态监测快报,2008年第17期第11页。 1叶笃正,2009,全球变化中气候变化的时间尺度及大气中CO 作用问题,全球变化与自然灾害——科技与社会 2 面临的挑战会议文集,第1页。 2 2008年10月31日出版的《开放大气科学杂志(Open Atmospheric Science Journal)》发表“大气CO 2目标:人类社会的目标所在(Target Atmospheric CO2: Where Should Humanity Aim)?”一文认为:为了使地球保持与文明发展时期相似的状态,最佳的CO2浓度水平应该不超过350ppm,而不是以往的450 ppm。目前已经达到385 ppm,而且每年以2 ppm的速率上升(中国科学院国家科学图书馆科学气候变化科学研究动态监测快报,

碳排放量计算公式

0.480.218 2.060.0450.1380.041 2.70.09640.9970.010.080.3990.332 1.240.040.0110.275 0.0130.42 0.80.621乘电梯上下一层楼0.218 四层楼以下步行上下楼,健康又环保开节能灯一小时0.011随手关灯,看似简单作用大开钨丝灯泡一小时0.041换盏节能灯,省电看得清 开空调一小时0.621 空调调高一度,节电百分之七 开电扇一小时: 0.045多使用中档、低档风速用冰箱一天0.997冰箱内存食物占容积的80%最省电看电视一小时0.096屏幕暗一点,节能又护眼用洗衣机洗衣一小时0.399普通波轮式洗衣机比滚筒洗衣机耗电量小用笔记本电脑一小时碳排0.013公斤短时间不用电脑,启用“睡眠”模式可降低一半能耗用台式电脑一小时碳排放量: 0.332节能小窍门: 关掉不用的程序和音箱、打印机洗热水澡一次放量: 0.42公斤节能小窍门: 将洗澡水用桶接起来冲厕所循环利用吃一顿快餐0.48自带环保筷,重拾手帕吃一公斤肉1.24少吃肉,适当素食更健康吃一公斤果蔬0.138选择应季、有机食品吃一公斤米饭0.8购买本地大米丢一公斤垃圾2.06不乱丢垃圾,坚持进行垃圾分类买一件T恤4公斤少买不必要的衣服,才是环保新时尚开车耗油一升2.7公斤出行尽量选择步行、自行车或公共交通工具: 乘坐火车一公里0.01旅行时轻装上阵更节能*基本换算系数: 用1度电=排放0.997公斤二氧化碳用1吨水=排放0.194公斤二氧化碳 用1立方米天然气=排放2.17公斤二氧化碳 用1立方米煤气=排放0.72千克二氧化碳用1公斤煤=排放2.493公斤二氧化碳用1升汽油=排放2.7公斤二氧化碳 乘坐地铁一公里0.04短途改骑自行车,碳排放几乎等于零乘坐公交车一公里0.08无轨电车更环保乘飞机一公里碳排放量每公里0.275公斤少出差,多使用电子邮件、电话会议*以下数据来源于网络汇总,仅供参考,欢迎专业人士指正。常用碳排放量计算表格

建筑施工碳排放测算模型研究

建筑施工碳排放测算模型研究 1 引言 全球气候变暖的危机严重影响着人类的生存与发展, 已成为21世纪人类社会亟需面对的重要挑战。2009年的联合国气候大会在哥本哈根举行, 旨在寻求减少碳排放以解决全球气候变暖问题的途径。建筑建造、使用和拆除过程中对能源和资源的消耗及固体废弃物的处理将带来巨大的温室气体排放量。由建筑的碳排放带来的环境影响越来越大, 我国正处于城镇化和工业化加速发展阶段, 建设规模和建设速度都为世界发展史上所罕见的。与此同时, 二氧化碳排放量也随之不断加大, 据统计, 每年建筑领域排放的二氧化碳排放量占到总排放量的35%以上, 因此, 如何减少建筑的二氧化碳排放就显得尤为重要。施工阶段作为建设项目全生命周期中非常重要而且最为复杂的阶段, 会消耗大量的资源和能源, 产生大量的温室气体[ 1] 。然而, 由于国家的大力支持与政策要求, 低碳节能建筑大行其道, 部分低碳技术应用之后所减少的碳排放却尚不足以抵消因采用这项技术而带来的生产和施工过程中增加的碳排放, 使得其应用毫无意义。因此, 研究建筑施工阶段碳排放测算很有现实意义。 2 建筑施工过程中的碳源分析 2. 1 国际碳足迹评价标准 解决全球气候变暖的方法就是要做到碳减排,那么首要的问题是找到合适的研究方法去定量评价碳排放, 从中找到主要碳排放因子以形成碳减排措施, 并对每种措施进行量化评价找到最低碳的途径。目前, 国内外普遍认可的定量评价碳排放的方法是采用碳足迹评价标准。综合学者们对碳足迹的定义, 可以认为碳足迹是一项活动、一个产品(或服务)的整个生命周期, 在某一地理范围内直接和间接产生的二氧化碳排放量(或二氧化碳当量排放量) [ 2 ] 。根据国家环境毒理和化学学会( SETAC )的定义, 碳足迹评价就是碳足迹的计算方法, 碳足迹评价标准就是对碳足迹计算方法的规定。碳足迹已日益成为了研究的焦点和热点, 目前利用碳足迹评价的规范和标准也不断推出, 主要包括欧盟的温室气体盘查议定书( ENCORD )、英国的PAS 2050:2008、日本的TSQ 0010和国际标准化组织正在制定的ISO 14067等。其中ENCORD 是最早颁布的, 于2001年10月颁布了第一版, 2010年2月颁布了第三版[ 3] , 在当前众多国际碳足迹评价标准中发展相对成熟, 并且应用最为广泛。ENCORD 指出只有清晰定义了碳排放的测量边界才能保证碳足迹计算的关联性、完整性、一致性、透明性与准确性。ENCORD将碳足迹的测量范围定义为三种: 直接碳排

相关文档
最新文档