岩、土体工程地质特征

岩、土体工程地质特征
岩、土体工程地质特征

根据岩石建造类型、结构面特征及其组成岩石的岩性和强度等特征,岩体分为岩浆岩、变质岩、碎屑岩、碳酸盐岩和特殊岩石等5个工程地质岩类。每个岩类再划分为若干岩组,共计18个岩组。根据土体的成因类型、物质组成及工程特征,土体划分为两类11个组。

(一)岩体工程地质特征

1.岩浆岩类

(1)坚硬—软弱块—层状基性喷出岩。火山熔岩为块状,较坚硬—坚硬,干抗压强度48.0—193.0兆帕,软化系数0.64—0.99,岩体稳定性较好;火山碎屑岩为似层状或层状,软弱—较坚硬,干抗压强度10.9—56.0兆帕,软化系数0.43—0.54,岩体稳定性差。力学强度的高低与岩石的节理裂隙发育和风化程度有关。中等风化玄武岩强度为微风化—新鲜的20—50%;火山碎屑岩易受风化,中等风化的锤击易碎。

(2)坚硬—较坚硬层状中—酸性喷出岩。岩石干抗压强度多大于108兆帕。流纹岩垂直和水平方向上的力学强度变化较大,在一定条件下可成为岩组中相对软弱的夹层。使岩体稳定性变差。

(3)坚硬块状侵入岩。岩石以中—粗粒或斑状结构为主,块状构造,新鲜者致密坚硬,裂隙不发育,力学强度普遍较高,尤其是新鲜花岗岩,抗压强度一般大于98兆帕。

2.变质岩类

(1)软硬相间薄—中厚层状变质砂页岩。岩层厚薄不等,软硬相间,岩石的完整性和抗风化能力差异很大,力学强度各向异性。片岩、千枚岩、板岩等软弱岩石,节理裂隙较发育,垂直干抗压强度12.0—113兆帕;石英岩、变质砂岩、硅质岩等硬质岩石,较坚硬—坚硬,垂直干抗压强度43.0—260兆帕,最高达338兆帕。风化岩石干抗压强仅40—90兆帕。

(2)坚硬块状混合岩类。岩石呈块状,完整性好,坚硬,干抗压强度59—196兆帕,强风化者为22兆帕。

(3)软弱碎裂状构造岩。岩石破碎,透水性强,压碎花岗岩垂直饱和抗压强度为73兆帕,部分小于20兆帕。

(1)软弱—较坚硬,中—厚层状红色砂泥岩。岩石呈不等厚互层状。力学强度因岩性不同而异。砂岩,砾岩等岩石较坚硬,干抗压强度多大于50兆帕,风化岩干抗压强度一般小于50兆帕。泥岩、粘土岩等垂直干抗压强度为

11.8—17.0兆帕。

(2)软硬相间薄—中层状砂页岩。页岩常夹砂岩或与砂岩互层产出。砂岩干抗压强度为100—169兆帕,比片岩高几倍至十几倍,而砂岩强度又容易受风化影响,风化者为3.8—27兆帕,半风化者60—70.3兆帕。

(3)坚硬—较坚硬中厚层状砂砾岩。岩石致密坚硬,抗水性和抗风化能力强,力学强度高,抗压强度多大于98兆帕。

(4)软硬相间层状碎屑岩夹碳酸盐岩。碳酸盐岩、石英砂岩、粉砂岩等抗压强度较高,页岩抗压强度低。但碳酸盐岩因岩溶发育,强度有所降低,尤其在断裂破碎带。

4.碳酸盐岩类

该岩类的工程地质特征主要与岩石的岩溶化程度有关。

(1)坚硬—较坚硬中—厚层状强岩溶化碳酸盐岩。包括灰岩、白云质灰岩、白云岩,岩溶率8—35%,新鲜岩石抗压强度一般大于98兆帕。

(2)坚硬—较坚硬中—厚层状中等岩熔化碳酸盐岩。主要为灰岩、白云岩化灰岩、生物灰岩、白云岩等,沿断裂及褶皱轴一般发育有溶隙、溶洞、暗河等。岩溶率一般为1.2—3.3%,岩溶发育深度在100米心内。干抗强度

69.5—107.7兆帕,饱和抗压强度51.0—75.5兆帕,干抗剪强度8.0—12.7兆帕。

(3)坚硬—较坚硬中—厚层状弱岩溶化碳酸盐岩。主要岩石为灰岩、泥质灰岩、白云质灰岩、硅质灰岩、白云岩等,裂隙和岩溶发育程度差,灰岩抗压强度为60.7—66.1兆帕。

(4)软硬相间层状碳酸盐岩夹碎屑岩。主要岩石为灰岩、生物灰岩、白云岩、泥灰岩夹石英砂岩、页岩、炭质页岩等。岩石强度差异大,灰岩抗压强度可达123.2兆帕,而页岩抗压强度一般为11.5—22.8兆帕,且易软化和泥化。

(1)软弱—较坚硬薄—中层状含煤、油页岩红色砂泥岩。新鲜褐煤易氧化成碎块状,抗压强度仅1.82兆帕,凝聚力202千帕;油页岩页理发育,抗压强度1.1—2.8兆帕,凝聚力48—292兆帕;砂砾岩、砂岩、泥岩的工程地质特征与软弱—较坚硬的红色砂泥岩组相当。

(2)软硬相间薄—中层状含煤砂页岩。岩石力学强度高低悬殊,各向异性明显。泥岩及页岩易软化,且裂隙发育,岩石较破碎,其边坡易崩塌变形。

(3)软硬相间层状含石膏、钙质红色砂泥岩。岩石易软化和溶浊,常形成溶洞、溶孔、溶沟等。粤北坪石、丹霞、梅塘、彭屋盆地的白垩系上统灰质砾岩岩溶较发育,往往成为不均质地基,对工程建筑不利。

(4)软弱—较坚硬层状珊瑚、贝壳碎屑岩。岩石胶结程度较差。除现代潮间带的贝壳砂岩局部强度略大之外,其余强度多较低。据生物碎屑岩的少量样品测试,干抗压强度为0.9—40.8兆帕,软化系数0.83—0.91。

(二)土体工程地质特征

1.沉积土类

(1)一般粘性土。土体一般很湿—饱和,软—可塑,部分流塑或硬塑。软—流塑者允许承载力一般小于100千帕,可塑或硬塑性土允许承载力一般120千帕。

(2)老粘性土。土体以硬塑状为主,中—低压缩性,含水层以上的老粘性土,允许承载力一般200千帕。但不同成因和不同时代的老粘性土彼此间的工程性能有的差别甚大。

(3)砂性土。土体具有透水性强、压密快和内摩擦角较大的特点。其力学强度影响因素较多,一般沉积时间早、埋深大的,强度高,反之则低。密实度以松散—中密者多,一般由浅至深从松散过渡为密实。当其处于地下水位之下和埋深小于15米时,可能因强震或机械震动而引起砂土液化。

(4)碎石土。碎石土主要分布于河流中、上游及支流谷地,沿海一带也有零星分布。多埋藏于其它土组之下,且常为底砾层。土体具孔隙大、透水性强、抗剪强度大的特点,呈稍密—密实状(裸露者以松散居多),力学强度高,一般可作良好的天然地基。

(5)特殊性土。特殊性土,主要为淤泥质土和泥炭土。淤泥质土天然含水量高,并大于液限,孔隙比大于1,亲水性强,透水性强,呈软塑—流塑状,高压缩性,允许承载力小于90千帕。原状土抗剪强度平均值为8.4—64千帕。泥炭土多呈牛粪状,松软而质轻,饱和或过饱和,具大孔隙率、软—流塑、高压缩、易触变、力学强度低和工程性能差等特点。轻型触探击数为1—17击,允许承载力小于100千帕。

此外,尚有硅藻土,其性质为松散质轻,高压缩性。干时吸水性强,易崩解,强度很低。

2.坡残积土类

(1)侵入岩坡残积土。土体为粘土、亚砂土等,普遍含较多的石英砂砾。天然状态下呈可塑一硬塑状,中等压缩性,压缩系数平均值0.3—0.46每兆帕,标贯击数平均8.0—21.5击。力学强度较高,且随深度的增加而增大,允许承载力大多达160千帕。

(2)喷出岩坡残积土。土体为粘土、亚粘土、亚砂土等,呈可塑—硬塑状。据梅县两个流纹斑岩残积土试验成果,液性指数小于零,压缩系数平均值为0.01每兆帕,压缩模量16.2兆帕;雷琼地区基性火山岩残积土孔隙比一般为0.966—2.548,压缩系数平均值为0.029—0.289每兆帕,地基允许承载力普遍达200千帕。

(3)碎屑岩坡残积土。主要为粘土、亚粘土,可塑—硬塑状,压缩系数平均值0.196—0.36每兆帕,标贯平均击数13.7—60击,力学强度较高。

(4)碳酸盐岩坡残积土。主要为粘土、砾质粘土、含砾亚粘土、亚砂土,统称为红粘土。土体突出的工程地质特征是具有一定的胀缩性,失水时体积剧烈收缩,失水愈严重,收缩量就愈大,但吸水膨胀性较弱,胀压力很低。天然状态下含水率、孔隙比、可塑性指标等较高,多呈坚硬—硬塑状。以中等压缩性为主,压缩系数平均值为0.008—0.048每兆帕。

(5)变质岩坡残积土。主要为粘土、粘土夹碎石、亚砂土等,强度一般较高,允许承载力多达250千帕。

4 岩土工程性质

第四章岩土体工程性质 一、名词解释(6) 1.岩石风化作用p74 岩石形成后,地表附近的完整岩石,会在温度、水溶液、气体及生物等自然因素作用下,逐渐产生裂隙、发生机械破碎和矿物成分的改变,丧失完整性,这个过程称为岩石风化作用。 2.物理风化作用p74 岩石在自然因素作用下发生机械破碎,而无明显成分改变的风化作用称物理风化作用,又称机械风化作用。 3.化学风化作用p74 岩石在自然因素作用下发生化学成分改变,从而导致岩石破坏为化学风化作用。 4.生物风化作用p75 岩石风化过程有生物活动的参与称生物风化,如岩石裂隙中生长的树,随着树的生长,根系发育延伸,岩石被劈裂,即属生物物理风化;岩石表面生长的地衣分泌有机酸腐蚀岩石,使其分解,即属生物化学风化。 5.风化程度p76 岩石风化后工程性质改变的程度。 6.饱和重度p77 天然状态下,单位体积岩石土中包括固体颗粒、一定的水和孔(裂)隙三部分,若水把所有孔隙充满,则为岩土的饱和重度。 7.岩石吸水率p79 在常压条件下,岩石浸入水中充分吸水,被吸收的水质量与干燥岩石质量之比为吸水率。 8.液性指数p82 黏性土的天然含水率和塑限的差值与塑性指数之比。 9.弹性模量p85 岩石的弹性模量是变形曲线弹性段(直线段)的斜率。 10.岩体p86 岩体通常是指由各种岩石块体和不连续面组合而成的“结构物”。 11.结构面P87 岩体被不连续界面分割,这些不连续界面被称为岩体的结构面。 二、单选(22) 1.冰劈作用是()。p74 A.物理风化B.生物风化C.化学风化D.差异风化 2.因强烈蒸发使地下水浓缩结晶,导致岩石裂缝被结晶力扩大,叫做()。P74 A.热胀冷缩作用B.盐类结晶作用C.冰劈作用D.碳酸化作用 3.黄铁矿在空气或水中生成褐铁矿,在化学风化中应属于()。P75

影响岩石工程地质性质的因素

影响岩石工程地质性质的因素 矿物成分、结构、构造、水、风化作用 1.矿物成分 岩石是由矿物组成的,岩石的矿物成分对岩石的物理力学性质产生直接的影响。 例如,石英岩的抗压强度比大理岩的要高得多,这是因为石英的强度比方解石的强度高的缘故,由此可见,尽管岩类相同,结构和构造也相同,如果矿物成分不同,岩石的物理力学性质会有明显的差别。 对岩石的工程地质性质进行分析和评价时,更应该注意那些可能降低岩石强度的因素。 例如,花岗岩中的黑云母含量过高,石灰岩、砂岩中粘土类矿物的含量过高会直接降低岩石的强度和稳定性。 2.结构 结晶联结是由岩浆或溶液结晶或重结晶形成的。矿物的结晶颗粒靠直接接触产生的力牢固地联结在一起,结合力强,空隙度小,比胶结联结的岩石具有更高的强度和稳定性。 联结是矿物碎屑由胶结物联结在一起的,胶结联结的岩石,其强度和稳定性主要取决于胶结物的成分和胶结的形式,同时也受碎屑成分的影响,变化很大。 例如:粗粒花岗岩的抗压强度一般在120~140Mpa之间,而细粒花岗岩则可达200~250Mpa。 大理岩的抗压强度一般在100~120MPa之间,而坚固的石灰岩则可达250MPa 。 3.构造 构造对岩石物理力学性质的影响,主要是由矿物成分在岩石中分布的不均匀性和岩石结构的不连续性所决定的。 某些岩石具有的片状构造、板状构造、千枚状构造、片麻状构造以及流纹构造等,岩石的这些构造,使矿物成分在岩石中的分布极不均匀。一些强度低、易风化的矿物,多沿一定方向富集,或成条带状分布,或形成局部聚集体,从而使岩石的物理力学性质在局部发生很大变化。 4.水 实验证明,岩石饱水后强度降低。当岩石受到水的作用时,水就沿着岩石中可见和不可见的孔隙、裂隙侵入,浸湿岩石自由表面上的矿物颗粒,并继续沿着矿物颗粒间的接触面向深部侵入,削弱矿物颗粒间的联结,使岩石的强度受到影响。 如石灰岩和砂岩被水饱和后,其极限抗压强度会降低25%~45%左右。 5.风化 风化作用过程能使岩石的结构、构造和整体性遭到破坏,空隙度增大、容重减小,吸水性和透水性显著增高,强度和稳定性大为降低。随着化学过程的加强,则会使岩石中的某些矿物发生次生变化,从根本上改变岩石原有的工程地质性质。

地基岩土的分类及工程特性指标

地基岩土的分类及工程特性指标 4.1岩土的分类 4.1.1作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、粘性土和人工填土。 4.1.2岩石的坚硬程度和完整程度可按本规范第4.1.3~4.1.4条划分。 4.1.3岩石的坚硬程度应根据岩块的饱和单轴抗压强度f rk按表4.1.3分为坚硬岩、较硬岩、较软岩、软岩和极软岩。当缺乏饱和单轴抗压强度资料或不能进行该项试验时,可在现场通过观察定性划分,划分标准可按本规范附录A.0.1条执行。岩石的风化程度可分为未风化、微风化、中等风化、强风化和全风化。 表4.1.3岩石坚硬程度的划分 坚硬程度类别坚硬岩较硬岩较软岩软岩极软岩 饱和单轴抗压强度 标准值f rk(MPa) >6060≥f rk>3030≥f rk>1515≥f rk>5≤5 4.1.4岩体完整程度应按表4.1.4划分为完整、较完整、较破碎、破碎和极破碎。当缺乏试验数据时可按本规范附录A.0.2条确定。 表4.1.4岩体完整程度划分 完整程度等级完整较完整较破碎破碎极破碎 完整性指数>0.750.75~0.550.55~0.350.35~0.15<0.15 注:完整性指数为岩体纵波波速与岩块纵波波速之比的平方。选定岩体、岩块测定波速时应有代表性。4.1.5碎石土为粒径大于2mm的颗粒含量超过全重50%的土。碎石土可按表4.1.5分为漂石、块石、卵石、碎石、圆砾和角砾。 表4.1.5碎石土的分类 土的名称颗粒形状粒组含量 漂石块石圆形及亚圆形为主 棱角形为主 粒径大于200mm的颗粒含量超过 全重50% 卵石圆形及亚圆形为主粒径大于20mm的颗粒含量超过

碎石棱角形为主全重50% 圆砾角砾圆形及亚圆形为主 棱角形为主 粒径大于2mm的颗粒含量超过全 重50% 注:分类时应根据粒组含量栏从上到下以最先符合者确定。 4.1.6碎石土的密实度,可按表4.1.6分为松散、稍密、中密、密实。 表4.1.6碎石土的密实度 重型圆锥动力触探锤击数N63.5密实度 N63.5≤5松散 520密实 注:1.本表适用于平均粒径小于等于50mm且最大粒径不超过100mm的卵石、碎石、圆砾、角砾。对于平均粒径大于50mm或最大粒径大于100mm的碎石土,可按本规范附录B鉴别其密实度; 2.表内N6 3.5为经综合修正后的平均值。 4.1.7砂土为粒径大于2mm的颗粒含量不超过全重50%、粒径大于0.075mm的颗粒超过全重50%的土。砂土可按表4.1.7分为砾砂、粗砂、中砂、细砂和粉砂。 表4.1.7砂土的分类 土的名称粒组含量 砾砂粒径大于2mm的颗粒含量占全重25%~50% 粗砂粒径大于0.5mm的颗粒含量超过全重50% 中砂粒径大于0.25mm的颗粒含量超过全重50% 细砂粒径大于0.075mm的颗粒含量超过全重85% 粉砂粒径大于0.075mm的颗粒含量超过全重50% 注:分类时应根据粒组含量栏从上到下以最先符合者确定。

岩土体工程地质类型及特征

一、岩土体工程地质类型及特征 岩土体工程地质类型的划分根据岩土体形成条件、结构、岩性、力学特性及工程地质特征的差别,可分为松散松软堆积层岩类、碳酸盐岩类及碎屑岩类3个岩体类型6个工程地质岩组。 (一)土体工程地质类型及物理力学特征 此岩类的划分根据其结构特征、力学性质及工程特性分为中偏高压缩粘性土类岩组和低压缩碎石土类岩组2个工程地质岩组。 1、中偏高压缩粘性土类岩组 (1)残坡积土(Q el+dl) 残坡积层主要分布于沿线丘陵沟谷坡脚一带,多为紫红色、棕红色粉砂质粘土或浅黄色、灰黄色砂土、亚粘土、粉土夹(含)碎石,沿线厚度不一。残坡积亚粘土天然含水量W18.8~24.00%,天然孔隙比e0.600~0.697,塑性指数Ip 8.4~12.6,液性指数I L0.46~0.60为软塑状,凝聚力C26.6~45.1Kpa,内摩擦角φ10.1~18.7度,压缩系数a0.25~0.40为中~偏高压缩土类。残坡积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。 (2)冲洪积土(Q4al+pl) 冲洪积层主要分布于河床、河滩上,为灰色、浅灰色亚粘土、粘土及褐灰色细、粉砂土及砂砾卵石层,厚度不一。亚粘土天然含水量W21.7~26.50%,天然孔隙比e0.619~0.838,塑性指数Ip 8.4~14.6,液性指数I L0.46~0.87为可塑状,凝聚力C12.9~32.2Kpa,内摩擦角φ7.0~10.3度,压缩系数a0.31~0.47为中~偏高压缩土类。粘

土天然含水量W28.8~34.30%,天然孔隙比e0.838~0.978,塑性指数Ip 20.0~21.3,液性指数I L0.54~0.77为软塑状,凝聚力C22.6~54.7Kpa,内摩擦角φ10.0~10.3度,压缩系数a0.24~0.605为中~高压缩土类。 冲洪积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。 2、低压缩碎石土类岩组 崩坡积土(Q4col+dl) 崩坡积层主要分布于斜坡边缘、高陡斜坡的坡脚处,碎块石成份与地层岩性有关,为黄灰、红褐色亚粘土夹块石、碎石。此类岩组颗粒级别差异大,密实度较高但不均一,透水性较好,为低压缩碎石土类岩组,工程地质问题主要表现为土石滑坡、塌方,不均匀沉降。 线路区段内土体工程地质类型及主要物理力学指标参见表6。 (二)岩体工程地质类型及物理力学特征 根据路线区岩层坚硬程度、抗风化能力、抗溶蚀能力和基本物理力学性 土体工程地质类型及主要物理力学指标表 表6

山东的主要地质构造特征及工程地质问题

山东的主要地质构造特征 及工程地质问题 工程地质学是研究建筑工程与地质构造关系的学科。山东的地质构造特征如何?本省主要工程地质问题有哪些?这就是这节课的主要内容。 一、山东的地质构造特征及工程地质分区 (一)山东的地质构造特征 1山东处在欧亚板块的东部活动大陆边缘 受太平洋板块向北西西扩张及印度洋~澳大利亚板块向北运移的影响,山东目前(以来)地应力:最大主应力σ1的轴向方位为70~80о、大小是; 最小主应力σ3的轴向方位为340~350o、大小是33..9 Mpa;σ1与σ3差应力值为 Mpa。 2.基岩区的地层褶皱不发育,地层多呈单斜构造;发育NNE、 NW、EW走向的主要断裂构造,其中的NNE向和NW断裂为活动断裂主要NNE向活动断裂:(1)沂沭断裂带,由四条大断层组成“两堑一垒”的构造格局;(2)聊考断裂带。 主要NW向活动断裂:(1)威海~烟台~渤海~天津断裂带;(2)诸城~益都(青州)~惠民断裂带;(3)骆马湖~微山湖断裂带。 证据:近代地震活动记录;第四纪岩土层被断裂错开、逆掩。

(二) 山东的工程地质分区 据基岩地层的出露情况、地貌特征和地壳稳定性分3个分区: 1.鲁中南中低山丘陵工程地质区: 其范围是:济南~淄博~潍坊以南、东平湖~南四湖一线东北、昌邑-大店大断层(沂沭断裂带最东侧的大断层)以西及济南~东阿~东平一线以东地区。是其北、南和西由平原环绕的以中低山丘陵为主的地区。 岩等变质岩;地壳上升,剥蚀、切割作用强烈,泰山、沂山、蒙山、俎徕山、鲁山、俎莱山等千米高程以上的中山主要分布在本区。地形地貌起伏变化大,常发育“崩滑流”(崩塌、滑坡、泥石流的简称)等不良工程地质现象”,东部~东南部是抗震、防震重点地区,该区周边发育厚度不等的黄土状地基土(湿陷等级为I 级(轻微)),临沂地区沂沭河两岸附近发育膨胀土。 σ1 σ1 σ1 σ 1 目前中国地应力方向 以东经100~105o 为界分东西两区。 强度上:西强东弱(西高东低) 方向上:西: NNE-SSW 为主,东:近E-W 。 鲁东低山丘陵工程 地质区 鲁西北平 原工程地 质区 鲁中南中 低山丘陵工程地质区 鲁西北平 原工程地 质区

地质说明

某合同段施工图设计工程地质勘察报告 1、前言 1.1 工程概况 1.2目的与任务 1.3 技术标准、规程、规范 本次工程地质勘察工作遵照交通部颁布规程、规范及本项目《勘察工作大纲》,并参照铁路、水电、工业与民用建筑等相关规程、规范,具体执行及参照的主要标准如下: 1.3.1 执行标准 1.《公路工程地质勘察规范》(JTJ064-98) 2.《公路桥涵地基与基础设计规范》(JTG D63-2007) 3.《公路路基设计规范》(JTG D30-2004) 4.《公路工程抗震设计规范》(JTJ004-89) 5.《公路工程水质分析操作规程》(JTJ056-84) 6.《公路工程技术标准》(JTGB01-2003) 7.《公路隧道设计规范》(JTGD70-2004) 1.3.2 参照标准 1.《火力发电厂工程地质测绘规定》(DL/T5104-1999) 2.《静力触探技术规则》(TBJ37-93) 3.《膨胀土地区建筑技术规范》(GBJ112—87) 4.《铁路工程特殊岩土勘察规程》(TB10038—2001) 5.《铁路工程不良地质勘察规程》(TB10027—2001) 6.《岩土工程勘察规范》(GB50021-2002) 7.《铁路工程物理勘探规程》(TB10013—2004) 8.《四川、甘肃、陕西部分地区地震动峰值加速度区划图》(1:100万) 9.《四川、甘肃、陕西部分地区地震动反应谱特征周期区划图》(1:100万) 12.《工程岩体试验方法标准》(GB/T50266-1999) 11.《工程岩体分级标准》(GB50218-94) 12.《工程地质手册》(第四版) 2、自然地理 2.1 自然地理及交通 2.2 地形地貌 合同段地貌根据成因类型可分为剥蚀堆积地貌、构造剥蚀丘陵地貌地貌两大类。 2.3 气候、水文 测区属亚热带温暖湿润气候区,具有冬暖、春早、夏热、秋凉,降水充沛的特点。达县地形北西高,东南低,气候受地形影响较大,气温随地势升高而逐渐降低,多年平均气温16~17℃间。多年平均气温,七月最高,一月最低,多年极端最高气温44.6℃,(2006年8月19日),多年极端低温-4.7℃(1956年1月9日)。 平均日照数1073小时,平均无霜期为290天,霜冻日57天,年均雾日79天,雷暴日36天,相对湿度年均80%,绝对湿度185毫巴,≥10℃活动积温年均5565小时,积雪期1-3天,多年平均风速1.3m/s,最大风速17m/s。年降雨量在840.9~1476.6mm,平均1044mm,降雨多集中在5~9月,约占全年降雨量的75%,而相继发生于2004年9月3日~5日(简称为“9·3”洪灾)及2005年7月8日(简称为“7·8”洪灾)的两次特大洪灾,其降雨量及降雨强度,均为百年难遇,其中又以“9·3”洪灾为最大:72小时内,降雨量达467mm,其间24小时最大降雨量为272.9mm,最大小时降雨量45.7mm,雨季多在春、夏、秋末季节,常年多有伏旱。风向受大巴山影响,多为东北风,平均风力1.6~2.1级,最大达8级。 测区河流为长江水系,属长江支流渠江水域。渠江于区外合川汇入嘉陵江,在渠县上分为两支,西支为巴河,东支为州河。州河发源于大巴山南麓,在宣汉由前河、后河相汇称为州河,沿途纳入明月江、铜堡河等。州河东林站多年平均流量158.64m3/s,年径流量50.08亿m3;明月江明月谭站多年平均流量14.83m3/s,年径流量4.68亿m3。 2.4 地层岩性 测区出露的地层较简单,主要为中生界、新生界,出露地层有侏罗系及第四系地层。 2.5 地质构造与地震 测区构造为川东弧形构造带的主要组成部分。构造形迹以北北东——北东向梳状褶皱为主。东北受大巴山弧形构造带向外波及的影响,局部形成北西向构造,西北角进入川中地块仪陇平昌莲花状构造的外缘。区内构造作用力分布不均,背斜褶皱紧密,为梳状——箱状形态,向斜开阔,成为典型的隔档式构造。断裂以压性、压扭性为主,一般沿背斜轴部分布,局部有小规模横向断层交切(见图2)。 2.6 水文地质

软岩工程地质特性与研究

随着地下工程建设规模不断扩大,在城乡建设、水电、交通、矿山、港口以及国防军事等领域都涉及软岩问题,而国家西部大开发的战略实施,大量的交通、能源与水利工程在西部的兴建,地下工程软弱围岩的稳定性和支护方法更已成为地下工程中迫切需要解决的问题。在我国天生桥、二滩、小浪底、乌江构皮滩、瀑布沟等大型水电工程中,均存在软弱岩体的流变性及围岩的稳定性问题;许多煤矿开采时间较长,由于资源开采深度的增加,使一些生产矿井软岩巷道大变形、大地压、难支护的工程问题更加突出;在软岩地区修建的桥隧工程中,围岩的稳定性同样是工程设计和施工中的重点和难点,且常常由于围岩地质条件多变,围岩、支护结构失稳事故时有发生,给人民生命财产造成巨大损失。 1 软岩的概念及其物理力学特征 1.1 软岩的概念 关于软岩的定义,总括起来,大体上可分为描述性定义、指标化定义和工程定义3类。1984年12月在昆明召开的煤矿矿山压力名词讨论会,将软岩界定为“强度低、孔隙度大、胶结程度差、受构造面切割及风化影响显著或含有大量膨胀性粘土矿物的松、散、软、弱岩层”,并从地质岩体分类的角度指出该类岩石的常见种类多为泥岩、页岩、粉砂岩和泥质矿岩,是天然形成的复杂的地质介质。这是一种典型的描述性定义方式。而到了1990年至1993年间,国际岩石力学学会逐步将软岩明确定义为单轴抗压强度( c)在0.5~25MPa之间的一类岩石。虽然此种包含具体指标的定义方式考虑了岩石的物理力学性质,但这种分类仍然属于从地质角度定义软岩的范畴,未考虑施工条件和使用环境的差异,将该定义用于工程实践中会出现一些矛盾。如地下硐室所处深度足够的浅,地应力水平足够的低,则单轴抗压强度小于25MPa的岩石也不会产生软岩的特征,工程实践中,采用比较经济的一般支护技术即可奏效;相反,单轴抗压强度大于25MPa的岩石,当其工程部位所处的深度足够的深、地应力水平足够的高,也可以产生软岩的大变形、大地压和难支护的现象。因此,地质软岩的定义用于工程实践时往往产生歧义。 近些年,工程软岩的概念被提了出来,它是指在工程力作用下能产生显著塑性变形的工程岩体。如果说目前流行的软岩定义强调了软岩的软、弱、松、散等低强度的特点,那么工程软岩的定义不仅重视软岩的强度特性,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。 工程软岩要满足的条件是:

土的工程地质特征

土的工程地质特征 土是第四纪以来地壳表层的最新沉积物,未经胶结成岩,常称为松散土 一、土的分类 土的颗粒分组:《铁路工程岩石分类标准》 按颗粒级配,土分为碎石类土、砂类土、粉土、粘性土 按土的成因,土分为残积土、坡积土、冲积土、淤积土、风积土、崩积土等 特殊土是具有特殊的成分、状态、结构特征,而且具有特殊工程性质的土。 特殊土分为黄土、膨胀土、软土、冻土、红粘土、盐渍土、填土。 二、特殊土的工程性质 (一)黄土:是在干旱、半干旱气候条件下形成的第四纪的一种松散的特殊土。 黄土的特征: I. 颜色为淡黄、褐色或灰黄色; II. 粒度成分以粉土为主,约占有60%~70%,一般不含>0.25mm的颗粒; III. 含各种可溶盐,富含碳酸盐(CaCO3),可形成钙质结核(姜结石); IV. 孔隙多且大,结构疏松; V. 无层理,但有垂直节理和柱状节理。天然条件下能保持近于垂直的边坡; VI. 具有湿陷性。 具有(Ⅰ~Ⅴ)项特征的为标准黄土,只有其中部分特征的黄土叫黄土状土或黄土质土。 具有湿陷性的黄土为湿陷性黄土。 黄土的分布:黄土在世界上的分布面积达1300万km2,我国的黄土面积是世界上最大的,达64万km2,比法国和瑞士的面积总和还要大。黄土最厚处约410m左右,在兰州市七里河区西津村。在我国,西北、中原、华北、华东、东北等地均有分布,但主要集中在黄河的中游——陕、甘、宁、青及山西、河南一带,其厚度各不相同。陕甘地区多厚100~200m,薄处仅几公分。 黄土的分类: 1.按生成年代分类 老黄土下更新世Q1 (午城黄土) 中更新世Q2 (离石黄土) 新黄土上更新世Q3 (马兰黄土) 全新世Q41 、 新近堆积的黄土:全新世Q42 2.按生成过程分类:风积、坡积、残积、洪积、冲积等 3.按塑性指数IP分类 黄土质粘土IP>17 黄土质砂粘土7<IP≤17 黄土质粘砂土1<IP≤7 黄土质砂土IP≤1 4.按湿陷性分类 (1)湿陷性:自重湿陷性非自重湿陷性 (2)非湿陷性 划分自重湿陷性黄土和非自重湿陷性黄土,对工程建设有明显的现实意义。 在自重湿陷性黄土地区 修筑的渠道与渠道平行的裂缝;管道漏水后管道断裂; 路基受水后局部严重坍塌;地基土很大的裂缝或倾斜

工程地质技术要求

鞍钢集团矿业公司张家湾铁矿地下采选联合工程硐室群及管道井工程地质勘察方案 编制单位:鞍钢集团矿业公司 编制日期:2016年9月26日

1、前言 (3) 1.1工程概况 (3) 1.2勘察的目的和任务 (3) 1.3勘察的依据 (8) 2地质条件 (8) 2.1气象水文 (8) 2.2场地地形、地貌 (7) 2.3地层岩性 (7) 2.4构造 (10) 2.5水文地质条件 (10) 3勘察工作量布置和方法 (8) 3.1勘察工作量布置 (8) 3.2工作方法 (9) 4钻探施工技术要求 (10) 5水文地质工作技术要求 (11) 5.1水文地质试验方法 (11) 5.2钻孔简易水文地质观测 (16) 5.3水文地质试验参数计算公式 (16) 5.4水化学分析 (17) 6工程地质技术要求 (17)

6.1钻孔工程地质编录 (17) 6.2试样采取和试验 (18) 7钻探技术设计及质量保证措施 (19) 7.1钻孔结构 (19) 7.2套管 (19) 7.5钻进方法 (20) 8设备配置 (24) 9安全生产与环境保护 (24) 10预期成果 ............................................................ 错误!未定义书签。

1前言 1.1工程概况 工程名称:鞍钢集团矿业公司张家湾铁矿地下采选联合工程 建设单位:鞍钢集团矿业公司 设计单位:中冶京诚(秦皇岛)工程技术有限公司 研究单位:东北大学 张家湾铁矿井下采选联合开采工程是一个全井下开采的采选联合开采项目。选矿厂全部布置在井下,选矿工艺厂房为一系列的大断面硐室群组。其深度在地表440-520米以下,是目前国内最深的地下建筑硐室群。 主要建(构)筑物特征表1 拟建工程重要性等级为一级,场地复杂程度等级为一级,地基复杂程度等级为一级,岩土工程勘察等级为甲级。 1.2勘察的目的和任务 1.2.1勘察的目的 (1)本次勘察任务是查明该建筑场地的工程地质、水文地

工程地质勘察 总结

第七章工程地质勘察 第七章工程地质勘察 概述 工程地质测绘 工程地质勘探 工程地质勘察报告的主要内容 概述 工程地质测绘 工程地质勘探 工程地质勘察报告的主要内容 概述 一、工程地质勘察的目的与任务 二、工程地质勘察的一般要求 任务:① 查明建筑地区的工程地质条件,指出有利和不利条件; ② 选择地质条件优越的建筑场地; ③ 分析研究与建筑有关的工程地质问题,并作出定性和定量评价,为建筑物的设计和施工提供可靠的地质依据; ④ 根据建筑场地的工程地质条件,配合建筑物的设计与施工,提出有关建筑物的类型、结构、规模名及施工方法的合理建议,以及保证建筑物安全和正常运用所应注意的地质要求; ⑤ 为拟定改善和防治不良地质条件的措施方案提供地质依据; ⑥ 预测工程兴建后对地质环境的影响,制定保护地质环境的措施。 一、工程地质勘察的目的和任务 二、工程地质勘察的阶段 1.选址勘察阶段——可行性研究勘察阶段 勘察程序:是范围由大到小,研究程度由粗及细,由地表到地下,由定性评价至定量评价。并且应该严格遵守此原则。 勘察任务:初步查明拟建地区工程地质条件,论证区域稳定性,在较大的工作范围内选出几个较好的建筑地段。提出建筑地段的比较方案。 目的:为工程规划和技术可能性、经济合理性论证等方面提供地质资料,选定建筑场址 勘察任务:进一步查明建筑物影响范围内工程地质条件细节,提供定量指标,深入分析存在的各种工程地质问题,作出可靠的定量评价(通过大量的勘探、试验、实验室研究工作及长期起观测来完成)。一般可分为初步勘察和详细勘察两个阶段(精度要求不同) (2)初步勘察阶段 目的:在上一阶段指定的区域内选定工程地质条件最优越的建筑场地,确定建筑物的具体位置、结构型式、规模及各相关建筑物的布置方式等 (3)详细勘察阶段与施工勘察阶段 勘察任务:主要解决为编制各个建筑物及其各部分的施工详图所需要的地质资料。主要是根据需要做些补充勘探工作等,如灌浆试验,板桩试验、防止基坑涌水试验等。 目的:解决具体施工中的工程地质问题 三、工程地质勘察的方法 工程地质测绘

岩土工程介绍及发展研究方向

岩土工程介绍及发展研究方向 展望岩土工程的发展,笔者认为需要综合考虑岩土工程学科特点、工程建设对岩土工程发展的要求,以及相关学科发展对岩土工程的影响。 岩土工程研究的对象是岩体和土体。岩体在其形成和存在的整个地质历史过程中,经受了各种复杂的地质作用,因而有着复杂的结构和地应力场环境。而不同地区的不同类型的岩体,由于经历的地质作用过程不同,其工程性质往往具有很大的差别。岩石出露地表后,经过风化作用而形成土,它们或留存在原地,或经过风、水及冰川的剥蚀和搬运作用在异地沉积形成土层。在各地质时期各地区的风化环境、搬运和沉积的动力学条件均存在差异性,因此土体不仅工程性质复杂而且其性质的区域性和个性很强。 岩石和土的强度特性、变形特性和渗透特性都是通过试验测定。在室内试验中,原状试样的代表性、取样过程中不可避免的扰动以及初始应力的释放,试验边界条件与地基中实际情况不同等客观原因所带来的误差,使室内试验结果与地基中岩土实际性状发生差异。在原位试验中,现场测点的代表性、埋设测试元件时对岩土体的扰动,以及测试方法的可靠性等所带来的误差也难以估计。 岩土材料及其试验的上述特性决定了岩土工程学科的特殊性。岩土工程是一门应用科学,在岩土工程分析时不仅需要运用综合理论知识、室内外测成果、还需要应用工程师的经验,才能获得满意的结果。在展望岩土工程发展时不能不重视岩土工程学科的特殊性以及岩土工程问题分析方法的特点。 土木工程建设中出现的岩土工程问题促进了岩土工程学科的发展。例如在土木工程建设中最早遇到的是土体稳定问题。土力学理论上的最早贡献是1773年库伦建立了库伦定律。随后发展了Rankine(1857)理论和Fellenius(1926)圆弧滑动分析理论。为了分析软粘土地基在荷载作用下沉降随时间发展的过程,Terzaghi(1925)发展了一维固结理论。回顾

土的工程地质性质

土的工程地质性质 一、土的成因类型特征 根据土的地质成因,土可分为残积土、坡积土、洪积土、冲积土、湖积土、海积土、冰积及冰水沉积土和风积土等类型。一定成因类型的土具有一定的沉积环境、具有一定的土层空间分布规律和一定的土类组合、物质组成及结构特征。但同一成因类型的土,在沉积形成后,可能遭到不同的自然地质条件和人为因素的变化,而具有不同的工程特性。 1. 残积土 形成原因:岩石经风化后未被搬运的原岩风化剥蚀后的产物,其分布主要受地形的控制,如在宽广的分水岭地带及平缓的山坡,残积土较厚。 工程特征:一般呈棱角状,无层理构造,孔隙度大;存在基岩风化层(带),土的成分和结构呈过渡变化。 工程地质问题: (1)建筑物地基不均匀沉降,原因土层厚度、组成成分、结构及物理力学性质变化大,均匀性差,孔隙度较大; (2)建筑物沿基岩面或某软弱面的滑动等不稳定问题,原因原始地形变化大,岩层风化程度不一。 2. 坡积土 形成原因:经雨雪水洗刷、剥蚀、搬运,及土粒在重力作用下顺着山坡逐渐移动形成的堆积物,一般分布在坡腰上或坡脚下,上部与残积土相接。 工程特征:具分选现象;下部多为碎石、角砾土;上部多为粘性土;土质(成分、结构)上下不均一,结构疏松,压缩性高,土层厚度变化大。 工程地质问题:建筑物不均匀沉降;沿下卧残积层或基岩面滑动等不稳定问题。 3. 洪积土 形成原因:碎屑物质经暴雨或大量融雪骤然集聚而成的暂时性山洪急流挟带在山沟的出口处或山前倾斜平原堆积形成的洪积土体。山洪携带的大量碎屑物质流出沟谷口后,因水流流速骤减而呈扇形沉积体,称洪积扇。 工程特征:具分选性;常具不规划的交替层理构造,并具有夹层、尖灭或透镜体等构造;近山前洪积土具有较高的承载力,压缩性低;远山地带,洪积物颗粒较细、成分较均匀、厚度较大。 工程地质问题:洪积土一般可作为良好的建筑地基,但应注意中间过渡地带可能地质较差,因为粗碎屑土与细粒粘性土的透水性不同而使地下水溢出地表形成沼泽地带,且存在尖灭或透镜体。 4. 冲积土 形成原因:碎屑物质经河流的流水作用搬运到河谷中坡降平缓的地段堆积而形成,发育于河谷内及山区外的冲积平原中。根据河流冲积物的形成条件,可分为河床相、河漫滩相、牛轭湖相及河口三角洲相。 工程特征:古河床相土压缩性低,强度较高,而现代河床堆积物的密实度较差,透水性强;河漫滩相冲积物具有双层结构,强度较好,但应注意其中的软弱土层夹层;牛轭湖相冲积土压缩性很高、承载力很低,不宜作为建筑物的天然地基;三角洲沉积物常常是饱和的软粘土,承载力低,压缩性高,但三角洲冲积物的最上层常形成硬壳层,可作低层或多层建筑物的地基。

工程地质实习报告

防灾科技学院 实习报告书 专业土木工程 系别 报告题目土木工程地质实习 报告人班级 指导教师带队教师 实习时间2012.5-6月周末实习单位 教务处监制

一、实习目的 土木工程地质实习分为野外工程地质认识和室内资料分析两部分。野外工程地质认识内容包括基本地质现象和工程地质条件认识;室内资料分析包括野外资料成果整理和汇总、土质边坡稳定性分析计算和结构面统计分析。 通过本次实习,可使学生初步掌握地质学、工程地质学的野外工作方法和内容,加深对工程地质学中岩土体工程地质特性的认识,为后续专业课程学习奠定基础。通过实习还可以了解一些基本的工程地质软件的应用技术,提高学生的实际工作能力。 二、实习任务 (一)野外部分 北京市海淀区温泉镇、门头沟区军庄镇工程地质野外实训基地野外地质认识实习,时间一天;天津蓟县工程地质野外实训基地,时间一天。 (二)室内部分 学院机房野外地质实习成果整理和汇总、专门软件的使用,时间共计三天。 三、实习日志 5月6日,晴:我们先到北京市海淀区温泉村进行岩性认识,风化认识。接着来到了北京市门头沟军庄镇军庄火车站进行岩性认识,构造认识。经过一中午的休整,下午来到了妙峰山进行构造认识。 5月20日,阵雨:我们先是到了罗庄子镇杨庄水库进行地形认识,构造认识,工程地质讲解。休整以后来到了洪水庄进行工程地质讲解。 四、实习成果 (一)岩性的认识 1. 沉积岩:sediments 过去曾称水成岩。沉积岩是由成层沉积的松散沉积物固结而成的岩石。如碎屑岩(砾岩、砂岩、粉砂岩、风成岩、冰碛岩)是从来源区机械破碎的较老岩石的碎屑经过水或大气或冰的搬运及沉积形成的;化学岩(如岩盐或石膏)是从溶液中沉淀形成的,而生物岩(如某些石灰岩)是由动物及植物的遗体或其分泌物形成的。 军庄火车站的岩类中泥岩、砂岩、页岩、砾岩这几类都属于沉积岩。 泥岩:一种由泥巴及黏土固化而成的沉积岩,其成分与构造和页岩相似但较不易碎。一种层理或页理不明显的粘土岩。泥质岩是粒度<0.0039mm(即<4μm)主要由粘土矿物组成

4 岩土工程性质

第四章岩土体工程性质 一、名词解释 .岩石风化作用 岩石形成后,地表附近的完整岩石,会在温度、水溶液、气体及生物等自然因素作用下,逐渐产生裂隙、发生机械破碎和矿物成分的改变,丧失完整性,这个过程称为岩石风化作用。 .物理风化作用 岩石在自然因素作用下发生机械破碎,而无明显成分改变的风化作用称物理风化作用,又称机械风化作用。 .化学风化作用 岩石在自然因素作用下发生化学成分改变,从而导致岩石破坏为化学风化作用。 .生物风化作用 岩石风化过程有生物活动的参与称生物风化,如岩石裂隙中生长的树,随着树的生长,根系发育延伸,岩石被劈裂,即属生物物理风化;岩石表面生长的地衣分泌有机酸腐蚀岩石,使其分解,即属生物化学风化。 .风化程度 岩石风化后工程性质改变的程度。 .饱和重度 天然状态下,单位体积岩石土中包括固体颗粒、一定的水和孔(裂)隙三部分,若水把所有孔隙充满,则为岩土的饱和重度。 .岩石吸水率 在常压条件下,岩石浸入水中充分吸水,被吸收的水质量与干燥岩石质量之比为吸水率。 .液性指数 黏性土的天然含水率和塑限的差值与塑性指数之比。 .弹性模量 岩石的弹性模量是变形曲线弹性段(直线段)的斜率。 .岩体

岩体通常是指由各种岩石块体和不连续面组合而成的“结构物”。 .结构面 岩体被不连续界面分割,这些不连续界面被称为岩体的结构面。 二、单选 .冰劈作用是( )。 .物理风化 .生物风化 .化学风化 .差异风化 .因强烈蒸发使地下水浓缩结晶,导致岩石裂缝被结晶力扩大,叫做( )。 .热胀冷缩作用 .盐类结晶作用 .冰劈作用 .碳酸化作用 .黄铁矿在空气或水中生成褐铁矿,在化学风化中应属于( )。 .溶解作用 .水化作用 .氧化作用 .碳酸化作用 .硬石膏转变成石膏体积增大 倍,使岩石破坏,在化学风化中应属于( )。 .溶解作用 .水化作用 .氧化作用 .碳酸化作用 .生物物理风化的主要类型是( )。 .冰劈作用 .热胀冷缩作用 .盐类结晶作用 .根劈作用 .抗风化能力最强的矿物是( )。 .正长石 .斜长石 .石英 .方解石 .影响岩石风化的内部因素是( )。 ~ .湿度和压力 .化学活泼性流体 .岩石性质和地质构造 .矿物的联结力 .岩石浸水后强度降低的性能叫做岩石的( )。 .吸水性 .软化性 .可溶性 .崩解性 .土的含水率是指( )。 .土中水的质量与土粒质量之比 .土中水的质量与土体总重量之比 .土中水的体积与土粒体积之比 .土中水的体积与土体总体积之比 .判别黏性土软硬状态的指标是( )。 .塑性指数 .液限 .液性指数 .塑限 .岩石的强度指标,通常是用岩石的( )来表示。 .抗压强度 .抗拉强度 .抗剪强度 .抗扭强度

岩土工程复习题及答案

1.简述采矿工程中岩体力学的特点。 ①采矿工程多处于地下较深处,而其它地下工程多在距地表较近(几十米)的范围内; ②对矿山工程,只要求在开采期间不破坏,在采后能维持平衡状态不影响地表安全即可,故其计算精度、安全系数及加固等方面均低于国防、水利工程的标准;③矿山地质条件复杂,又受矿床赋存条件限制,故采矿工程的位置选择性不大,同时采掘工作面不断变化,因而采矿工程岩石力学具有复杂性的特点 2.绘图并说明岩石的应力-应变全过程曲线。 3. 3、简述岩石在三向压力作用下的变形规律。 1、裂隙压密阶段(OA)。曲线上凹,体积缩小;A点: 压密极限 2、线弹性变形阶段(AB)。呈直线,体积仍缩小;B 点:弹性极限 3、微裂隙稳定发展阶段(BC)。近似线弹性,体积变 形由缩小转为增大,发生“扩容”;C点:屈服极限 屈服点:岩石从弹性变为塑性的转折点 4、非稳定发展阶段(CD) 5、裂隙扩展、新裂隙产生,体积膨胀加剧,显示 宏观破坏迹象,岩石承载能力达到极限;D点:峰值强度/强度极限,即单轴抗压强度 6、残余强度阶段(DE)岩石全面破坏,承载能力下 降,但尚有承载力,此为岩石材料特点之一 岩石三向压力(σ1>σ2=σ3)作用下变形规律 1随着围压(σ2=σ3)增大,岩石抗压强度显著增加; 2随着围压(σ2=σ3)增大,岩石变形显著增大; 3随着围压(σ2=σ3)增大,岩石弹性极限显著增大; 4随着围压(σ2=σ3)增大,岩石性质发生变化:由弹性→塑性

4. 解释岩石的不稳定蠕变曲线,试述如何利用它进行岩体工程破坏的预报? 5. 绘图并说明岩石力学介质常用的理论模型。 ①岩石自身性质 ⑴ 虎克体——弹簧元件 理想弹性元件,呈线弹性,完全服从虎克定律,其力学关系为 由于弹性模量E 为常量,故变形与时间无关,有 dt d E dt d ε σ= ⑴ 过渡蠕变阶段(Ⅰ) 在加载瞬间有一弹性变形ε0,继而以较快的速度增长,随后蠕变速度逐渐降低,并过渡到等速蠕变阶段。 若在此阶段内卸载,则会出现瞬间弹性变形(PQ 段),和通过一段时间才能恢复的变形(QR 段) ⑵ 稳定蠕变阶段(Ⅱ) 变形缓慢,应变与时间近于线性关系,变形速度保持恒定 若在此阶段卸载,则不仅出现瞬间的弹性恢复(TU 段)和弹性后效(UV 段),还会有不可恢复的永久变形残留 ⑶加速蠕变阶段(Ⅲ) 蠕变速度加快,内部裂隙迅速发展,促使变形加剧,直到破坏 * 利用蠕变曲线进行岩石工程破坏预报。若发现岩体某部分位移速度开始由等速转入加速发展时,表明即将发生破坏;若给出加速蠕变起始点时间,及时撤离,可避免灾难发生 ⑶ 牛顿体——阻尼元件 是一种理想的粘性流体,其流动性质服从牛顿粘性定律,即粘性体的流动速度(或应变速度)与应力成比例关系: η——液体粘性系数 ⑵ 库仑体——摩擦元件 理想塑性体,其力学关系为: ???≥∞ →<=) () (000σσσσε σ0——屈服极限

第4章各类土的工程地质特征

第四章各类土的工程地质特征 1、下列关于冻土的叙述,不正确的是( )。 A. 冻土包括多年冻土和季节性冻土 B. 冻土不具有流变性 C. 冻土为四相体 D.冻土具有融陷性 2、吸水膨胀,失水收缩的特殊粘性土是( )。 A.黄土 B.红土 C.膨胀土 D.冻土 3、下列关于膨胀土叙述不正确的是( )。 A. 天然状态下的膨胀土,多呈硬塑到坚硬状态 B. 膨胀土失水收缩 C. 膨胀土遇水膨胀 D. 膨胀土的胀缩不可逆 4、下列关于红粘土的叙述不正确的是( )。 A. 粘土是由碳酸盐类岩石经一系列地质作用形成的 B. 自地表以下,红粘土逐渐由坚硬过渡到软塑状态 C. 红粘土是由变质作用形成的 D. 红粘土中的裂隙发育 5、淤泥质土是由( )地质作用形成的。 A. 河流的地质作用 B.湖泊的地质作用 C. 洪流地质作用 D.风化作用 6、黄土经冲刷、搬运、沉积等地质作用形成的夹有砂、砾石并具层理的黄色土状沉积物称为( )。 A. 膨胀土 B.黄土状土 C. 非湿陷性黄土 D.湿陷性黄土 7、泥炭及淤泥质土是( )形成的。 A.河流的地质作用 B.湖泊的地质作用 C. 海洋地质作用 D.风化作用

8、盐渍土不具有( )。 A. 溶陷形 B.膨胀型 C. 腐蚀性 D.崩解性 9、盐渍土在浸水后强度明显( )。 A.提高 B.降低 C.不一定 D.一般 10、黄土的( )是黄土地区浸水后产生大量沉陷的重要原因。 A. 湿陷性 B. 崩解性 C. 潜蚀性 D. 易冲刷性 11、风成黄土是一种( )。 A.原生黄土 B.次生黄土 C.残积黄土 D.由风化作用形成的黄土 12、具有承载力低,沉降量大的土是( )。 A.黄土 B.软土 C.膨胀土 D.冻土 13、膨胀土遇水后膨胀,是因为膨胀土中含有较多的( )。 A.蒙脱石 B.高岭石 C.白云石 D.长石 14、多年冻土主要分布在我国的( )。 A.长江中下游 B.高纬度和高海拔地区 C.云贵高原 D.湖沼地带 15、冻土的冻胀融沉性是因为冻土中含有较多的( )。 A.易溶盐 B.水 C.孔隙 D.有机质

连云港地区软土的工程地质性质及岩土工程勘察的注意问题

连云港地区软土的工程地质性质及岩土工程勘察的注意问题 摘要:本文叙述了连云港市区软土分布成因、特征物理学性质,根据大量工作实践,提出工程勘察中应注意的八个问题。 关键词:软土、性质、工程勘察、注意问题。 1连云港市区软土分布、成因 连云港地处于黄海之滨,包括东海县、赣榆县、灌云县、藻南县等四个县,新浦区、海州区、连云区等三个区,地貌上多属黄海海积平原,其中有我国著名的花果山(云台山)为低山丘陵。连云港市区除了云台山及孔望山、锦屏山之外都普遍分布着厚度1-25米不等的软土。本人根据大量工作实践,总结出一条经验:一般自然地面标高在4.00米(黄海高程)以下的区域会存在软土,即使在山前地带也存在。而地面标高在5.00米以上的区域则不会存在软土(特殊情况例外,如山前的近代滑坡体、崩塌堆积物的下部可能会有)。 下表为连云港市区不同地段软土顶底板埋深 地点华联火车站海州墟沟出口加工区开发区浦南燕尾港 顶板深度 1.0-1.5 1.5-2.0 1.5-2.0 1.5-2.5 1-1.5 1.5-2.0 1.5-2.0 1-2.0 底板深度11-11.5 11.5-12.0 10-12* 4-12 11-13* 10-13 5.5- 6.5 16-18 *海州区山前个别地区淤泥厚度可达20米 **开发区山前个别地区淤泥厚度可达25米(古海冲沟) 连云港市区除了山区之外的平原区,都广泛分布着软土。据东海县志记载:在明代还是为海中的“仙山”,正如吴承恩所描写的花果山。当我们从山下向云台山上爬或走时,来到一片陡坡或山涯前,常常看到原来海浪冲蚀的“海蚀穴”,在近代还是一片汪洋大海。软土的成因为海积-冲海积。排除局部的海沟和山前因素,连云港市区的软土深度一般在10-13米。 2特征

各类土的工程地质特性

第四章各类土的工程地质特性 一、一般土的工程地质特性 一般土按粒度成分特点,常分为巨粒土、粗粒土及细粒土三大类。 巨粒土和粗粒土为无粘性土,细粒土为粘性土。 粗粒土又分为砾类土和砂类土。 巨粒土和粗粒土的工程地质性质主要取决于粒度成分和土粒排列的松密情况,这些成分和结构特性直接决定着土的孔隙性、透水性、和力学性质。 细粒土的性质取决于粒间连结特性(稠度状态)和密实度,这些都与土中粘粒含量、矿物亲水性及水和土粒相互作用有关。 砾类土和砂类土为单粒结构;细粒土为团聚结构。 二、几种特殊土的工程地质特征 1、淤泥类土 淤泥类土是指在静水或水流缓慢的环境中沉积,有微生物参与作用的条件形成的,含较多有机质,疏松软弱(天然孔隙比大于1,含水率大于液限)的细粒土。孔隙比大于1.5的称为淤泥,小于1.5大于1的称为淤泥质土。 工程地质性质的基本特点: ①高孔隙比,高含水率,含水率大于液限 ②透水性极若 ③高压缩性 ④抗剪强度很低,且与加荷速度和排水固结条件有关。由于这类土饱水而结构疏松,所以 在振动等强烈扰动下其强度也会剧烈降低,甚至液化变为悬液。这种现象称为触变性。 同时还具有蠕变性。

淤泥类土的成分和结构是决定其工程地质性质的根本因素。有机物和粘粒含量越多,土的亲水性越强,则压缩性越高;孔隙比越大,含水率越高,压缩性越高,强度越低,灵敏度越大,性质越差。 2、黄土 黄土是一种特殊的第四纪陆相松散堆积物。颜色多呈黄色、淡黄色或褐黄色,颗粒组成以粉粒为主,粒度大小较均匀。天然剖面上垂直节理发育。被水浸润后显著沉陷(湿陷性)。 一般工程地质性质: ①密度小,孔隙率大 ②含水较少 ③塑性较弱 ④透水性较强 ⑤抗水性弱 ⑥压缩性中等,抗剪强度较高。 ⑦具有湿陷性(自重湿陷和非自重湿陷) 湿陷系数,自重湿陷系数 3、膨胀土 又称胀缩土,系指随含水量的增加而膨胀,随含水量的减少而收缩,具有明显膨胀和收缩特性的细粒土。 成分和结构特征: 粘粒含量高,一般35%以上。矿物成分以蒙脱石和伊利石为主,高岭石含量较少。 土体表层常出现各种纵横交错的裂隙和龟裂的现象,使土的完整性破坏,强度降低。

相关文档
最新文档