证明n元均值不等式

证明n元均值不等式

证明n 元均值不等式

12n a a a +++≥L 证明:

首先证明,23n 2,222L L 当,,,,时,不等式成立。

显然,12a a +≥

又因为1234a a a a +++≥≥ 同理可以证明得到n 2也成立。

再证明,当k k+1n 22∈(,)

也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则

有k k 1222a a a +++≥L

k+1k+121222a a a +++≥L

则k k k 121222+12+i =+++n a a a a a a a a ++++++L L L ()

k k k k k k k+12k 2121222+1k 22+i +2-i =++++2-i 2n a a a a a a a a +++++?+≥L L L (则()())

k 2k 22-2i i -其中)个(加所得。

k k k k k k 2k 21222+12+i 2-i +++2+i a a a a a ?+++≥L L ()最后,在式两边同时减去就得到了()()

12n a a a +++≥L 即:

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

利用均值不等式证明不等式

1,利用均值不等式证明不等式 (1)均值不等式:设12,,...,n a a a 是n 个正实数,记 12111n n n H a a a = ++???+ n G = 12 n n a a a A n ++???= n Q = 它们分别称为n 个正数的调和平均数,几何平均数,算术平均数,平方平均数。有如下关系:n n n n H G A Q ≤≤≤.等号成立的充要条件是12n a a a ==???=。 先证n n A G ≥ 证法一: .n n A G ≥用数学归纳法证明: 20,n n n n n A G A G =-=≥≥当时,成立。 1.k k k k A G ≥≥假设:n=k 2时成立,即有: 11111 111k k k k k k k k k k k k k k k k A A A G G G A G ++++++++≥?≥n=k+1时:只需证: 12n a a a ≤≤≤L 不妨设:0< 1 1 11 1 1111 1= 11 k k k k k k i i i i k i i i i k a a a a A k k k k +++++====+?? ?? ?? ? ? ? ? ? ?=+-++ ? ? ? ? ? ??? ???? ∑∑∑∑1 101 1 11111 1 k k k k k k i i i i i i i i k k a a a a C C k k k k ++====++?????? ? ? ? ? ? ?≥+-+ ? ? ? ? ? ?? ? ?? ?? ∑∑∑∑ 1111 111(1)(11).1k k k k k k i i i i k i i i i k k k a a a a k k a A a k k k k +====++??? ??? ? ? ? ? ? ?=+-+-==+ ? ? ? ? ? ??? ???? ∑∑∑∑ 111 11.1k k k k k k k k k A G a n k A G +++++∴≥==+所以对时亦成立。原不等式成立。 . n n A G ≥证法二:用反向数学归纳法证明:

浅谈用换元法证明不等式

浅谈用换元法证明不等式 刘景 (茂名学院高州师范分院数学与计算机系 307数学1班) [摘要]换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元的思想与方法来解就很方便,换元法多用于条件不等式的证明中。 [关键词]换元;不等式;化繁为简 不等式的概念:作为表达同类量之间的大小关系的一种数学形式,不等式必须在定义了大小关系的有序集合上研究.由于复数域没有定义大小,所以不等式中的数或字母表示的数都是实数.用符号>或<联结两个解析式所成的式子,称为不等式.不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。要处理好不等式的证明,必须注意: 1、熟练地掌握不等式的基本性质、重要不等式。 2、扎实的掌握不等式证明的常规方法。 3、注意和其他知识联系和综合运用。 4、不断地总结证明不等式的规律和技巧,不断地从正反两方面汲取解题经验。 我们知道,无论在中学,还是在大学,不等式的证明都是一个难点。人们在证明不等式时创造了许多方法(比较法、综合法、分析法、辨别式法、构造函数法、反证法、放缩法等等),其中有换元法。

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 不等式的证明有三难:证明入口难,条件使用难,变形方向难.如果用换元法,引进恰当的新元素,可将题目中分散的条件联系起来,或把隐含的条件显示出来,或把条件与结论联系起来,或变形为熟悉的问题.因此,换元法常常可以攻破三道难关。 下面我们探索怎样用换元法证明不等式的几种方法。 一、几何换元法 例1、在△ABC 中,b CA a BC c AB ===,,,内切圆交AB 、BC 、CA 分别于D 、E 、F ,如图1,则可设x z c z y b y x a +=+=+=,,,其中0,0,0>>>z y x 。几何换元法能达到利用等式反映出三角形任意两边之和大于第三边的不等关系的功效。 设c b a ,,为三角形三边,求证:3≥-++-++-+c b a c b c a b a c b a 图1 证明:设,,,x z c z y b y x a +=+=+=,其中0,,>z y x 则c b a c b c a b a c b a -++-++-+=y x z x z y z y x 222+++++ =?????????? ??++???? ??++??? ??+y x x y y z x y x z z x 21322221=??? ? ???+?+?≥y x x y y z z y x z z x 原不等式得证。

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

常用均值不等式及证明证明

常用均值不等式及证明证明 这四种平均数满足Qn An Gn H ≤≤≤n + ∈R n a a a 21、、、Λ,当且仅当n a a a 21===Λ时取“=”号 仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2) 由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b ,有ab 2b a 22 ≥+ (当且仅当a=b 时取“=”号), ab 20b ,a 22>> (4)对实数a,b ,有 ()()b a b b a --a ≥ (5)对非负实数a,b ,有 02a 22≥≥+ab b

(8)对实数a,b,c ,有 ac bc ab c b a 222++≥++ (10)对实数a,b,c ,有 3 3 a abc c b ≥++ 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、 柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设A ≥0,B ≥0,则()()B n n nA A B A 1-n +≥+ 注:引理的正确性较明显,条件A ≥0,B ≥0可以弱化为A ≥0,A+B ≥0 当n=2时易证; 假设当n=k 时命题成立,即 那么当n=k+1时,不妨设 1 a +k 是 1 21a ,,a ,a +k Λ中最大者,则 1211k ka +++++≥k a a a Λ 设 k a a a +++=Λ21s 用归纳假设 下面介绍个好理解的方法 琴生不等式法 琴生不等式:上凸函数()n x x x x f ,,,,21Λ是函数()x f 在区间(a,b) 内的任意n 个点,

用换元法解不等式

.. .. . . . . 用换元法解不等式 【摘要】换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的 结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。 换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元的思想与方法来解就很方便,换元法多用于条件不等式的证明中,换元法一般有增量换元、三角换元、代数换元等几种方法。 【关键词】 换元法 三角换元 代数换元 做任何事情都要讲究方法。方法对头,事半功倍;方法不当,事倍功半。解答数学问题关键也在于掌握思考问题的方法,思维方确,问题就容易解决。波利亚说过:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。” 换元法是数学中的一个基本方法之一。换元法又称辅助元素法、变量代换法。通过引进 新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量围的选取,一定要使新变量围对应于原变量的取值围,不能缩小也不能扩大。下面通过几个例题介绍几种换元的思想和方法。 一、增量换元 若一变量在某一常量附近变化时,可设这一变量为该常量加上另一变量。 例1 设()1,0,,∈z y x 并且它们的和为2 ,求证 3 4 1≤ ++≤zx yz xy . 分析与证明 由条件()1,0,,∈z y x 可令3211,1,1a z a y a x -=-=-=,且()1,0,,321∈a a a ,则

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

用换元法解不等式

用换元法解不等式 【摘要】换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的 结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。 换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元的思想与方法来解就很方便,换元法多用于条件不等式的证明中,换元法一般有增量换元、三角换元、代数换元等几种方法。 【关键词】 换元法 三角换元 代数换元 做任何事情都要讲究方法。方法对头,事半功倍;方法不当,事倍功半。解答数学问题关键也在于掌握思考问题的方法,思维方法正确,问题就容易解决。波利亚说过:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。” 换元法是数学中的一个基本方法之一。换元法又称辅助元素法、变量代换法。通过引进 新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。下面通过几个例题介绍几种换元的思想和方法。 一、增量换元 若一变量在某一常量附近变化时,可设这一变量为该常量加上另一变量。 例1 设()1,0,,∈z y x 并且它们的和为2 ,求证 3 4 1≤ ++≤zx yz xy .

分析与证明 由条件()1,0,,∈z y x 可令3211,1,1a z a y a x -=-=-=,且()1,0,,321∈a a a ,则 1321=++a a a . ()()()()()()133221111111a a a a a a zx yz xy --+--+--=++∴ ()()1332213212-3a a a a a a a a a +++++= 11133221>+++=a a a a a a 又 ()1332213-1a a a a a a ++()()1332212 3213a a a a a a a a a ++-++= =1332212 32221a a a a a a a a a ---++ ()()()[] 02 1 213223221≥++++-= a a a a a a , 3 1 133221≤++∴a a a a a a . 1332211a a a a a a zx yx xy +++=++Θ, 34 3111=+≤++<∴zx yz xy . 例 2 已知2,2>>b a ,求证 ab b a <+. 证 设n b m a +=+=2,2,显然0,0>>n m . 则()()n m n m ab b a ++-+++=-+2222 mn n m n m ----++=2244 0<---=mn n m 故ab b a <+. 注 增量换元的目的,在于从不等式b a ≥转化为x b a +=这个等式。再应用这个不等式往不等转化,以达到证题的目的。 二、三角换元 在解某些不等式,迭用适当的三角函数换元,把代数问题转化为三角问题,从而充分利用函数的性质解决问题。 例3 若1=++r q p ,且1,,0≤≤r q p ,求证:3≤++r q p .

分式不等式放缩裂项证明

放缩法的常见技巧 (1)舍掉(或加进)一些项(2)在分式中放大或缩小分子或分母。(3)应用基本不等式放缩(例如均值不等式)。(4)应用函数的单调性进行放缩(5)根据题目条件进行放缩。(6)构造等比数列进行放缩。(7)构造裂项条件进行放缩。(8)利用函数切线、割线逼近进行放缩。 使用放缩法的注意事项 (1)放缩的方向要一致。(2)放与缩要适度。 (3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。所以对放缩法,只需要了解,不宜深入。 先介绍工具 柯西不等式(可以通过向量表示形式记住即摸摸大于向量乘积) 均值不等式 调和平均数≤几何平均数≤算术平均数≤平方平均数 绝对值三角不等式 定理1:|a|-|b|≤|a+b|≤|a|+|b|? 推论1:|a1+a2+a3|≤|a1|+|a2|+|a3|? 此性质可推广为|a1+a2+…+an|≤|a1|+|a2|+…+|an|. 推论2:|a|-|b|≤|a-b|≤|a|+|b|? 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立. 常用放缩思想

这几个务必牢记 不常见不常用的不等式 这几个一般用不到,放的太大了,知道有印象就好了下面就是常用思路了,主要就是裂项部分

二项平方和 f(x)=(a1x-b1)^2+(a2x-b2)^2+……(anx-bn)^2 由f(x)≥0可得△小于等于0

1.分式不等式中的典范,典范中的典范,放缩、裂项、去等,步步精彩 解析: 步步经典,用笔化化就能明白思想,换元或许更直观,即令 t=1/(x+2) 第一步意义--开不了方的,开方,并且可取等号 第二步意义--开不了方的,开方,裂项,并且可取等号 个人认为这俩个放缩,很犀利,没见过,看似难实则简单, 看似简单实则难 2.构造+三角形★★★★ 平面内三点A、B、C,连接三点,令AB=c, AC=b,BC=a,求 解析: 构造,主要就是构造,b/c就是很 明显的提示。 三角形中两边之和大于第三边,两 边之差小于第三边。 构造★★★★

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左面,令11 1)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

均值不等式定理求最值

均值不等式定理求最值 复习目标:熟练掌握均值不等式求最值的思想方法和实际应用 一、 基础知识 1、 均值不等式定理 (1)、ab b a b a 2R,22≥+∈、 (当且仅当b a =时取“=”) (2)、 ab b a R b a 2,≥+∈+、 (当且仅当b a =时取“=”) (3)、2 2,,2 2b a b a ab R b a +≤+≤∈+ (当且仅当b a =时取”=”) 此定理六个方面的应用要多体会掌握。 (4)、abc c b a R c b a 3,333≥++∈+、、 (当且仅当c b a ==时取“=”) (5)、3 3,abc c b a R c b a ≥++∈+、、 (当且仅当c b a ==时取”=”) 2、 均值不等式定理求最值的基本原则 (1)、“一正”:要求在正数条件下或能转化为正数条件的情况下才用均值不等式定理。 (2)、“二定”:即“和定积大与积定和小”原则,这一原则要求:求某些变量的和的最小值问题应使变量的乘积为定值;而求变量的乘积的最大值问题应转化到变量的和为定值。反之,变量的和为定值必转化为求变量积的最大值问题,变量的积为定值必转化为求变量和的最小值问题。总之,使用均值不等式定理后使变量消去成常数是均值不等式定理求最值的指导思想,也是产生各种技巧的力量源泉。 (3)、“三相等”:即“二”成立原则,这一原则要求验算“二”成立的充要条件,这是保证所求最值正确与否的关键。完成这一步骤主要看两点:一看“二”成立的充要条件是否有解;二看“二”成立的充要条件有解时的解是否在函数定义域内。如这两点均符合要求,所求函数最值就正确无疑了。 3、均值不等式定理及在求函数最值中的应用是高考热点之一。均值定理的运用最为灵活,往往需灵活变形才能使用。用均值不等式求最值应着重注意三原则:一正、二定、三相等,其中“三相等”就是等号成立的充要条件,这是求解变量取什么值可有最值的唯一途径,应该注意求得的变量是否在函数的定义域内或满足题中的限制条件下,这也是验证这种方法是否可行的唯一办法。如不满足三相等条件,要及时调整解题思路,另寻解题方法。而转到函数单调性和数型结合是常见和有效的方法。其中函数x b ax y += )0,0(>>b a 型(对a 、b 其它情况可类似讨论)在求函数最值中的应用要掌握,该函数是奇函数且在],0(a b 单调递减,在),[+∞a b 单调递增。 二、基础训练 1、 函数)0(16>+=x x x y 的最小值是____________,相应=x _____________ 2、 函数1222++=x x y 的最小值是____________,相应=x _____________

相关文档
最新文档