用圆二色光谱研究蛋白质与小分子作用后的构象变化

用圆二色光谱研究蛋白质与小分子作用后的构象变化
用圆二色光谱研究蛋白质与小分子作用后的构象变化

用圆二色光谱研究蛋白质与小分子作用后的构象变化

一.实验目的

1.了解圆二色(CD)光谱研究蛋白质二级构象的基本原理和方法。

2.能设计实验用CD光谱检测蛋白质与小分子作用后的构象变化,能用简单方法计算二级结构

中螺旋的含量。

二.实验原理

1.CD光谱的基本知识

圆二色性是研究分子立体结构和构象的有力手段。在一些物质的分子中,没有任意次旋转反映轴,不能与镜像相互重叠,具有光学活性。电矢量相互垂直,振幅相等,位相相差四分之一波长的左和右圆偏振光重叠而成的是平面圆偏振光。平面圆偏振光通过光学活性分子时,这些物质对左、右圆偏振光的吸收不相同,产生的吸收差值,就是该物质的圆二色性。圆二色性用摩尔系数系数差ΔεM来度量,且有关系式:ΔεM = εL –εR,其中,εL和εR分别表示左和右偏振光的摩尔吸收系数。如果εL –εR >0,则ΔεM为“+”,有正的圆二色性,相应于正Cotton效应;如果εL –εR <0,则ΔεM为“-”,有负的圆二色性,相应于负Cotton效应。

由于这种吸收差的存在,造成了矢量的振幅差,因此从圆偏振光通过介质后变成了椭圆偏振光。圆二色性也可用椭圆度θ或摩尔椭圆度[θ]度量。[θ]和ΔεM之间的关系式:

[θ]=3300*ΔεM

圆二色光谱表示的[θ]或ΔεM与波长之间的关系,可用圆二色谱仪测定。一般仪器直接测定的是椭圆度θ,可换算成[θ]和ΔεM:

[θ] = 100θ/cl

ΔεM = θ/33cl

其中,c表示物质在溶液中的浓度,单位为mol/L;l为光程长度(液池的长),单位为cm。输入c和l的值,一般仪器能自动进行换算,给出所需要的关系。

圆二色光谱仪需要将平面偏振调制成左、右圆偏振光,并用很高的频率交替通过样品,因而设备复杂,完成这种调制的是电致或压力致晶体双折射的圆偏振光发生器(也称Pocker池或应力调制器)。圆二色谱仪一般采用氙灯作光源,其辐射通过由两个棱镜组成的双单色器后,就成为两束振动方向相互垂直的偏振光,由单色器的出射狭缝排除一束非寻常光后,寻常光由CD调制器制成交变的左圆偏振光、右圆偏振光,这两束圆偏振光通过样品产生的吸收差由光电倍增管接受检测。

测试时要通入氮气赶走管路中的水蒸气和光源产生的臭氧(臭氧会腐蚀反射镜)。

2.CD测蛋白质二级结构的基本原理

蛋白质是由氨基酸通过肽链组成的具有特定结构的生物大分子。蛋白质中氨基酸残基的排列次序是蛋白质的一级结构,而肽链中局部肽段骨架形成的构象称为二级结构,二级结构是靠台联股价中的烫机上的氧原子和亚胺基上的氢之间的氢键来维系的,根据肽链的旋转方向

与氢键之间的夹角不同,蛋白质的二级结构主要分为:α螺旋、β折叠、γ转角和任意度较大的无规卷曲几类。这些二级结构的不对称性,使蛋白质具有光学活性,也就具有特征CD谱。α螺旋在222 nm和208 nm处有负Cotton效应,表现出两个负的肩峰谱带,在靠近192 nm有一正的谱带。β折叠的CD谱在216 nm有一负谱带,而在195-200 nm有一正谱带。γ转角和无规卷曲都有特征的CD谱。根据所测得的蛋白质的CD谱,以及已知结构的标准谱图,可计算这几种二级结构的含量,从而推断出蛋白质的二级构象。

由于222和208 nm是α螺旋的特征峰,最早估计α螺旋的含量从这两点的平均椭圆度得到:

fα,222 = -([θ]222 + 3000)/ 33000

或fα,208 = -([θ]208 + 4000)/ 29000

其中,fα是α螺旋所含的残基与整个蛋白质分子的残基数的百分比;[θ]222和[θ]208分别只在222和208 nm时的摩尔椭圆度。其他常数是根据实验推出的经验值。由于上式仅考虑了单波长时α螺旋的贡献,而忽略了其它组分对[θ]的贡献,具有一定的误差,但可以利用上面两式做快速简单的推算。

三.仪器与试剂

仪器:JASCO715型号的CD分光光度计;25 mL容量瓶;1 mL分度吸量管

试剂:牛血清白蛋白(BSA)(A.R.);V B12(A.R.);缓冲剂(A.R.)pH=4.0的HAc-NaAc和pH=8.0的磷酸盐体系;蒸馏水

四.实验步骤

1.准备样品

准确配制7.5 μg/mg的V B12溶液、5 μg/mg牛血清白蛋白溶液、pH=4的牛血清白蛋白溶液、pH=8的牛血清白蛋白溶液、pH=4的牛血清白蛋白+ V B12溶液和pH=8的牛血清白蛋白+ V B12溶液。蛋白质溶液中加入V B12后,需要放置一段时间,使蛋白质与V B12分子作用达到平衡。

2.开机

打开高纯氩气,通入光路。打开计算机,进入操作界面。开启氙灯,等约30 min,待仪器充分预热后,方可使用。

3.测试

将光路径为1 cm的样品池放入样品室中,进入测试界面,输入测试参数:灵敏度1000 mdeg;扫面范围250-200 nm;扫速50 nm/min;响应时间2 s;响应波长宽度1.0 nm;扫描次数1次。先测试蒸馏水背景,再分别测试配制的六份溶液。

4.关机

打开样品室,取出样品池;退出操作界面,关闭氙灯;关闭氮气,关闭主机电源;关闭计算机和打印机;清洗样品池。

五.数据处理

图1. BSA

使用公式:BSA平均分子量为67000,配制的BSA样品浓度为10ug/ml,换算得到BSA浓度为1.4925*10-7 mol/L [θ] = 100θ/cl,其中c =1.4925*10-7 mol/L,l = 1cm-1

根据杨氏公式fα,222 = -([θ]222 + 3000)/ 33000或fα,208 = -([θ]208 + 4000)/ 29000估算α螺旋的含量得到

fα,222 = -(-16096 + 3000)/ 33000=39.68%

fα,208 = -(-17983 + 4000)/ 29000=48.22%

图2. BSA,PH=8

根据杨氏公式fα,222 = -([θ]222 + 3000)/ 33000或fα,208 = -([θ]208 + 4000)/ 29000估算α螺旋的含量得到

fα,222 = -(-15955 + 3000)/ 33000=39.26%

fα,208 = -(-17213 + 4000)/ 29000=45.56%

图3.BSA,PH=4

根据杨氏公式fα,222 = -([θ]222 + 3000)/ 33000或fα,208 = -([θ]208 + 4000)/ 29000估算α螺旋的含量得到

fα,222 = -(-16472 + 3000)/ 33000=40.82%

fα,208 = -(-17865 + 4000)/ 29000=47.81%

图4. BSA +V B12

根据杨氏公式fα,222 = -([θ]222 + 3000)/ 33000或fα,208 = -([θ]208 + 4000)/ 29000估算α螺旋的含量得到

fα,222 = -(-16236 + 3000)/ 33000=40.10%

fα,208 = -(-21899+ 4000)/ 29000=61.72%

六.结果讨论

1. 从四张图中都能看到BSA在222nm和208nm存在两个负Cotton效应的峰,而在195nm处存在一个正Cotton效应的峰,这都是α螺旋的特征峰,证明存在α螺旋。从四组实验结果(如下表所示)可看出,用fα,222和fα,208计算得到的结果不完全一致,但在误差范围内可认为一致。PH=8时,BSA溶液α螺旋的含量变化不大,因为比较接近人体正常PH范围(7.35~7.45),当PH=4时,α螺旋的含量升高,且变化幅度大于PH=8,说明PH越大,α螺旋越不稳定,含量越低,酸性条件有利于α螺旋的稳定性。而且,PH变化越大,α螺旋的含量变化越大。比较BSA+ V B12溶液和BSA溶液α螺旋的含量可知,由于V B12中钴离子与BSA发生配位作用,从而造成α螺旋的含量升高。

2.杨氏算法只是一个经验公式该公式只考虑了单波长时α螺旋的贡献,忽略了其他组分对[θ]的贡献,具有一定的误差,只适合于α螺旋含量高的蛋白质的快速简单估算。

3.扫描多次可以进行数据累积,提高信噪比。

4.高纯N2的作用是保护仪器。因为作为紫外光源的氙灯燃烧会产生臭氧,对仪器有腐蚀性,而且在紫外区有一定吸收,影响结果的准确性。

5.实验过程中要严格按照BSA,BSA+PH=8,BSA+PH=4,BSA +V B12的顺序依次测量,防止上一个样品的残留部分对后一个样品的污染造成的影响,按影响从小到大可减小这种影响。

6.CD光谱的测量一般在蛋白质含量相对低(0. 01~0. 2 g/ L) 的稀溶液中进行,溶液最大的吸收不超过2。稀溶液可减少蛋白质分子间的聚集。但如果太稀,则导致蛋白质过多地吸附在容器壁上,影响实验的准确性。确定蛋白质的精确浓度是计算样品的二级结构的关键,一般蛋白质在280nm 附近的消光系数可用来计算浓度,但此处吸收信号与蛋白质的构象有关,该方法的误差一般可达到5 %。更精确的方法有:定量氨基酸分析;用缩二脲方法测量多肽骨架浓度或测氮元素的浓度;也可以在完全变性条件下测芳香氨基酸残基的吸收,来确定蛋白质的准确浓度。

七.注意事项

1.本实验比色皿需使用石英比色皿,因为玻璃在紫外区对光源有吸收,而且比色皿的纯度也对吸收有影响。

2.比色管定量取溶液时,要把样品溶液集中在容量瓶上部,用比色管针尖部分量取,不能有气泡。

3.蛋白质溶液黏性较强,易吸附在壁上,所以样品溶液定容后要摇匀,静置,而且每次使用前和使用后都要洗净容器。

4.放比色皿时QS标志要一致,以减少误差

5.样品测量前要用二次去离子水进行机械校准,以扣除水和比色皿的背景吸收,校正基线,而且必须先进行自检再放入样品,否则结果不准确。

八.思考题

1. 查阅相关资料,了解CD研究蛋白质的原理和各种计算拟合方法的特点。

答:蛋白质是由氨基酸通过肽键连接而成的具有特定结构的生物大分子,同时也是具有多个手性中心的分子。在蛋白质或多肽中,主要的光活性是肽链骨架中的肽键,芳香氨酸残基及二硫键。当平面圆偏振光通过这些光活性的生色基团时,光活性中心对平面偏振光中的左、右圆偏振的吸收不同,产生吸收差,由于这种吸收的存在,造成了偏振光矢量差,圆偏振光变成了椭圆偏振光,这就是蛋白质的圆二色性。fα,222 = -([θ]222 + 3000)/ 33000或fα,208 = -([θ]208 + 4000)/ 29000,fα是α螺旋所含的残基与整个蛋白质分子的残基数的百分比。多级线性回归是一种更完全、较简便的分析二级结构的方法。令f i是每种二级结构的分量。则有:

∑f i = 1 [θ]λ = ∑f i[θ]λ,i + Niose

其中,[θ]λ是实测的CD曲线在波长λ处的摩尔椭圆度;[θ]λ,i为每种构象在波长λ处的摩尔椭圆度。

2.根据所做的实验,查阅相关蛋白质的数据库,对比CD计算结果和X射线衍射或NMR方法得出的结果的不同。

答:X射线衍射是公认最准确的方法,但能得到单晶的蛋白质很少,且晶体状态与接近生理的溶液还是有些区别的。NMR虽然可以得到溶液中蛋白质结构的信息,但对于分子量相对较大、结构复杂的一些蛋白质计算就很复杂,难得到满意的结果。CD可快速地测得稀溶液中蛋白质的二级结构变化。

参考文献:

1.南开大学综合化学实验二分析化学实验讲义

2.酚酸类及生物碱类药物小分子和牛血清蛋白相互作用研究,谢余寰,广西大学硕士论文,

2008

3.圆二色光谱分析蛋白质构象的方法及研究进展,沈星灿等,分析化学评述与进展,2004,23,3

4.紫外圆二色光谱预测蛋白质结构的研究方法,黄汉昌等,化学通报,2007,7

5.荧光光谱在蛋白质分子构象研究中的应用,王守业等,化学进展,2001,13,4

6.金属离子与血清白蛋白结合反应研究进展,秦身钧等,河北师范大学学报,2003,27,1

金属一血清白蛋白的结构研究(V)—钴离子与HSA和BSA的相互作用,车云霞等,高等学校化学学报,1991,12(4):441—443

磁共振实验报告

近代物理实验题目磁共振技术 学院数理与信息工程学院 班级物理082班 学号08220204 姓名 同组实验者 指导教师

光磁共振实验报告 【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。 【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构 【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、基本知识 1、铷原子基态和最低激发态能级结构及塞曼分裂 本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级. 设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为 E=-μF·B0=g F m FμF B0(1) 这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ? 2F(F+1)(2) 图1 其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ? 2J(J+1)(3) 上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差 ΔE=g FμB B0(4) 式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

圆二色光谱实验报告

圆二色光谱实验 一、实验目的 1、了解圆二色(CD)光谱的原理和使用方法。 2、学会用圆二色光谱检测蛋白质二级构象的基本原理和方法,并学会分析物质的手性。 3、了解圆二色光谱仪的基本构造,并学会使用。 二、实验原理 1.CD光谱的基本知识 圆二色性是研究分子立体结构和构象的有利手段。在一些物质的分子中,没有任意次旋转反映轴,不能与镜像相互重叠,具有光学活性。电矢量相互垂直,振幅相等,位相相差四分之一波长的左和右圆偏振光重叠而成的是平面圆偏振光。 平面圆偏振光通过光学活性分子时,这些物质对左、右圆偏振光的吸收不相同,产生的吸收差值,就是该物质的圆二色性。 圆二色性用摩尔系数系数差ΔεM来度量,且有关系式:ΔεM = εL –εR,其中,εL 和εR分别表示左和右偏振光的摩尔吸收系数。如果εL –εR >0,则ΔεM为“+”,有正的圆二色性,相应于正Cotton效应;如果εL –εR<0,则ΔεM为“-”,有负的圆二色性,相应于负Cotton效应。 由于这种吸收差的存在,造成了矢量的振幅差,因此从圆偏振光通过介质后变成了椭圆偏振光。圆二色性也可用椭圆度θ或摩尔椭圆度[θ]度量。[θ]和ΔεM之间的关系式:[θ]=3300*Δε 圆二色光谱表示的[θ]或ΔεM与波长之间的关系,可用圆二色谱仪测定。一般仪器直接测定的是椭圆度θ,可换算成[θ]和ΔεM:[θ] = 100θ/cl,ΔεM= θ/33cl 其中,c表示物质在溶液中的浓度,单位为mol/L;l为光程长度(液池的长),单位为cm。输入c和l的值,一般仪器能自动进行换算,给出所需要的关系。 2.定性分析原理 圆二色光谱仪需要将平面偏振调制成左、右圆偏振光,并用很高的频率交替通过样品,因而设备复杂,完成这种调制的是电致或压力致晶体双折射的圆偏振光发生器(也称Pocker池或应力调制器)。圆二色谱仪一般采用氙灯作光源,其辐射通过由两个棱镜组成的双单色器后,就成为两束振动方向相互垂直的偏振光,由单色器的出射狭缝排除一束非寻常光后,寻常光由CD调制器制成交变的左圆偏振光、

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

圆二色谱资料

圆二色光谱(简称CD)是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单、较准确的方法。它可以在溶液状态下测定,较接近其生理状态。而且测定方法快速简便,对构象变化灵敏,所以它是目前研究蛋白质二级结构的主要手段之一,并已广泛应用于蛋白质的构象研究中。 一.简介 圆二色谱是用于推断非对称分子的构型和构象的一种旋光光谱。光学活性物质对组成平面偏振光的左旋和右旋圆偏振光的吸收系数(ε)是不相等的,εL≠εR,即具有圆二色性。如果以不同波长的平面偏振光的波长λ为横坐标,以吸收系数之差Δε=εL-εR为纵坐标作图,得到的图谱即是圆二色光谱,简称CD。如果某手性化合物在紫外可见区域有吸收,就可以得到具有特征的圆二色光谱。由于εL≠εR,透射光不再是平面偏振光,而是椭圆偏振光,摩尔椭圆度[θ]与Δε的关系为:[θ]=3300Δε。圆二色谱也可以摩尔椭圆度为纵坐标,以波长为横坐标作图。由于△ε有正值和负值之分,所以圆二色谱也有呈峰的正性圆二色谱和呈谷的负性圆二色谱。在紫外可见光区域测定圆二色谱与旋光谱,其目的是推断有机化合物的构型和构象。 二.样品要求 1、样品必须保持一定的纯度不含光吸收的杂质,溶剂

必须在测定波长没有吸收干扰;样品能完全溶解在溶剂中, 形成均一透明的溶液。 2、氮气流量的控制 3、缓冲液、溶剂要求与池子选择:缓冲液和溶剂在配制溶液前要做单独的检查,看是否在测定波长范围内有吸收干扰,看是否形成沉淀和胶状;在蛋白质测量中,经常选择透明性极好的磷酸盐作为缓冲体系。 4样品浓度与池子选择 样品不同,测定的圆二色光谱范围不同,对池子大小(光径)的选择和浓度的要求也不一样。蛋白质CD光谱测量一般在相对较稀的溶液中进行。 三.谱带宽度 选为1 nm。对于高分辨率测量,要用较窄的狭缝宽度,此时光电倍增管的电压较高,谱的信噪比差。虽然对于正常测量最佳谱带宽度是1~2 nm,但是在下列情况下要牺牲分辨率而需要较宽的狭缝宽度。当样品的吸光度很高但CD信号很弱时,一方面要尽量保证测定CD峰所需要的足够浓度,另一方面要设置较宽的狭缝。不过此时要特别小心,因为样品在吸光度过高(A>2)的情况下可能存在荧光或杂散光引起的某些假象。另外,在固体CD光谱测试时也需要较大的狭缝宽度(一般要求> 2 nm)。 (2)椭圆率和摩尔椭圆率都依赖于测量条件。因此,温度、

错误折叠与蛋白质构象病

错误折叠与蛋白质构象病 生物物理系 2005级硕士研究生刘莹 摘要:许多疾病的发生是由蛋白质错误折叠引起的,这类疾病被称为蛋白质错误折叠病。蛋白质突变、泛素-蛋白酶和自噬功能的失常与蛋白质错误折叠的发生,异常蓄积和聚集有关。本文综述了蛋白质错误折叠和聚集的机制和部分蛋白质构象病产生的机理。 关键词:蛋白质错误折叠;分子伴侣;泛素-蛋白酶系统;溶酶体途径;Prion; 蛋白质是生物体的组成成分之一,在物质代谢、机体防御、血液凝固、肌肉收缩、细胞信息传递、个体生长发育、组织修复等方面均有不可替代的重要作用。具有完整一级结构的多肽或蛋白质,只有当其折叠形成正确的三维空间结构才可能具有正常的生物学功能。一旦蛋白质形成了错误的空间结构,将丧失其生物学功能,还会引起相关疾病,迄今已发现20 多种蛋白质的错误折叠与疾病相关,神经退行性疾病如阿尔茨海默病’s disease , AD) , 帕金森病(Parkinson’s disease , PD) ,亨廷顿舞蹈病(Huntington’sdisease ,HD) ,朊蛋白病(prion disease) ,家族性肌萎缩侧索硬化症(familial amyotrophic lateral sclerosis ,ALS) 等均与错误折叠的蛋白质聚合和沉积有关。 一蛋白质折叠与降解的机制 蛋白质的一级结构是其特定空间结构的基础,此外,肽链还需经过与翻译同时进行的和翻译完成后的化学加工,如形成二硫键,完成糖基化、羟基化、磷酸化等化学修饰。这些化学修饰以及蛋白质亚基的非共价键聚合、蛋白质的靶向输送等均与肽链的折叠密切相关。在细胞内大多数天然蛋白质能自发形成比较稳定的天然结构, 或被配体和代谢因子所稳定。但约10 %~20 %新合成的多肽链需要分子伴侣的帮助才能正确折叠。此外,约有20 %新合成的多肽链不能形成正确的三维结构而被蛋白酶降解,包括由于错误转录和翻译形成的不完全蛋白质,翻译后受到化学损伤或其他因素引起的失活、去折叠或折叠错误的蛋白质。在真核细胞中,多余的蛋白质主要通过泛素化(ubiquitination) 过程降解。分子伴侣和蛋白酶系统是保证蛋白质正常功能的两大质量控制系统。 1)分子伴侣:分子伴侣是与其他蛋白不稳定构象相结合并使之稳定的蛋白,它们通过控制结合和释放来帮助被结合多肽在体内的折叠、组装、转运或降解等。在真核细胞中,许多蛋白质在胞内合成后分泌至细胞外。在经高尔基体分泌之前这些蛋白质先转移至内质网中(endoplamic reticulum , ER) 。ER 中含有大量的分子伴侣和蛋白折叠的催化剂以促进有效的折叠。这些蛋白质均严格遵守内质网质量控制机制来进行折叠。该机制包含了一系列糖基化和脱糖基化的过程,可以防止错误折叠的蛋白质从细胞中分泌出来。分子伴侣可逆地与未折叠肽段的疏水部分结合随后松开,如此反复进行可防止错误的聚集发生,使肽链正确折叠。分子伴侣也可与错误聚集的肽段结合,使之解聚后再诱导其正确折叠。分子伴侣主要分为伴侣素家族(chaperonin ,Cpn) 、应激蛋白70 家族(Stress270 family) 、应激蛋白90 家族(Stress290 family) 及核质素、T 受体结合蛋白(TRAP) 等。 2)蛋白酶系统:大部分细胞内蛋白降解均通过泛素2蛋白酶体途径。错误折叠或已损伤的蛋白质经泛素标记后被蛋白酶体所降解。泛素是由76 个氨基酸组成的蛋白质,在所有类型细胞中均有表达。蛋白质与泛素分子共价结合得以降解。第一个泛素分子与蛋白质结合后,可连接另一泛素分子,如此继而形成多泛素链。多泛素标记的蛋白质含4 个或更多的泛素,可被26 S 蛋白酶体识别并降解。Proteasome 是由多个亚单位组成的大分子复合物,是依赖于ATP 的蛋白质降解系统, 大约有40 种相对分子质量为20 000~110 000 的多肽组成两种具有相同酶解活性的复合物:20 S 和26 S proteasomes。

生物分析 圆二色光谱

圆二色光谱分析法 引言 五十年代初,生物学研究从宏观领域深入到微观领域,开创了分子生物学的新时代。随着研究的不断深入和发展,生物学已发展成最活跃的学科之一。 手性(Chirality)是物质结构中的重要特征.即具有不能重叠的三维镜像对映异构体,它们的分子式完全相同,但其中原子或原子基团在空间的配置不同,互为镜像。凡手性分子都具有光学活性,即可使偏振光的振动面发生旋转。生物基础分子一般都具有手性,也都具有光学活性。在自然界中,氨基酸有L型和D型两种对映异构体,组成蛋白质的20种氨基酸,除最简单的甘氨酸不具有手性外,其余都是L型的[1]。 手性分子都具有光学活性。当单色左旋与右旋的圆偏振光通过某一种手性样品时,该样品对左、右旋圆偏振光的吸收不同,这叫做圆二色性(Circular Dichroism)。其差值△A=△A L-△A R称为圆二色值,按波长扫描就得到了圆二色谱(CD谱)。CD谱是特殊的吸收谱,它比一般的吸收谱弱几个量级,但由于它对分子结构 十分敏感,因此近十几年来,CD已成为研究分子构型(象)和分子间相互作用的最重要的光谱实验之一。利用CD研究生物大分子和药物分子,具有重要的科学意义和实用价值[2,3]。 一、蛋白质的圆二色性 蛋白质是由氨基酸通过肽键连接而成的具有特定结构的生物大分子。蛋白质一般有一级结构、二级结构、超二级结构、结构域、三级结构和四级结构几个结构层次[4-6]。在蛋白质或多肽中,主要的光活性基团是肽链骨架中的肽键、芳香氨基酸残基及二硫桥键。当平面圆偏振光通过这些光活性的生色基团时,光活性中心对平面圆偏振光中的左、右圆偏振光的吸收不相同,产生的吸收差值,由于这种吸收差的存在,造成了偏振光矢量的振幅差,圆偏振光变成了椭圆偏振光,这就是蛋白质的圆二色性。圆二色性的大小常用摩尔消光系数差△ (M-1 ·cm-1 )来度量。蛋白质的CD光谱一般分为两个波长范围,即178—250 nm为远紫外区CD

蛋白质的分子结构

20 ~ 20 学年度第学期 教师课时授课教案 学科系:医学院授课教师: 专业:临床科目:生物化学 教研室主任签字:学科系系办主任签字:年月日年月日

第二章蛋白质的结构与功能 第二节蛋白质的分子结构 蛋白质功能主要由其结构所决定,一般分为基本结构和空间结构,基本结构又被称为一级结构,空间结构包括二、三、四级结构。 一、蛋白质分子的基本结构 蛋白质的基本结构即一级结构,是指蛋白质分子中从N-端至C-端的氨基酸的排列顺序。蛋白质一级结构中主要的化学键是肽键,有些蛋白质还包括二硫键。 牛胰岛素是世界上第一个被确定一级结构的蛋白质(图25)牛胰岛素分子含A、B两条多肽链,A链由21个氨基酸组成,B链由30个氨基酸组成,两条多肽链通过两对二硫键连接。 图2-5牛胰岛素的一级结构 一级结构是蛋白质空间构象和生物学功能的基础。蛋白质一级结构的阐明,对揭示某些疾病的发病机制和指导治疗有十分重要的意义。 二、蛋白质分子的空间结构 蛋白质分子在一级结构的基础上,多肽链在空间进行折叠和盘曲,形成特有的空间结构。 (一)蛋白质的二级结构

蛋白质的二级结构是指蛋白质分子中某一段多肽主链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。蛋白质的二级结构以肽单元为结构基础,可形成的主要形式包括α-螺旋、β-折叠、β-转角和无规卷曲。 1.α-螺旋α-螺旋结构是蛋白质分子中较为常见的二级结构,是指多肽链以α-碳原子为转折点,以肽单元为单位,按顺时针方向围绕中心轴盘曲而成的右手螺旋(图2-6),肽单元平面与螺旋中心轴平行;每3.6个氨基酸残基螺旋上升一圈,螺距为0.54mm;每个肽键的亚氨基氢(N-H)与相邻第四个肽键的羰基氧(C=0)形成氢键,氢键的方向与螺旋长轴基本平行。肽链中所有肽键的亚氨基氢和羰基氧都可形成氢键,是维持α-螺旋结构稳定的主要作用力。 2. β-折叠β-折叠也称为β-片层,多肽链充分伸展,每个肽单元以C为旋转点,依次折叠成锯齿状结构,氨基酸残基的侧链基团交替位于锯齿状结构的上下方(图2-7)。β-折叠可由条多肽链折返而成,也可由两条及以上多肽链顺向或反向平行排列而成。相邻肽链中肽键的亚氨基氢与羰基氧形成链间氢键,从而稳定结构。

X射线衍射实验报告

X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作 3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1)X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…

生物化学第三章蛋白质化学名词解释

第三章蛋白质化学 1蛋白质:是一类生物大分子,由一条或多条肽链构成,每条肽链都有一定数量的氨基酸按一定序列以肽键连接形成。蛋白质是生命的物质基础,是一切细胞和组织的重要组成成分。2标准氨基酸:是可以用于合成蛋白质的20种氨基酸。 3、茚三酮反应:是指氨基酸、肽和蛋白质等与水合茚三酮发生反应,生成蓝紫色化合物,该化合物在570mm波长处存在吸收峰。 4、两性电解质:在溶液中既可以给出H+而表现出酸性,又可以结合H+而表现碱性的电解质。 5、兼性离子:即带正电和、又带负电荷的离子。 6、氨基酸的等电点:氨基酸在溶液中的解离程度受PH值影响,在某一PH值条件下,氨基酸解离成阳离子和阴离子的程度相等,溶液中的氨基酸以兼性离子形式存在,且净电荷为零,此时溶液的PH值成为氨基酸的等电点。 7、单纯蛋白质:完全由氨基酸构成的蛋白质。 8、缀合蛋白质:含有氨基酸成分的蛋白质。 9、蛋白质的辅基:缀合蛋白质所含有的非氨基酸成分。 10、肽键:存在于蛋白质和肽分子中,是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合时形成的化学键。 11、肽平面:在肽单元中,羧基的π键电子对与氮原子的孤电子对存在部分共享,C-N键具有一定程度的双键性质,不能自由旋转。因此,肽单元的六个原子处在同一个平面上,称为肽平面。 12、肽:是指由两个或者多个氨基酸通过肽键连接而成的分子。 13、氨基酸的残基:肽和蛋白质分子中的氨基酸是不完整的,氨基失去了氢,羧基失去了羟基,因而称为氨基酸的残基。 14、多肽:由10个以上氨基酸通过肽键连接而成的肽。 15、多肽链:多肽的化学结构呈链状,所以又称多肽链。 16、生物活性肽:是指具有特殊生理功能的肽类物质。它们多为蛋白质多肽链的一个片段,当被降解释放之后就会表现出活性,例如参与代调节、神经传导。食物蛋白质的消化产物中也有生物活性肽,他们可以被直接吸收。 17、谷胱甘肽:由谷氨酸、半胱氨酸和甘氨酸通过肽键连接构成的酸性三肽,是一种生物活性肽,是机体重要的抗氧化剂。 18、蛋白质的一级结构:通常叙述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列。蛋白质的一级结构反映蛋白质分子的共价键结构。 19、蛋白质的二级结构:是指蛋白质多肽链局部片段的构象,该片段的氨基酸序列是连续的,主链构象通常是规则的。 20、蛋白质的超二级结构:又称模体、基序,是指几个二级结构单元进一步聚集和结合形成的特定构象单元,如αα、βαβ、ββ、螺旋-转角-螺旋、亮氨酸拉链等。 21、蛋白质的三级结构:是指蛋白质分子整条肽链的空间结构,描述其所有原子的空间排布。蛋白质的三级结构的形成是肽链在二级结构基础上进一步折叠的结果。 22、蛋白质的结构域:许多较大(由几百个氨基酸构成)蛋白质的三级结构中存在着一个或多个稳定的球形折叠区,有时与分子的其他部分之间界限分明,可以通过对多肽的适当酶切与其他部分分开,这种结构成为结构域。 23、蛋白质的亚基:许多蛋白质分子可以用物理方法分离成不止一个结构单位,每个结构单位可以由不止一条台联构成,但特定且相对独立的三级结构,且是一个由共价键连接的整体,该结构单位称为蛋白质的亚基。

光磁共振实验报告

近代物理实验报告 光磁共振 班级物理081 学号 08180140 姓名周和建 时间 2011年4月27日

【摘要】 以光抽运为基础的光检验测磁共振的方法,使用DH807A型光磁共振实验装置来观察光抽运信号,进而测定铷原子两个同位素87Rb和85Rb的超精细结构塞曼子能级的朗德因子的测量。 【关键词】 光磁共振光抽运塞曼能级分裂超精细结构 【引言】 光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。 光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。 利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、实验原理 (一)铷(Rb)原子基态及最低激发态的能级 实验研究对象是铷的气态自由原子。铷是碱金属,它和所有的碱金属原子Li、Na、K一样,在紧紧束缚的满壳层外只有一个电子。铷的价电子处于第五壳层,主量子数n=5。主量子数为n的电子,其轨道量子数L=0,1, …,n-1。基态的L=0,最低激发态的L=1。电子还具有自旋,电子自旋量子数S=1/2。 由于电子的自旋与轨道运动的相互作用(即L-S耦合)而发生能级分裂, 称为精细结构。轨道角动量P s、的合成角动量P J =P L +P S 。原子的精细结构用总角动 量量子数J来标记,J=L+S,L+S-1, …,│L-S│。对于基态,L=0和S=1/2,因此 Rb基态只有J=1/2。其标记为52S 1/2。铷原子最低激发态是52P 1/2 及52P 3/2 双重态。 这是由于轨道量子数L=1,自旋量子数S=1/2。52P 1/2态的J=1/2, 52P 3/2 态的J=3/2。 5P与5S能级之间产生的跃迁是铷原子主线系的第1条线,为双线。它在铷灯 光谱中强度是很大的。52P 1/2→52S 1/2 跃迁产生波长为7947.6?的D 1 谱线,52P 3/2 →52S 1/2跃迁产生波长7800?的D 2 谱线。 原子的价电子在LS耦合中,总角动量P J 与原子的电子总磁矩μ J 的关系为 (1) (2)

衍射光强实验报告

教学目的 1、观察单缝衍射现象,加深对衍射理论的理解; 2、学会使用衍射光强实验系统,并能用其测定单缝衍射的光强分布; 3、形成实事求是的科学态度和严谨、细致的工作作风。 重点:SGS-3型衍射光强实验系统的调整和使用 难点:1)激光光线与光电仪接收管共轴调节;2)光传感器增益度的正确调整 讲授、讨论、实验演示相结合 3学时 一、实验简介 光的衍射现象是光的波动性的一种表现。衍射现象的存在,深刻说明了光子的运动 是受测不准关系制约的。因此研究光的衍射,不仅有助于加深对光的本性的理解,也是 近代光学技术(如光谱分析,晶体分析,全息分析,光学信息处理等)的实验基础。 衍射导致光强在空间的重新分布,利用光电传感元件探测光强的相对变化,是近 代技术中常用的光强测量方法之一。 二、实验目的 1、学会SGS-3型衍射光强实验系统的调整和使用方法; 2、观察单缝衍射现象,研究其光强分布,加深对衍射理论的理解; 3、学会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律; 4、学会用衍射法测量狭缝的宽度。 三、实验原理 1、单缝衍射的光强分布 当光在传播过程中经过障碍物时,如不透明物体的边缘、小孔、细线、狭缝等, 一部分光会传播到几何阴影中去,产生衍射现象。如果障碍物的尺寸与波长相近,那么 这样的衍射现象就比较容易观察到。 单缝衍射[single-slit diffraction]有两种:一种是菲涅耳衍射[Fresnel diffraction],单 缝距离光源和接收屏[receiving screen]均为有限远[near field],或者说入射波和衍 射波都 是球面波;另一种是夫琅禾费衍射[Fraunhofer diffraction],单缝距离光源和接收屏 均为

大学物理光学实验报告

实验十:光栅衍射 一、实验目的 1.观察光线通过光栅后的衍射光谱。 2.学会用光栅衍射测定光波波长的方法。 3.学会用光栅衍射原理测定光栅常数。 4.进一步熟悉分光计的调整和使用方法。 二、实验仪器 分光计 光栅 钠光灯 平面反射镜 三、实验原理 光栅是有大量的等间隔、等宽度的狭缝平行放置组成的一种光学元件。设狭缝宽度(透光部分)为a ,不透光部分为b ,则a b +为光栅常数。 设单色光垂直照射到光栅上,光透过各个狭缝后,向各个方向发生衍射,衍射光经过透镜后会聚后相互干涉,在焦平面上形成一系列的被相当宽的暗区分开的明亮条纹。 衍射光线与光栅平面的夹角称为衍射角。设衍射角为θ的一束衍射光经透镜会聚到观察屏的点。在P 点出现明条纹还是暗条纹决定于这束衍射光的光程差。 由于光栅是等宽、等间距,任意两个相邻缝的衍射光的光程差是相等的,两个相邻狭缝的衍射光的光程差为()sin a b θ+,如果光程差为波长的整数倍,在P 点就出现明条纹,即 ()sin a b k θλ+=± (0,1,2,)k =L 这就是光栅方程。 从上式可知,只要测出某一级的衍射角,就可计算出波 长。 四、实验步骤 1、调整分光计。 使望远镜、平行光管和载物台都处于水平状态,平行光 管发出平行光。 2、安置光栅 将光栅放在载物台上,让钠光垂直照射到光栅 上。 可以看到一条明亮而且很细的零级光谱,左右转动望远 镜观察第一、二级衍射条纹。 3.测定光栅衍射的第一、二级衍射条纹的衍射角θ,并记录。 五、数据记录 S 2 S 1 S 3 ()3 ()2 () 1()1()2 ()3 G 2 φ12 φ22φ3

(完整word版)8.贺银成 生物化学

医学生物化学

医学生物化学 第一章蛋白质的结构与功能 1、蛋白质的基本机构为氨基酸,氨基酸多为L-α-氨基酸(“拉氨酸”); 唯一不具有不对称碳原子——甘氨酸;含有巯基的氨基酸——半胱氨酸 2、氨基酸的分类 (1)非极性、疏水性氨基酸:“携带一本书、两饼干、补点水”(缬氨酸、异亮氨酸、苯丙氨酸、亮氨酸、丙氨酸、甘氨酸、脯氨酸) (2)极性、中性氨基酸:“古天乐是陪苏三的”(谷氨酸、天冬氨酸、色氨酸、半胱 甲硫氨酸,半胱氨酸:含硫氨基酸; 4)脯氨酸,羟脯氨酸:亚氨基酸;5)同型半胱氨酸,鸟氨酸,瓜氨酸:天然蛋白质中不存在的氨基酸;6)色氨酸:在280nm波长具有 氨酸被撷氨酸代替)。蛋白质的二级结构:维系键:氢键。蛋白质的三级结构:维系键:疏水作用键,氢键,范德华力,离子键。蛋白质的四级结构:维系键:氢键,离 子键。并不是所有的蛋白质都有四级结构。蛋白质结构中主键称为肽键,次级键有氢键、离子键、疏水作用键、范德华力、二硫键等,次级键中属于共价键的有范德华力、二硫键。 (1)二级结构一圈有3.6个氨基酸,右手螺旋方向为外侧。 (2)维持三级结构的化学键是疏水键。 5、蛋白质结构与功能:一级结构是基础,二三四级是表现功能的形式。

6、蛋白质构象病:疯牛病、致死性家族性失眠症。 7、蛋白质的变性:蛋白质变性的实质是空间结构的改变,发生二硫键和非共价键破坏。并不涉及一级结构的改变。 1 2)凝固是蛋白质变性后进一步发展的一种结果。 3)蛋白质变性有可复性和不可复性两种。 第二节核酸的结构和功能 一、核酸的基本组成单位 1、磷酸+核糖+碱基→核苷酸→核酸,3’,5’磷酸二脂键。构成核酸的基本单位是 核苷酸,由戊糖、含氮碱基和磷酸 3个部分组成。 2、碱基分:ATGCU(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶、尿嘧啶) 二、DNA的结构与功能 1、碱基组成规律:A=T,G=C;A+G=T+C。 1)不同生物种属的DNA碱基组成不同 2)同一个体不同组织,不同器官的DNA碱基组成相同 3)几乎左右DNA无论种属来源,其A=T,G=C;A+G=T+C。总嘌呤=总嘧啶 4)生物体内的碱基组成不受年龄,生长状况,营养状况和环境因素的影响。 2、DNA结构:(1)一级结构:核苷酸排列顺序,即碱基排列顺序。 (2)二级结构:双螺旋,两条链平行、反向,一圈含10.5个碱基对。 (3)三级结构:超螺旋 3、DNA变性:DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象。变性时 维持双螺旋稳定性的氢键断裂,碱基堆积力遭到破坏,但不涉及到其一级结构的改变 (不伴共价键的断裂)。稳定性的维系:纵向堆积力(碱基平面间疏水性堆积力)>横

浙江大学物理光学实验报告

本科实验报告 课程名称:姓名:系:专业:学号:指导教师: 物理光学实验郭天翱 光电信息工程学系信息工程(光电系) 3100101228 蒋凌颖 2012年1 月7日 实验报告 实验名称:夫琅和弗衍射光强分布记录实验类型:_________ 课程名称:__物理光学实验_指导老师:_蒋凌颖__成绩: 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求 1.掌握单缝和多缝的夫琅和费衍射光路的布置和光强分布特点。 2.掌握一种测量单缝宽度的方法。 3.了解光强分布自动记录的方法。 二、实验内容 一束单色平面光波垂直入射到单狭缝平面上,在其后透镜焦平面上得到单狭缝的夫琅禾费衍射花样,其光强分布为: i?i0( 装 式中 sin? ? ) 2 (1) 订 ?? 线 ??sin?? (2) ?为单缝宽度,?为入射光波长,?为考察点相应的衍射角。i0为衍射场中心点(??0处)的光强。如图一所示。 由(1)式可见,随着?的增大,i有一系列极大值和极小值。极小值条件 asin??n?(n?1,n?2) (3) 是: 如果测得某一级极值的位置,即可求得单缝的宽度。 如果将上述单缝换成若干宽度相等,等距平行排列的单缝组合——多缝,则透镜焦面上得到的多缝夫琅禾费衍射花样,其光强分布: n? sin?2 )2 i?i0()( ?

2 (4) sin 式中 ?? sin??2???dsin? ? ?? (5) ?为单缝宽度,d为相邻单缝间的间距,n为被照明的单缝数,?为考察点相应的衍射角;i0为衍射中心点(??0处)的光强。 n? )2 (sin?2() 2称?为单缝衍射因子,为多缝干涉因子。前者决定了衍射花 sin (干涉)极大的条件是dsin??m?(m?0,?1,?2......)。 dsin??(m? m )?(m?0,?1,?2......;m?1,2,.......,n?1)n 样主极大的相对强度,后者决定了主极大的位置。 (干涉)极小的条件是 当某一考虑点的衍射角满足干涉主极大条件而同时又满足单缝衍射极小值条件,该点的光强度实际为0/,主极大并不出现,称该机主极大缺级。显然当d/??m/n为整数时,相应的m 级主极大为缺级。 不难理解,在每个相邻干涉主极大之间有n-1个干涉极小;两个相邻干涉极小之间有一个干涉次级大,而两个相邻干涉主级之间共有n-2个次级大。 三、主要仪器设备 激光器、扩束镜、准直镜、衍射屏、会聚镜、光电接收扫描器、自动平衡记录仪。 四、操作方法和实验步骤 1.调整实验系统 (1)按上图所示安排系统。 (2)开启激光器电源,调整光学元件等高同轴,光斑均匀,亮度合适。(3)选择衍射板中的任一图形,使产生衍射花样,在白屏上清晰显示。 (4)将ccd的输出视频电缆接入电脑主机视频输出端,将白屏更换为焦距为100mm的透镜。 (5)调整透镜位置,使衍射光强能完全进入ccd。 (6)开启电脑电源,点击“光强分布测定仪分析系统”便进入本软件的主界面,进入系统的主界面后,点击“视频卡”下的“连接视频卡”项,打开一个实时采集窗口,调整透镜与ccd的距离,使电脑显示屏能清晰显示衍射图样,并调整起偏/检偏器件组,使光强达到适当的强度,将采集的图像保存为bmp、jpg两种格式的图片。 2.测量单缝夫琅和费衍射的光强分布(1)选定一条单狭缝作为衍射元件(2)运用光强分布智能分析软件在屏幕上显示衍射图像,并绘制出光强分布曲线。 (3)对实验曲线进行测量,计算狭缝的宽度。 3.观察衍射图样 将衍射板上的图形一次移入光路,观察光强分布的水平、垂直坐标图或三维图形。

圆二色光谱分析小结

3.3.9圆二色性(Circular dichroic,CD)测定 1%(w/w)的蛋清溶液调节到pH 4.0,6.0,10.0,在85oC加热不同时间,离心,取上清液,然后稀释至100~200μg/mL溶液。对照组为天然蛋清样品。用Jasco J-715光度计测定样品的CD谱。测定条件设定:测定波长范围190~250 nm,25oC,比色皿光径1 mm,分辨率0.2 nm,扫描速率100 nm/min,扫描5次。使用Jasco SSE软件确定样品的二级结构百分含量。 3.4.6蛋白质的二级结构对DH的影响 蛋白酶的水解反应还受到蛋白质的结构的影响,一般结构紧密的蛋白质提供的酶切位点少于结构松散的蛋白质。因此有必要研究蛋白质结构对DH的影响。蛋白质的热处理可能引起二级、三级和四级结构的变化。从二级结构看,α-螺旋结构表现蛋白质分子的有序性,而其结构如β-折叠、β-转角、无规卷曲等反映了蛋白质分子的松散性[26]。蛋白质分子的有序性差,越有利于蛋白酶的水解。目前,研究蛋白质构象最好的方法是x-射线衍射,但对结构复杂、柔性的生物大分子蛋白质来说,制备蛋白质单晶较为困难。二维、多维核磁共振技术能测出溶液状态下蛋白质分子的构象,可是对分子量较大的蛋白质的计算处理非常复杂。相比之下圆二色性是研究稀溶液中蛋白质分子构象的一种快速、简单、较准确的方法。圆二色性在紫外区段(190~240 nm),主要生色团是肽链,这一波长范围的CD谱包含着生物大分子主链构象的信息。在一般情况下,实验中得到的CD谱线是α-螺旋、β-折叠和无规卷曲构象的CD 谱的线性迭加[27]。图3-7显示天然蛋清的CD谱线a在222 nm处和208 nm处呈负峰,在190 nm附近有一正峰,这是存在部分α-螺旋构象的特征。谱线b、c、d、e在221 nm处的负谱带减弱,意味着α-螺旋的百分比减小。谱线b、c、d、e向短波长方向移动,即发生蓝移。由于发色团吸收光谱发生位移主要取决于它的微环境更加亲水或疏水的结果[28],因此谱线b、c、d、e蓝移的发生说明体系的亲水性降低,即疏水性增加。表3.3列出了天然蛋清和热处理蛋清的α-螺旋、β-折叠、β-转角和无规卷曲构象所占的比例。从表中可以看出,通过热处理,天然蛋清的α-螺旋比例下降,而β-折叠和无规卷曲的比例增加,说明蛋清蛋白分子结构的有序性降低,形成了以β-折叠和无规卷曲为主的二级结构。 图3-7天然和热处理的蛋清的CD光谱 a-天然蛋清;b-pH4,85oC加热36 min蛋清;c-pH6,85oC加热36 min蛋清;d-pH10,85oC 加热30 min蛋清;e-pH10,85oC加热60 min蛋清。 4.19圆二色谱分析动态超高压微射流均质对卵清蛋白二级结构的影晌

氢原子光谱实验报告

氢原子光谱和里德伯常量测定

摘要: 本文详细地介绍了氢原子光谱和里德伯常量实验的实验要求、实验原理、仪器介绍、实验内容和数据处理,并从钠黄双线无法区分的现象触发定量地分析了此现象的原因和由此产生的误差,结合光谱不够锐亮和望远镜转动带来的误差提出了创新的实验方案。从理论上论证了实验方案的可行性,总结了基础物理实验的经验感想。 关键字:氢原子光谱里德伯常量钠黄双线 Abstract: This paper introduced the hydrogen atoms spectrum and Rydberg constant experiment from experimental requirements, experimental principle, instruments required, content and Data processing. Considering that the wavelength difference of Na-light double yellow line is indistinguishable from human eyes, we analyze the cause of this phenomenon and the resulting errors quantitatively and propose an innovate experiment method combined with inadequate sharpness and lightness of the spectrum as well as the errors brought during the turning of telescope. We verify the feasibility of this method In theory and summarizes the experience and understanding of basic physics experiment. Key words: hydrogen atoms spectrum, Rydberg constant, Na-light double yellow line

叶绿素实验报告

叶绿素铜钠的合成、分离、分析及结构测定 食品092 一、实验目的: 1、从蚕沙中提取叶绿素并计算提取率。 2、初步研究叶绿素合成叶绿素铜钠的工艺条件。 3、分析叶绿素铜钠产品的纯度并计算其产率。 4、通过试验提高综合能力及练习巩固各种相关操作。 二、产品验收指标 项目和指标 ───────────────┬────────── 项目│ 指标 ───────────────┼────────── pH │ 9.0~10.7 1%│ E 405nm ≥ │ 568 1cm │ 消光比值│ 3.2~4.0 总铜(Cu),%│ 4.0~6.0 游离铜(Cu),%≤ │ 0.025 砷(As),%≤ │ 0.0002 铅(Pb),%≤ │ 0.0005 干燥失重,%≤ │ 4.0 硫酸灰分,%≤ │ 36.0 ───────────────┴────────── 三、实验原理: 叶绿素是一种含有卟吩环的天然色素,它与蛋白质结合存在于植物的绿叶和绿色的茎中,是植物进行光合作用所必须的催化剂,叶绿素难溶于水,而易溶于极性有机溶剂。叶绿素有a和b 两种,a为蓝黑色结晶 叶绿素是一种含有卟吩环的天然色素,在叶绿素的结构中,含有一个由四个吡咯环和四个次甲基交替相联形成的卟吩环.卟吩环闭合的共轭体系提供了包围镁离子(或其它相似离子)的刚性平面. 叶绿素的结构如图l所示:

蚕沙中含有丰富的叶绿素,其纯含量达0.8—1.0%,居所有天然色素之首,故可用蚕沙来提取叶绿素,由于叶绿素易溶于乙醚、苯、丙酮、乙醇的脂性溶剂,故可用乙醇、丙酮混合液来提取。所得的叶绿素由于遇热、光、酸、碱等易分解,且又不溶于水。110度左右会分解,故把叶绿素制备成叶绿素铜钠,其性质更稳定溶解性也会有所提高。 叶绿素分子中的镁原子和四个吡咯上的氮原子相结合,环上是双羧酸的酯,一个被四所酯化,另一个被叶醇基所酯化,故可以发生皂化反应生成钠盐: C55H72O5N4Mg + 2NaOH = C34H30O5N4MgNa2+ CH3OH + C20H39OH C55H70O6N4Mg + 2NaOH = C34H28O6N4MgNa2+ CH3OH + C20H39OH 在酸性条件下,叶绿素钠盐分子中的镁极易被氢原子取代生成褐色的叶绿酸: C34H30O5N4MgNa2 + 4H+ = C34H34O5N4 + Mg2+ + 2Na+ C34H28O6N4MgNa2 + 4H+ = C34H32O6N4 + Mg2+ + 2Na+ 叶绿酸可与铜盐在加热条件下生成叶绿素铜酸析出,将叶绿素铜酸溶于丙酮,再与碱反应生成叶绿素铜钠: C34H34O5N4+Cu2+ = C34H32O5N4Cu+ 2H+ C34H32O6N4+Cu2+ = C34H30O6N4Cu+ 2H+ C34H32O5N4Cu + 2NaOH = C34H30O5N4CuNa2 + 2H2O C34H30O6N4Cu + 2NaOH = C34H28O6N4CuNa2 + 2H2O 蚕粪叶绿素铜钠盐的光谱特性蚕粪叶绿素铜钠盐水溶液在360~700之间有2个吸收峰在波长440处有一最大吸收峰,其吸光度为114;在630处有一较小的 吸收峰,其吸光度为017"在波长440的吸收峰为叶绿素铜钠盐特有,而在630处的

衍射实验报告

单缝衍射光强分布研究 教学目的 1、观察单缝衍射现象,加深对衍射理论的理解; 2、学会使用衍射光强实验系统,并能用其测定单缝衍射的光强分 布; 3、形成实事求是的科学态度和严谨、细致的工作作风。 重点: sgs-3型衍射光强实验系统的调整和使用 难点:1)激光光线与光电仪接收管共轴调节;2)光传感器增益度 的正确调整 讲授、讨论、实验演示相结合 3学时 一、实验简介 光的衍射现象是光的波动性的一种表现。衍射现象的存在,深刻说 明了光子的运动 是受测不准关系制约的。因此研究光的衍射,不仅有 助于加深对光的本性的理解,也是 近代光学技术(如光谱分析,晶体 分析,全息分析,光学信息处理等)的实验基础。 衍射导致光强在空间的重新分布,利用光电传感元件探测光强的相 对变化,是近 代技术中常用的光强测量方法之一。 二、实验目的 1、学会sgs-3型衍射光强实验系统的调整和使用方法; 2、观察单缝衍射现象,研究其光强分布,加深对衍射理论的理 解; 3、学会用光电元件测量单缝衍射的相对光强分布,掌握其分布规 律; 4、学会用衍射法测量狭缝的宽度。 三、实验原理 1、单缝衍射的光强分布 当光在传播过程中经过障碍物时,如不透明物体的边缘、小孔、细 线、狭缝等, 一部分光会传播到几何阴影中去,产生衍射现象。如果 障碍物的尺寸与波长相近,那么 这样的衍射现象就比较容易观察到。 单缝衍射[single-slit diffraction]有两种:一种是菲涅耳衍射 [fresnel diffraction],单 缝距离光源和接收屏[receiving screen] 均为有限远[near field],或者说入射波和衍射波都 是球面波;另一 种是夫琅禾费衍射[fraunhofer diffraction],单缝距离光源和接收屏 均为 无限远[far field]或相当于无限远,即入射波和衍射波都可看作 是平面波。 在用散射角[scattering angle]极小的激 光器(<0.002rad)产 生激光束[laser beam], 通过一条很细的狭缝(0.1~0.3mm宽),在狭缝后大于0.5m的地方 放上观察屏,禾费衍射条纹,如图1所示。 当激光照射在单缝上时,根据惠更斯—菲涅耳原理[huygens- fresnel principle],单 缝上每一点都可看成是向各个方向发射球面 子波的新波源。由于子波迭加的结果,在屏 上可以得到一组平行于单 缝的明暗相间的条纹。

相关文档
最新文档