集成电路用陶瓷外壳的可靠性

集成电路用陶瓷外壳的可靠性
集成电路用陶瓷外壳的可靠性

★★世纪期刊网-专业期刊论文原文服务网站★★【关于我们】

世纪期刊网专业提供中文期刊及学术论文、会议论文的原文传递及下载服务。

【版权申明】

世纪期刊网提供的电子版文件版权均归属原版权所有人,世纪期刊网不承担版权问题,仅供您个人参考。

【联系方式】

电子邮件 support@https://www.360docs.net/doc/e716784466.html,

【网站地址】

世纪期刊网https://www.360docs.net/doc/e716784466.html,

【网上购书推荐商家】

当当网卓越网读书人网

京东IT数码商城

本次文章生成时间:2010-3-21 9:53:35

文章内容从第二页开始!

请将本站向您的朋友传递及介绍!

(完整版)√MOS器件及其集成电路的可靠性与失效分析

MOS 器件及其集成电路的可靠性与失效分析(提要) 作者:Xie M. X. (UESTC ,成都市) 影响MOS 器件及其集成电路可靠性的因素很多,有设计方面的,如材料、器件和工艺等的选取;有工艺方面的,如物理、化学等工艺的不稳定性;也有使用方面的,如电、热、机械等的应力和水汽等的侵入等。 从器件和工艺方面来考虑,影响MOS 集成电路可靠性的主要因素有三个:一是栅极氧化层性能退化;二是热电子效应;三是电极布线的退化。 由于器件和电路存在有一定失效的可能性,所以为了保证器件和电路能够正常工作一定的年限(例如,对于集成电路一般要求在10年以上),在出厂前就需要进行所谓可靠性评估,即事先预测出器件或者IC 的寿命或者失效率。 (1)可靠性评估: 对于各种元器件进行可靠性评估,实际上也就是根据检测到的元器件失效的数据来估算出元器件的有效使用寿命——能够正常工作的平均时间(MTTF ,mean time to failure )的一种处理过程。 因为对于元器件通过可靠性试验而获得的失效数据,往往遵从某种规律的分布,因此根据这些数据,由一定的分布规律出发,即可估算出MTTF 和失效率。 比较符合实际情况、使用最广泛的分布规律有两种,即对数正态分布和Weibull 分布。 ①对数正态分布: 若一个随机变量x 的对数服从正态分布,则该随机变量x 就服从对数正态分布;对数正态分布的概率密度函数为 222/)(ln 21)(σμπσ--?=x e x x f 该分布函数的形式如图1所示。 对数正态分布是对数为正态分布的任 意随机变量的概率分布;如果x 是正态分布 的随机变量,则exp(x)为对数分布;同样, 如果y 是对数正态分布,则log(y)为正态分 布。 ②Weibull 分布: 由于Weibull 分布是根据最弱环节模型 或串联模型得到的,能充分反映材料缺陷和 应力集中源对材料疲劳寿命的影响,而且具 有递增的失效率,所以,将它作为材料或零件的寿命分布模型或给定寿命下的疲劳强 度模型是合适的;而且尤其适用于机电类产品的磨损累计失效的分布形式。由于它可以根据失效概率密度来容易地推断出其分布参数,故被广泛地应用于各种寿命试验的数据处理。与对数正态分布相比,Weibull 分布具有更大的适用性。 Weibull 分布的失效概率密度函数为 m t m t m e t m t f )/()(ηη--?= 图1 对数正态分布

集成电路特点及可靠性分析

集成电路特点及可靠性分析 电子科学与应用物理学院

数字集成电路的出现, 促进了电子器件更广泛的应用于工业控制、医疗卫生、航天航空、国防军事等生产和生活的各个领域。同时,为了满足这些生产和生活各个领域发展的不断要求,设计和制造体积更小、信息处理能力更强的器件,成为未来信息技术发展的关键所在。 自1958年美国德克萨斯仪器公司(TI)发明集成电路(IC)后,随着硅平面技术的发展,二十世纪六十年代先后发明了双极型和MOS型两种重要的集成电路,它标志着由电子管和晶体管制造电子整机的时代发生了量和质的飞跃。 MOS是:金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。由MOS管构成的集成电路称为MOS集成电路,而由PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS-IC(Complementary MOS Integrated Circuit)。 目前数字集成电路按导电类型可分为双极型集成电路(主要为TTL)和单极型集成电路(CMOS、NMOS、PMOS等)。CMOS电路的单门静态功耗在毫微瓦(nw)数量级。 CMOS发展比TTL晚,但是以其较高的优越性在很多场合逐渐取代了TTL。 以下比较两者性能,大家就知道其原因了。 1.CMOS是场效应管构成,TTL为双极晶体管构成 2.CMOS的逻辑电平范围比较大(5~15V),TTL只能在5V下工作 3.CMOS的高低电平之间相差比较大、抗干扰性强,TTL则相差小,抗干扰能力差 4.CMOS功耗很小,TTL功耗较大(1~5mA/门) CMOS的主要特点就是功耗低。CMOS集成电路主要应用场效应管,场效应管的互补结构使它们工作时两个场效应管通常处于一个管静止另一个管导通的状态,有由于它们采用串联连接的方式,因此电路静态功耗从理论上看基本为零。实际上看,CMOS集成电路板的功耗并非真正为零,由于电路板的电流在传输过程中存在漏电流损耗,因此CMOS集成电路板中有少许静态功耗,据测试,单一电路的功耗值仅为17.8毫瓦,在1MHz的工作频率下,动态功耗也仅28毫瓦。CMOS的另一个特点是它的工作电压范围宽,对电压波动性的适应能力强,无需稳压器,供电电源的体积小,方便各种应用电路板的设备使用。目前国际上最常

芯片可靠性测试d

芯片可靠性检测 2011-08-08 11:00 电子元器件可靠度评估分析 可靠性评估分析的意义 可靠性(Reliability)则是对产品耐久力的测量, 我们主要典型的IC产品的生命周期可以用一条浴缸曲线(Bathtub Curve)来表示。 如上图示意,集成电路得失效原因大致分为三个阶段: Region (I) 被称为早夭期(Infancy period), 这个阶段产品的失效率快速下降,造成失效的原因在于IC设计和生产过程中的缺陷; Region (II) 被称为使用期(Useful life period), 这个阶段产品的失效率保持稳定,失效的原因往往是随机的,比如温度变化等等; Region (III) 被称为磨耗期(Wear-Out period)这个阶段产品的失效率会快速升高,失效的原因就是产品的长期使用所造成的老化等。 ·军工级器件老化筛选 ·元器件寿命试验 ·ESD等级、Latch_up测试评价 ·高低温性能分析试验 ·集成电路微缺陷分析 ·封装缺陷无损检测及分析 ·电迁移、热载流子评价分析 根据试验等级分为如下几类: 一、使用寿命测试项目(Life test items):EFR, OLT (HTOL), LTOL ①EFR:早期失效等级测试( Early fail Rate Test ) 目的: 评估工艺的稳定性,加速缺陷失效率,去除由于天生原因失效的产品。 测试条件: 在特定时间内动态提升温度和电压对产品进行测试 失效机制:材料或工艺的缺陷,包括诸如氧化层缺陷,金属刻镀,离子玷污等由于生产造成的失效。 参考标准: JESD22-A108-A EIAJED- 4701-D101 ②HTOL/ LTOL:高/低温操作生命期试验(High/ Low Temperature Operating Life ) 目的: 评估器件在超热和超电压情况下一段时间的耐久力 测试条件: 125℃,1.1VCC, 动态测试 失效机制:电子迁移,氧化层破裂,相互扩散,不稳定性,离子玷污等 参考数据:

芯片测试规范

测试规范 1.适用范围 1.1本规范为导入DDR芯片的测试方法和标准,,以验证和确认新物料是否适合批量生 产;. 2.目的 使开发部门导入新的关键器件过程中有章可循,有据可依。 3.可靠性测试 :如果替代料是FLASH的话,我们一般需要做10个循环的拷贝校验(我们测试工具APK设置:500M/拷贝次数/重启10次) :如果替代料是DDR的话,我们也需要验证DDR的运行稳定性,那么也需要做循环拷贝校验(测试工具APK设置:500M/拷贝次数/重启5次) PS:1.拷贝次数=(FLASH可用容量*1024M/500M)-1 验证只需要验证运行稳定性,所以一般做3-5个循环就OK了,FLASH要求比较严格,一般需要做10个循环以上; 3.考虑到FLASH压力测试超过20次以上可能会对MLC造成影 响,故对于验证次数太多的机器出货前需要更换。 7.常温老化:PND我们一般跑模拟导航持续运行12H,安卓我们一般运行MP4-1080P持续老化12H,老化后需要评估休眠唤醒是否正常; 8.高低温老化:环境(60度,-10度) 基于高低温下DDR运行稳定性或存在一定的影响,DDR替代需要进行高低温老化,我们PND一般运行模拟导航、安卓因为运行模导不太方便,就运行MP4各持续老化12H。 从多年的经验来看,FLASH对于温度要求没有这么敏感。 9.自动重启测试:一般做50次/PCS,需要每次启动系统都能正常启动;-- 一般是前面恢复出厂设置有问题,异常的机器排查才会用到;

10.复位、通断电测试:这个测试属于系统破坏性测试,测试非正常操作是否 存在掉程序的现象,一般做20次/PCS,要求系统能够正常启动。 1.焊接效果,如果是内部焊接的话,需要采用X-RAY评估,LGA封装的话就 需要SMT制程工艺规避空洞率; 2.功能测试; 3.休眠电流、休眠唤醒测试:DDR必测项目,反复休眠唤醒最好3-5次/PCS,休眠电流大小自行定义;FLASH测不测影响不大; 4.容量检查,容量标准你们根据客户需求自行定义,当然是越大越好;--大 货时这一点最好提供工具给到阿杜随线筛选; 5.恢复出厂设置:我们一般做50次/PCS,运行正常的话界面会显示50次测 试完成,如果出现中途不进主界面、死机等异常现象就需要分析问题根源; 压力测试:这部分需要分开来说明 4.测试环境 温度:25±2℃ 湿度:60%~70%; 大气压强:86kPa ~106kPa。 5.测试工具 可调电源(最好能显示对应输出电流) 可调电子负载 示波器

IC产品的质量与可靠性测试

IC产品的质量与可靠性测试 (IC Quality & Reliability Test ) 质量(Quality)和可靠性(Reliability)在一定程度上可以说是IC产品的生命。 质量(Quality)就是产品性能的测量,它回答了一个产品是否合乎规格(SPEC)的要求,是否符合各项性能指标的问题;可靠性(Reliability)则是对产品耐久力的测量,它回答了一个产品生命周期有多长,简单说,它能用多久的问题。所以说质量(Quality)解决的是现阶段的问题,可靠性(Reliability)解决的是一段时间以后的问题。知道了两者的区别,我们发现,Quality的问题解决方法往往比较直接,设计和制造单位在产品生产出来后,通过简单的测试,就可以知道产品的性能是否达到SPEC 的要求,这种测试在IC的设计和制造单位就可以进行。相对而言,Reliability的问题似乎就变的十分棘手,这个产品能用多久,谁会能保证今天产品能用,明天就一定能用? 为了解决这个问题,人们制定了各种各样的标准,如: JESD22-A108-A、EIAJED- 4701-D101,注:JEDEC(Joint Electron Device Engineering Council)电子设备工程联合委员会,,著名国际电子行业标准化组织之一;EIAJED:日本电子工业协会,著名国际电子行业标准化组织之一。 在介绍一些目前较为流行的Reliability的测试方法之前,我们先来认识一下IC产品的 生命周期。典型的IC产品的生命周期可以用一条浴缸曲线(Bathtub Curve)来表示。 ⅠⅡⅢ Region (I) 被称为早夭期(Infancy period) 这个阶段产品的failure rate 快速下降,造成失效的原因在于IC设计和生产过程中的缺 陷; Region (II) 被称为使用期(Useful life period)在这个阶段产品的failure rate保持稳

集成电路产业链及主要企业分析

集成电路产业链及主要企业分析 集成电路简介集成电路(integratedcircuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于锗(Ge)的集成电路)和罗伯特·诺伊思(基于硅(Si)的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。 是20世纪50年代后期一60年代发展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内的电子器件。其封装外壳有圆壳式、扁平式或双列直插式等多种形式。集成电路技术包括芯片制造技术与设计技术,主要体现在加工设备,加工工艺,封装测试,批量生产及设计创新的能力上。 集成电路的特点集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 集成电路产业链概要集成电路的产业链又是怎样的呢?集成电路,就是把一定数量的常用电子元件,如电阻、电容、晶体管等,以及这些元件之间的连线,通过半导体工艺集成在一起的具有特定功能的电路。 集成电路主要包括模拟电路、逻辑电路、微处理器、存储器等。广泛用于各类电子产品之

芯片可靠性测试(汇编)

芯片可靠性测试 质量(Quality)和可靠性(Reliability)在一定程度上可以说是IC产品的生命,好的品质,长久的耐力往往就是一颗优秀IC产品的竞争力所在。在做产品验证时我们往往会遇到三个问题,验证什么,如何去验证,哪里去验证,这就是what, how , where 的问题了。 解决了这三个问题,质量和可靠性就有了保证,制造商才可以大量地将产品推向市场,客户才可以放心地使用产品。本文将目前较为流行的测试方法加以简单归类和阐述,力求达到抛砖引玉的作用。 Quality 就是产品性能的测量,它回答了一个产品是否合乎SPEC的要求,是否符合各项性能指标的问题;Reliability则是对产品耐久力的测量,它回答了一个产品生命周期有多长,简单说,它能用多久的问题。所以说Quality解决的是现阶段的问题,Reliability解决的是一段时间以后的问题。 知道了两者的区别,我们发现,Quality的问题解决方法往往比较直接,设计和制造单位在产品生产出来后,通过简单的测试,就可以知道产品的性能是否达到SPEC 的要求,这种测试在IC的设计和制造单位就可以进行。相对而言,Reliability的问题似乎就变的十分棘手,这个产品能用多久,who knows? 谁会能保证今天产品能用,明天就一定能用?为了解决这个问题,人们制定了各种各样的标准,如 MIT-STD-883E Method 1005.8 JESD22-A108-A EIAJED- 4701-D101 等等,这些标准林林总总,方方面面,都是建立在长久以来IC设计,制造和使用的经验的基础上,规定了IC测试的条件,如温度,湿度,电压,偏压,测试方法等,获得标准的测试结果。这些标准的制定使得IC测试变得不再盲目,变得有章可循,有法可依,从而很好的解决的what,how的问题。而Where的问题,由于Reliability的测试需要专业的设备,专业的器材和较长的时间,这就需要专业的测试单位。这种单位提供专业的测试机台,并且根据国际标准进行测试,提供给客户完备的测试报告,并且力求准确的回答Reliability的问题

0212IC可靠性测试项目及参考标准[001]

版本创建 试用 用 文件使 Ⅲ Ⅱ Ⅰ ) 就是产品性能的测量,它回答了一个产品是否合乎规格( )解决的是一段时间以后的问题。知道了两者的区别, )的要求, 是否符合各项性能指标的问题。可靠性( 的问题解决方法往往比较直接,设计和制造单位在产品生产出来后,通 )则是对产品耐久力的测量,它回答了 一个产品生命周期有多长,简单说,它能用多久的问题。所以说质量( 测试在 )解决的是 现阶段的问题,可靠性( 而言 我们发现, 产品 保证 过简单的测试,就可以知道产品的性能是否达 到 准 的标 的要求, 这种 的设计和制 造单位就可以 进行 。 相 对 , 的问题 似 乎就 变 的 十分棘手 , 这 个产品能用多 久, 谁 能 今天 能用, 明天 就一定能用 ? 为 了解决 这 个问题, 人 们制定了各 种 各 样 , 如 : 、 介绍 , 注: 为流行 ( ,我们 之前 的测试方法 ) 电子 设 备工 程 联 合 委员会 , , 著名国际电子行业 标 准化组织之 一。 条浴缸曲线 :日本电子工业协会 , 著名国际电 子行业 标 准化组织之 一。 在 一 些目前 较 的 先 来 认识 一 下 产品的 生命周期。 典型 的 产品的生命周期可以用一 ( )来 表示 。 质量( 产品的生命。 )在一定程度上可以说是 )和可靠性( 质量( ( ) 产品的质量与可靠性测试

版本创建 试用 用 文件使 准: 标 参考 玷污等 子 离 定性, 稳 不 , 互扩散 相 , 层破裂 化 氧 , 迁移 :电子 制 机 失效 测试 动态 , , ℃ : 条件 测试 一段时间的耐久力 下 压情况 电 超 和 超热 在 件 评估器 : 的 目 ) 低温操作生命期试验( :高 ② 准: 标 下 以 参考 可 估算结果 和 条件 的测试 具体 。 失效 的 成 生产造 于 玷污等由 子 离 , 金属刻镀 , 缺陷 层 化 氧 如 包括诸 , 缺陷 的 艺 工 材料或 : 制 机 失效 测试 进行 对产品 压 电 度和 内动态提升温 定时间 特 在 : 条件 测试 的产品。 原因失效 生 于天 去除由 , 率 速缺陷失效 加 定性, 稳 的 艺 工 评估 : 的 目 ) 早期失效等级测试( : ① , (), : ) ( 目 命测试项 寿 用 使 、 一 ) ( 目 测试项 等级 产品可靠性 些 就是一 面 下 。 失效原因 的 成 出现的问题所造 面 方 存储等 , 封装 生产, 是在 尤其 , 原因 的 到 并且找 用期, 使 计产品的 预 , 去除并估算其良率 的产品 期 于早夭 图将处 的问题就是要力 , 到 看 产品的生命周期,我们就可以 典型 了 认识 。 等 化 老 的 成 用所造 使 就是产品长期 原因 的 失效 , 升高 会快速 个阶段 这 在 ) 期( 磨耗 被称为 () 。 等等 变化 度 温 如 的,比 机 随 往往是 原因 的 失效 定, 持稳 保 个阶段产品的 这 )在 用期( 被称为使 () 。 缺陷 的 中 设计和生产过程 于 在 原因 的 成失效 ,造 快速下降 个阶段产品的 这 ) 期( 被称为早夭 ()

IC产品可靠性测试包含的内容

可靠性测试 第1 页共12 页 可靠性测试内容 可靠性测试应该在可靠性设计之后,但目前我国的可靠性工作主要还是在测试阶段,这里将测试放在前面(目前大部分公司都会忽略最初的可靠性设计,比如我们公司,设计的时候,从来都没有考虑过可靠性,开发部的兄弟们不要拿砖头仍我……这是实话,只有在测试出现失效后才开始考虑设计)。 为了测得产品的可靠度(也就是为了测出产品的MTBF),我们需要拿出一 定的样品,做较长时间的运行测试,找出每个样品的失效时间,根据第一节的公式计算出MTBF,当然样品数量越多,测试结果就越准确。但是,这样的理想测 试实际上是不可能的,因为对这种测试而言,要等到最后一个样品出现故障――需要的测试时间长得无法想象,要所有样品都出现故障——需要的成本高得无法 想象。 为了测试可靠性,这里介绍:加速测试(也就增加应力*),使缺陷迅速显现;经过大量专家、长时间的统计,找到了一些增加应力的方法,转化成一些测试的项目。如果产品经过这些项目的测试,依然没有明显的缺陷,就说明产品的可靠性至少可以达到某一水平,经过换算可以计算出MTBF(因产品能通过这些测试, 并无明显缺陷出现,说明未达到产品的极限能力,所以此时对应的MTBF 是产品的最小值)。其它计算方法见下文。(*应力:就是指外界各种环境对产品的破坏力,如产品在85℃下工作受到的应力比在25℃下工作受到的应力大;在高应力下工作,产品失效的可能性就大大增加了); 一、环境测试 产品在使用过程中,有不同的使用环境(有些安装在室外、有些随身携带、 有些装有船上等等),会受到不同环境的应力(有些受到风吹雨湿、有些受到振动与跌落、有些受到盐雾蚀侵等等);为了确认产品能在这些环境下正常工作,国标、行标都要求产品在环境方法模拟一些测试项目,这些测试项目包括: 1). 高温测试(高温运行、高温贮存); 2). 低温测试(低温运行、低温贮存); 3). 高低温交变测试(温度循环测试、热冲击测试); 4). 高温高湿测试(湿热贮存、湿热循环); 5). 机械振动测试(随机振动测试、扫频振动测试); 6). 汽车运输测试(模拟运输测试、碰撞测试); 7). 机械冲击测试; 8). 开关电测试; 9). 电源拉偏测试; 10).冷启动测试; 11).盐雾测试;

海思芯片可靠性测试总体规范

海思可靠性测试技术总体规范 拟制:克鲁鲁尔 审核: 批准: 日期:2019-11-06

历史版本记录

适用范围: 本规范规定了芯片可靠性测试的总体规范要求,包括电路可靠性、封装可靠性。适用于量产芯片验证测试阶段的所有测试需求。 简介: 本标准描述芯片研发或新工艺升级,芯片规模量产前对可靠性相关测试的验收基准。这些测试能够激发半导体器件电路和封装的薄弱或问题,通过失效率判断是否满足量产出口标准。相比正常使用场景,该系列测试通常以温度、湿度、电压加速的方式促成故障早期激发。 引用文件: 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。

1.器件可靠性测试要求1.1 电路可靠性测试 High Temperature Operating Life JESD22-A108, JESD85 HTOL T≥ 125℃ Vcc ≥ Vccmax 3 Lots/77 units1000 hrs/ 0 Fail R Early Life Failure Rate JESD22-A108, JESD74 ELFR T≥ 125℃ Vcc ≥ Vccmax See ELFR Table48 ≤ t ≤ 168 hrs R Low Temperature Operating Life JESD22-A108LTOL T≤ 50℃ Vcc ≥ Vccmax 1 Lot/3 2 units1000 hrs/0 Fail C High Temperature Storage Life JESD22-A103HTSL T≥ 150 °C 3 Lots/25 units1000 hrs/0 Fail R Electrical Parameter Assessment JESD86ED Datasheet 3 Lots/10 units T per datasheet R Latch-Up JESD78LU Class I or Class II 1 Lot/3 units0 Fail R Human Body Model ESD JS-001ESD-HBM T = 25 °C 3 units Classification R Charged Device Model ESD JS-002ESD-CDM T = 25 Stress Ref.Abbv.Conditions Requirements Required (R)/ Considered (C) #Lots/SS per Lot Duration/Accept °C 3 units Classification R Accelerated Soft Error Testing JESD89-2, JESD89-3 ASER T = 25 °C 3 units Classification C “OR” System Soft Error Testing JESD89-1SSER T = 25 °C Minimum of 1E+06 Device Hrs or 10 fails. Classification C J J J A A A A A A 1 2 注1:ELFR可包含在HTOL测试中,HTOL测试会在168h回测。 注2:ED一般在首样回片测试阶段完成,包含在电气性能测试,可靠性测试过程不用关注。注3:样本量SS(Sample Size)及可接受失效量Accept的取值由附录1给出,下文同。

集成电路封装和可靠性Chapter2-1-芯片互连技术【半导体封装测试】

UESTC-Ning Ning 1 Chapter 2 Chip Level Interconnection 宁宁 芯片互连技术 集成电路封装测试与可靠性

UESTC-Ning Ning 2 Wafer In Wafer Grinding (WG 研磨)Wafer Saw (WS 切割)Die Attach (DA 黏晶)Epoxy Curing (EC 银胶烘烤)Wire Bond (WB 引线键合)Die Coating (DC 晶粒封胶/涂覆) Molding (MD 塑封)Post Mold Cure (PMC 模塑后烘烤)Dejunk/Trim (DT 去胶去纬) Solder Plating (SP 锡铅电镀)Top Mark (TM 正面印码)Forming/Singular (FS 去框/成型) Lead Scan (LS 检测)Packing (PK 包装) 典型的IC 封装工艺流程 集成电路封装测试与可靠性

UESTC-Ning Ning 3 ? 电子级硅所含的硅的纯度很高,可达99.9999 99999 % ? 中德电子材料公司制作的晶棒( 长度达一公尺,重量超过一百公斤 )

UESTC-Ning Ning 4 Wafer Back Grinding ?Purpose The wafer backgrind process reduces the thickness of the wafer produced by silicon fabrication (FAB) plant. The wash station integrated into the same machine is used to wash away debris left over from the grinding process. ?Process Methods: 1) Coarse grinding by mechanical.(粗磨)2) Fine polishing by mechanical or plasma etching. (细磨抛光 )

集成电路封装和可靠性Chapter2-1-芯片互连技术

1 Chapter 2 Chip Level Interconnection 芯片互连技术 集成电路封装测试与可靠性

UESTC-Ning Ning 2 Wafer In Wafer Grinding (WG 研磨)Wafer Saw (WS 切割)Die Attach (DA 黏晶)Epoxy Curing (EC 银胶烘烤)Wire Bond (WB 引线键合)Die Coating (DC 晶粒封胶/涂覆) Molding (MD 塑封)Post Mold Cure (PMC 模塑后烘烤)Dejunk/Trim (DT 去胶去纬) Solder Plating (SP 锡铅电镀)Top Mark (TM 正面印码)Forming/Singular (FS 去框/成型) Lead Scan (LS 检测)Packing (PK 包装) 典型的IC 封装工艺流程 集成电路封装测试与可靠性

UESTC-Ning Ning 3 ? 电子级硅所含的硅的纯度很高,可达99.9999 99999 % ? 中德电子材料公司制作的晶棒( 长度达一公尺,重量超过一百公斤 )

UESTC-Ning Ning 4 Wafer Back Grinding ?Purpose The wafer backgrind process reduces the thickness of the wafer produced by silicon fabrication (FAB) plant. The wash station integrated into the same machine is used to wash away debris left over from the grinding process. ?Process Methods: 1) Coarse grinding by mechanical.(粗磨)2) Fine polishing by mechanical or plasma etching. (细磨抛光 )

集成电路可靠性介绍

集成电路可靠性介绍 可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。从集成电路的诞生开始,可靠性的研究测试就成为IC设计、制程研究开发和产品生产中的一个重要部分。 Jack Kilby 在1958年发明了集成电路,第一块商用单片集成电路在1961年诞生;1962年9月26日,第一届集成电路方面的专业国际会议在美国芝加哥召开。当时会议名称为“电子学失效物理年会”;1967年,会议名称改为“可靠性物理年会”;1974年又改为“国际可靠性物会议”(IR PS) 并延续至今。IRPS已经发展成集成电路行业的一个盛会,而可靠性也成为横跨学校研究所及半导体产业的重要研究领域。 集成电路可靠性评估体系 经过四十多年的发展,集成电路的可靠性评估已经形成了完整的、系统的体系,整个体系包含制程可靠性、产品可靠性和封装可靠性。 制程可靠性评估采用特殊设计的结构对集成电路中制程相关的退化机理(Wearout Mechanism)进行测试评估。例如,我们使用在芯片切割道(Scribe Line)上的测试结构来进行HCI ( Hot Carrier Injection) 和NBTI (Negative Bias Temperature Instability) 测试,对器件的可靠性进行评估。 产品可靠性和封装可靠性是利用真实产品或特殊设计的具有产品功能的TQV (Technology Qualification Vehicle) 对产品设计、制程开发、生产、封装中的可靠性进行评估。 集成电路可靠性工作者的主要任务 可靠性定义中“规定的时间”即常说的“寿命”。根据国际通用标准,常用电子产品的寿命必须大于10年。显然,我们不可能将一个产品放在正常条件下运集成电路可靠性介绍行10年再来判断这个产品是否有可靠性问题。可靠性评估采用“加速寿命测试”(Accelerated Life Test, ALT)。把样品放在高电压、大电流、高湿度、高温、较大气压等条件下进行测试,然后根据样品的失效机理和模型来推算产品在正常条件下的寿命。通常的测试时间在几秒到几百小时之内。所以准确评估集成产品的可靠性,是可靠性工作者一个最重要的任务。当测试结果表明某一产品不能满足设定的可靠性目标,我们就要和产品设计、制程开发、产品生产部门一起来改善产品的可靠性,这也是可靠性工作者的另一重要职责。当产品生产中发生问题时,对产品的可靠性风险评估是可靠性工作者的第三个重要使命。为了达成这三项使命,我们必须完成以下6个具体工作:1)研究理解产品失效机理和寿命推算模型;2)设计和优化测试结构;3)开发和选择合适的测试设备、测试方法和程序;4)掌握可靠相关的统计知识,合理选择样品数量和数据分析方法;5)深入了解制程参数和可靠性之间的关系;6)掌握失效分析的基本知识,有效利用各种失效分析工具。 这6个方面的工作相互影响依赖。对失效机理和生产制程的理解是最基本的,只有理解,才能设计出比较合适的测试结构,选择适当的测试与数据分析方法,并采用合适的寿命推算模型,以做出准确的寿命评估。只有深入理解制程参数和失效机理之间的互相关系,才能有效地掌握方向、订下重点、分配资源,来改善产品的可靠性。

芯片封装可靠性试验专业术语

可靠性试验的常用术语 Biil of material:BOM 材料清单 可靠性试验常用术语 试验名称英文简称常用试验条件备注 温度循环TCT —65C ~150C, dwell15min, 100cycles 试验设备采用气冷的方式,此温度设置为设备的极限温度 高压蒸煮PCT 121 C,100RH., 2ATM,96hrs 此试验也称为高压蒸汽,英文也称为autoclave 热冲击TST —65 C ~150C, dwell15min, 50cycles 此试验原理与温度循环相同,但温度转换速率更快,所以比温度循环 更严酷。 稳态湿热THT 85C ,85%RH., 168hrs 此试验有时是需要加偏置电压的,一般为Vcb=~, 此时试验为THBT。易焊性solderability 235C,2 ±此试验为槽焊法,试验后为1 0~40倍的显微镜下看管脚的上锡面积。 耐焊接热SHT 260C ,10 ±1s 模拟焊接过程对产品的影响。 电耐久Burn in Vce=, Ic=P/Vce,168hrs 模拟产品的使用。(条件主要针对三极管) 高温反偏HTRB 125C, Vcb=~, 168hrs 主要对产品的PN结进行考核。 回流焊IR reflow Peak C 高温贮存超声波检测225C) HTST SAT 泡、裂缝。但产品表面一定要平整。 IC 产品的质量与可靠性测试 、使用寿命测试项目Life test items 只针对SME产品进行考核,且最多只能做三次。 150C ,168hrs 产品的高温寿命考核。 检测产品的内部离层、气):EFR, OLT (HTOL), LTOL

半导体集成电路的可靠性设计

6.2 半导体集成电路的可靠性设计 军用半导体集成电路的可靠性设计是在产品研制的全过程中,以预防为主、加强系统管理的思想为指导,从线路设计、版图设计、工艺设计、封装结构设计、评价试验设计、原材料选用、软件设计等方面,采取各种有效措施,力争消除或控制半导体集成电路在规定的条件下和规定时间内可能出现的各种失效模式,从而在性能、费用、时间(研制、生产周期)因素综合平衡的基础上,实现半导体集成电路产品规定的可靠性指标。 根据内建可靠性的指导思想,为保证产品的可靠性,应以预防为主,针对产品在研制、生产制造、成品出厂、运输、贮存与使用全过程中可能出现的各种失效模式及其失效机理,采取有效措施加以消除控制。因此,半导体集成电路的可靠性设计必须把要控制的失效模式转化成明确的、定量化的指标。在综合平衡可靠性、性能、费用和时间等因素的基础上,通过采取相应有效的可靠性设计技术使产品在全寿命周期内达到规定的可靠性要求。 6.2.1 概述 1. 可靠性设计应遵循的基本原则 (1)必须将产品的可靠性要求转化成明确的、定量化的可靠性指标。 (2)必须将可靠性设计贯穿于产品设计的各个方面和全过程。 (3)从国情出发尽可能地采用当今国内外成熟的新技术、新结构、新工艺。 (4)设计所选用的线路、版图、封装结构,应在满足预定可靠性指标的情况下尽量简化,避免复杂结构带来的可靠性问题。 (5)可靠性设计实施过程必须与可靠性管理紧密结合。 2. 可靠性设计的基本依据 (1)合同书、研制任务书或技术协议书。 (2)产品考核所遵从的技术标准。 (3)产品在全寿命周期内将遇到的应力条件(环境应力和工作应力)。 (4)产品的失效模式分布,其中主要的和关键的失效模式及其机理分析。 (5)定量化的可靠性设计指标。 (6)生产(研制)线的生产条件、工艺能力、质量保证能力。 3. 设计前的准备工作 (1)将用户对产品的可靠性要求,在综合平衡可靠性、性能、费用和研制(生产)周期等因素的基础上,转化为明确的、定量化的可靠性设计指标。 (2)对国内外相似的产品进行调研,了解其生产研制水平、可靠性水平(包括产品的主要失效模式、失效机理、已采取的技术措施、已达到的质量等级和失效率等)以及该产品的技术发展方向。 (3) 对现有生产(研制)线的生产水平、工艺能力、质量保证能力进行调研,可通过通用和特定的评价电路,所遵从的认证标准或统计工艺控制(SPC)技术,获得在线的定量化数据。

海思消费类芯片可靠性测试技术总体规范V2.0

可靠性测试技术总体规范V2.0 拟制: 审核: 批准:

历史版本记录

适用范围: 本规范规定了芯片可靠性测试的总体规范要求,包括电路可靠性、封装可靠性。适用于量产芯片验证测试阶段的通用测试需求,能够覆盖芯片绝大多数的可靠性验证需求。具体的执行标准可能不是本规范文档,但来源于该规范。本规范描述的测试组合可能不涵盖特定芯片的所有使用环境,但可以满足绝大多数芯片的通用验证需求。 简介: 本标准规定芯片研发或新工艺升级时,芯片规模量产前对可靠性相关测试需求的通用验收基准。这些测试或测试组合能够激发半导体器件电路、封装相关的薄弱环节或问题,通过失效率判断是否满足量产出口标准。相比正常使用场景,该系列测试或测试组合通常以特定的温度、湿度、电压加速的方式来激发问题。 引用文件: 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 1.可靠性概念范畴 “可靠性”是一个含义广泛的概念,以塑封芯片为例,狭义的“可靠性”一般芯片级可靠性,包括电路相关的可靠性(ESD、Latch-up、HTOL)和封装相关的可靠性(PC、TCT、HTSL、HAST等)。但是芯片在应用场景中往往不是“独立作战”,而是以产品方案(PCB板上的一个元器件)作为最终应用。因此广义的“可靠性”还包括产品级的可靠性,例如上电温循试验就是用来评估芯片各内部模块及其软件在极端温度条件下运行的稳定性,产品级的可靠性根据特定产品的应用场景来确定测试项和测试组合,并没有一个通用的规范。本规范重点讲述芯片级可靠性要求。

(产品管理)IC产品的质量与可靠性测试

(产品管理)IC产品的质量与可靠性测试

IC产品的质量和可靠性测试 (ICQuality&ReliabilityTest) 质量(Quality)和可靠性(Reliability)于壹定程度上能够说是IC产品的生命。 质量(Quality)就是产品性能的测量,它回答了壹个产品是否合乎规格(SPEC)的要求,是否符合各项性能指标的问题;可靠性(Reliability)则是对产品耐久力的测量,它回答了壹个产品生命周期有多长,简单说,它能用多久的问题。所以说质量(Quality)解决的是现阶段的问题,可靠性(Reliability)解决的是壹段时间以后的问题。知道了俩者的区别,我们发现,Quality的问题解决方法往往比较直接,设计和制造单位于产品生产出来后,通过简单的测试,就能够知道产品的性能是否达到SPEC的要求,这种测试于IC的设计和制造单位就能够进行。相对而言,Reliability的问题似乎就变的十分棘手,这个产品能用多久,谁会能保证今天产品能用,明天就壹定能用? 为了解决这个问题,人们制定了各种各样的标准,如:JESD22-A108-A、EIAJED-4701-D101,注:JEDEC(JointElectronDeviceEngineeringCouncil)电子设备工程联合委员会,,著名国际电子行业标准化组织之壹;EIAJED:日本电子工业协会,著名国际电子行业标准化组织之壹。 于介绍壹些目前较为流行的Reliability的测试方法之前,我们先来认识壹下IC产品的生命周期。典型的IC产品的生命周期能够用壹条浴缸曲线(BathtubCurve)来表示。 ⅠⅡⅢ Region(I)被称为早夭期(Infancyperiod) 这个阶段产品的failurerate快速下降,造成失效的原因于于IC设计和生产过程中的缺陷;

集成电路封装测试与可靠性课程设计

关于Cu互连系统下迁移失效模式研究 张茂林201421030121 摘要 随着电子技术的飞速发展,功能多样、电路结构比较复杂的电子产品得到广泛的应用。电子产品是由各式各样的集成芯片连接成的,而一块集成电路芯片又由成千上万的乃至于上百万个器件通过金属互连线连接而成。当器件失效或者互连线失效,都可能会引起整个集成芯片的失效。如果为了复杂的电子系统能在非常恶劣的环境中长期工作,提高集成芯片的可靠性是非常有必要的。所以,集成电路金属铜互连系统的可靠性一直以来都是I C设计和制造研究的重点和热点。 [1][2] 1 引言 随着集成电路技术的发展,集成电路发展到纳米技术时代,铜互连技术已经成为决定集成电路可靠性、性能、成本和生产率的重要因素。一直以来电迁移被认为是铜互连系统可靠性中的一个很大的问题,但是在1987年的《国际可靠性物理论丛》中初次报告一种和电迁移不同的不良失效类型,这种失效类型是在互连线不通电,只在高温下(高于100℃)放置产生断线现象,原因主要是互连线和互连系统中的介质层材料的热膨胀系数(CTE)有很大差别,发生热失配,进而引起铜互连结构系统热应力缺陷,所以称为应力迁移或应力诱生空洞。目前,应力迁移对集成电路可靠性的影响是人们研究的重要内容之一。 2 铜互连的研究历程 互连(interconnect)是在硅芯片上集成分立的电子元器件,并把这些它们通过金属互连线连接起来形成比较完整的电路的工艺,其中金属互连线可以利用的材料有Al、Au、Ag、Cu 等,各种材料的物理性质如下表2.1所示。尽管用传统Al材料作为金属互连线的成本低、技术也很成熟、粘附性好、容易刻蚀、与P型半导体和N型半导体容易形成良好的欧姆接触。但是它容易发生电迁移,当工艺温度达到300℃左右的时候,Al薄膜上形成突起,穿透与之相邻的金属互连线之间的电介质层引起短路。从表2. 1得知金属Cu是作为集成电路金属互连

集成电路可靠性面临的挑战

集成电路可靠性介绍 ocean 发表于: 2008-7-21 20:59 来源: 半导体技术天地 集成电路可靠性介绍 半导体国际: 中芯国际集成电路制造有限公司(SMIC) 韩强简维廷黄宠嘉 可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。从集成电路的诞生开始,可靠性的研究测试就成为IC设计、制程研究开发和产品生产中的一个重要部分。 Jack Kilby 在1958年发明了集成电路,第一块商用单片集成电路在1961年诞生;1962年9月26日,第一届集成电路方面的专业国际会议在美国芝加哥召开。当时会议名称为“电子学失效物理年会”;1967年,会议名称改为“可靠性物理年会”;1974年又改为“国际可靠性物会议”(IRPS) 并延续至今。IRPS已经发展成集成电路行业的一个盛会,而可靠性也成为横跨学校研究所及半导体产业的重要研究领域。 集成电路可靠性评估体系 经过四十多年的发展,集成电路的可靠性评估已经形成了完整的、系统的体系,整个体系包含制程可 靠性、产品可靠性和封装可靠性。 制程可靠性评估采用特殊设计的结构对集成电路中制程相关的退化机理(Wearout Mechanism)进行测试评估。例如,我们使用在芯片切割道(Scribe Line)上的测试结构来进行HCI ( Hot Carrier Injection) 和NBTI (Negative Bias Temperature Instability) 测试,对器件的可靠性进行评估。 产品可靠性和封装可靠性是利用真实产品或特殊设计的具有产品功能的TQV (Technology Qualification Vehicle) 对产品设计、制程开发、生产、封装中的可靠性进行评估。 集成电路可靠性工作者的主要任务 可靠性定义中“规定的时间”即常说的“寿命”。根据国际通用标准,常用电子产品的寿命必须大于10年。显然,我们不可能将一个产品放在正常条件下运集成电路可靠性介绍行10年再来判断这个产品是否有可靠性问题。可靠性评估采用“加速寿命测试”(Accelerated Life Test, ALT)。把样品放在高电压、大电流、高湿度、高温、较大气压等条件下进行测试,然后根据样品的失效机理和模型来推算产品在正常条件下的寿命。通常的测试时间在几秒到几百小时之内。所以准确评估集成产品的可靠性,是可靠性工作者一个最重要的任务。当测试结果表明某一产品不能满足设定的可靠性目标,我们就要和产品设计、制程开发、产品生产部门一起来改善产品的可靠性,这也是可靠性工作者的另一重要职责。当产品生产中发生问题时,对产品的可靠性风险评估是可靠性工作者的第三个重要使命。 为了达成这三项使命,我们必须完成以下6个具体工作: 1)研究理解产品失效机理和寿命推算模型; 2)设计和优化测试结构;

相关文档
最新文档