第15章(电磁场和麦克斯韦方程组)带答案

第15章(电磁场和麦克斯韦方程组)带答案
第15章(电磁场和麦克斯韦方程组)带答案

思 考 题

15-1 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.

(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.

(D) 位移电流的磁效应不服从安培环路定理. [ A ] 15-2 如图,图(1)中是充电后切断电源的平行板电容器;图(2)中是一直与电源相接的电容器.当两极板间距离相互靠近或分离时,试判断两种情况的极板间有无位移电流,并说明原因.

答:(1)图中没有位移电流。因为,故

,E 不变,没有位

移电流;

(2)有位移电流。U=E*d ,U 不变,而d 改变,因而E 改变,产生位移电流。

15-3 在感应电场中电磁感应定律可写成t L

K d d d Φ-=??l E ,式中K E 为感应电场的电场

强度.此式表明:

(A) 闭合曲线L 上K E 处处相等. (B) 感应电场是保守力场.

(C) 感应电场的电场强度线不是闭合曲线.

(D) 在感应电场中不能像对静电场那样引入电势的概念. [ D ]

15-4 用导线围成如图所示的回路(以O 点为心的圆,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,其大小随时间减小,则感应电流的流向为 [ B ]

15-5 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为

???=V

S

V d d ρS D , ①

+q -q

思考题15-2图

思考题15-4图

??????-=S

L S t B

d d l E , ②

0d =??S

S B ,

??????+

=S

L

t

S D

J l H d )(d . ④ 试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.

(1) 变化的磁场一定伴随有电场;___??????-=S

L S t B

d d l E _______________ . (2) 磁感线是无头无尾的;_________0d =??

S

S B _______________ .

(3) 电荷总伴随有电场._________?

??

=V

S

V d d ρS D _________________ .

15-6 如图所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流i (t ),则 (A) 圆筒内均匀地分布着变化磁场和变化电场. (B) 任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零.

(C) 沿圆筒外任意闭合环路上磁感强度的环流不为零.

(D) 沿圆筒内任意闭合环路上电场强度的环流为零. [ B ]

习 题

15-1 充了电的圆形平行板电容器(半径为r ),在放电时两板间场强RC /t 0e E E -=,求

两板间位移电流的大小及方向. [ RC /E r 2

0πε-,I D 方向与E 反向 ]

解答:

(1)

2/00)1()(r

e RC

S

d t

E I RC t d πεε--=???=??

I d 方向与E 反向

思考题15-6图

15-2 平行板电容器的电容C 为20.0μF ,两板上的电压变化率dU/dt=1.50510?V/s ,求该平行板电容器中的位移电流为. [ 3A ]

解答:S d t

D I

E D d U E d

???===??)(,,/ε

得到 S dt

dU

d S d t U d I d ..)

(.εε=???=??

又d

S

C ε=

故A dt

dU

C I d 3==

(2)

15-3 一平行板电容器的极板是半径为R 的两圆形金属板,极板间为空气. 将极板与交流电源相接,板上电量随时间的变化关系为t sin q q 0ω=,忽略边缘效应. 则电容器极板间的位移电流是多大? [ t cos q 0ω?ω ]

解答:d

S C C

Q

U d

U E ε=

==

得到S Q D =

故t Q dt

dQ S d t D I d ωωcos .0==??=??

15-4 给电容为C 的平行板电容器充电,电流为i = 0.2e -

t ( SI ),t = 0时电容器极板上

无电荷.求:

(1) 极板间电压U 随时间t 而变化的关系.

(2) t 时刻极板间总的位移电流I d (忽略边缘效应).[

)e 1(2

.0t C

--; t e -2.0 ] 解答:(1)

C

e C q U e q i d t

q e i t t t

t

)

2.01(2.0)2.01(2.02.00

----=

=-===?故故极板带电:

(2)类似于15-3,位移电流t q dt

dq

I d ωωcos 0==

15-5 某段时间内,圆形极板的平板电容器两板电势差随时间变化的规律是:U ab =U a —

U b =k t (k 是正常数,t 是时间),设两板间的电场是均匀的,比较在板间1、2两点 (2比1更靠近极板边缘)B 1与B 2的大小. [ 21B B < ]

解答: H

B ..μ=??=???又在极板间S

d t

D l d H

做圆心在极板圆心连线、平行于极板的圆

有dt dD r

B r dt

dD r H μππ2122=?=

?

即B 正比于半径大小。 由于r 1

电磁场试题及答案

一、填空 1.方程▽2φ=0称为静电场的(拉普拉斯(微分))方程 2.在静电平衡条件下,导体内部的电场强度E 为(0) 3.线性导电媒质是指电导率不随(空间位置)变化而变化 4.局外电场是由(局外力)做功产生的电场 5.电感线圈中的磁场能量与电流的平方(成正比) 6.均匀平面电磁波中,E 和I 均与波的传播方向(垂直) 7.良导体的衰减常数α≈(β≈2ωμγ ) 8.真空中,恒定磁场安培环路定理的微分形式(▽x B=0μJ ) 9.在库伦规范和无穷远参考点前提下,面电流分布的矢量的磁位公式 (A=?R Idl 40 πμ)公式3-43 10.在导体中,电场力移动电荷所做的功转化为(热能) 11. 在静电平衡条件下,由导体中E=0,可以得出导体内部电位的梯度为(0 )(p4页) 12.电源以外的恒定电场中,电位函数满足的偏微分方程为----- (p26 页) 13.在无源自由空间中,阿拉贝尔方程可简化为----------波动方程。 瞬时值矢量齐次 (p145页) 14.定义位移电流密度的微分表达式为------------ t ??D =0εt ??E +t P ?? (p123页) 15.设电场强度E=4,则0 P12页 16.在单位时间内,电磁场通过导体表面流入导体内部的能量等于导线电阻消耗的(热能) 17.某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度) 18.电流连续性方程的积分形式为(???s dS j =-dt dq ) 19.两个同性电荷之间的作用力是(相互排斥的) 20.单位面积上的电荷多少称为(面电荷密度) 21.静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs ) 22.矢量磁位A 和磁感应强度B 之间的关系式:( B =▽ x A ) 23.E (Z ,t )=e x E m sin (wt-kz-错误!未找到引用源。)+ e y E m cos (wt-kz+错误!未找到引用源。),判断上述均匀平面电磁波的极化方式为:(圆极化)(应该是 90%确定) 24.相速是指 均匀平面电磁波在理想介质中的传播速度。 25.电位移矢量D=ε0E+P 在真空中 P 的值为(0)

对麦克斯韦方程组的理解

对麦克斯韦方程组的理解 摘要:理解麦克斯韦方程组的内在含义。并且麦克斯韦方程组有优美的对称性和协 变性,因此用洛伦兹变换及电磁场量验证麦克斯韦方程组在洛伦兹变换下为不变式。 关键词:麦克斯韦方程组 对称性 协变性 1、引言:数学是研究物理的有力工具,数学描述的概括性和抽象性令人敬畏,也 令人敬佩,物理是一门定量的科学,必然大量的使用数学;物理上出现的数学公式反映自然现象的规律和本质,学习物理时,既要弄清楚数学公式的数学意义,更要弄清楚物理内涵,这样才能对数学公式由敬畏变成敬佩,并产生学习的愉悦,以下谈谈自己对麦克斯韦方程组的一点浅浅的体会。 麦克斯韦于1865年完成了他的论文“电磁场的一个动力学理论”。在这篇论文中提出了电磁场的八个基本方程,全面概括了电磁场运动的特征。并非常敏锐的引入了位移电流。指出了电磁场的存在及传播规律。这些光辉的预言,在1888年被德国的科学家赫兹在实验上证实了。 麦克斯韦方程组充分表现了电场和磁场的对称性和协变性,从而体现了自然世界优美的对称性和协变性。 麦克斯韦方程组因为其的优美,被认为是上帝书写的。 2、麦克斯韦方程组的的对称性 麦克斯韦方程组可以概括整个电磁学规律,它具有优美的对称性; t B E ??- =?? (1) t E J u B ??+=??000εμ (2) ερ = ??E (3) 0=??B (4) 麦克斯韦方程组反映普遍情况下电荷电流激发电磁阀以及电磁场内部矛盾运动的规律。它的主要特点是揭示了变化电磁场可以相互激发的运动规律,从而在理论上预言了电磁场的存在,并指出光就是一种电磁波,麦克斯韦方程组不仅揭示了电磁场的运动规律,更揭示了电磁场可以独立于电荷之外单独存在,这就更加深了我们对电磁场物质性的认识。 麦克斯韦方程组是宏观电磁现象的理论基础,它的应用范围极其广泛,利用它原则上可以解决各种宏观电磁现象。因此电磁场的计算都可以归结为对这组方程的求解过程。比如,稳恒磁场就是 0=??t B ,0=??t E 的特殊情况下 的麦克斯韦方程;在讨论电磁波及在真空中 的传播问题时,就是令0,0==J ρ,就可以得到关于E 和B 的完全对称的波动方程: 012222 =??-?t E c E ;012222 =??=-?t B c B

电磁场样卷及答案

苏州大学电磁场与电磁波课程试卷 (A) 卷共6页 考试形式闭卷 院系电子信息学院年级级专业 学号姓名成绩 一、简述题(每题5分,共20分) 1.试简述静态场的唯一性定理?唯一性的物理意义? 2.简述磁通连续性原理,并写出其数学表达式。 3.什么是电磁波的色散特性?色散对传输的信号将会产生什么影响? 4.什么是均匀平面电磁波? 二、(10分)矢量函数,试求 (1) (2) 三、(10分)已知自由空间中某平面波的时间表达式 , (1)试写出其复数表达式,并且判断其极化形式; (2)求出其平均坡印廷矢量 四、(10分)一个点电荷位于处,另一个点电荷位于处,其中。 (1)求出空间任一点处电位的表达式; (2)求出电场强度为零的点。 五、(10分)真空中有一带电球体,半径为,所带总的电量为,假设电荷均匀分布在球体内,计算该球内外的电场强度。 六、(10分)设无限长直导线与矩形回路共面,其电流分别为和(如图1 所示),求(1)无限长直线电流在空间任意点产生的磁通密度; (2)求此导线与矩形回路之间的互感。

七、(10分)设为两种媒质的分界面,为空气,其介电常数为, 为相对介电常数的媒质2。已知空气中的电通量密度为 , 求(1)空气中的电场强度,(2)媒质2中的电通量密度。 八、(10分)设沿方向传播的均匀平面电磁波垂 直入射到理想导体,如图2所示,该电磁波为沿方 向的线极化,设电场强度幅度为,相位常数为。 (1)试写出入射波电场和磁场的表达式; (2)求出反射系数。 (3)写出反射波的电场和磁场表达式。 九、(10分)如图3所示的二维区域,上部保持电位 为,其余三面电位为零, (1)写出电位满足的方程和电位函数的边界条件 (2)求槽内的电位分布

对麦克斯韦方程组的几点新认识

对麦克斯韦方程组的几点新认识 水悦 (安徽大学物理与材料科学学院,安徽合肥 230039) 摘要:经过上学期对《电动力学》和这学期《电磁场与电磁波》课程的学习,使我们认识到麦克斯韦方程组的重要性,麦克斯韦方程组是电磁理论的核心方程组,它是深刻理解好整个电磁理论的基础。在原有学习的基础上,查阅大量资料,现从麦克斯韦方程组所蕴涵的物理简单美、对称美与统一美角度重新审视麦克斯韦方程组,并从审美的角度加深对它的理解。最后,再结合上述分析简单探讨一下麦克斯韦方程组中所透露出的哲学思想,从学科相互渗透的角度进一步加深理解。 关键词:麦克斯韦方程组;简单美;对称美;统一美;哲学 1865年,麦克斯韦在英国皇家学会上宣读了其举世瞩目的论文——《电磁场的动力学理论》,在这篇论文中,他提出了伟大的麦克斯韦方程组。这个方程的伟大之处体现在三个方面,首先,它对电磁理论做出了正确地描述,体现了科学的“真”。其次,利用它可以造福人类,又有“善”的一面;同时,它被誉为“19世纪最美的方程”,有人甚至称之为“像诗一样美的方程组”,可见它还是“美”的。因此,它是“真”、“善”、“美”的统一。同时,将物理学与哲学相结合,我们还可以看到麦克斯韦方程组所蕴含着的哲学规律,这正是学科间的相互渗透,作为一名理科学生,也同样很值得我们仔细去思考、去品味。 1 麦克斯韦方程组的美 1.1 简单美 麦克斯韦方程组在历史上的建立过程非常复杂,但它的逻辑基础却很简单。它是由麦克斯韦在3个基本电磁实验定律(库仑定律、毕奥一萨伐尔定律、法拉第电磁感应定律)的基础上,引出涡旋电场与位移电流的2个假设,并将这些定律与假设加以整合与推广而得到。由库仑定律与毕奥一萨伐尔定律可以导出静态场的麦克斯韦方程组,而动态场的麦克斯韦方程组是在此基础上作了两个重大改进。第一个改进是从法拉第电磁感应定律出发,可以得出处于变化磁场中的导体会产生感应电场,麦克斯韦进一步将它推广,认为只要有变化的磁场就会产生感应电场,并将它称为涡旋电场,涡旋电场的产生与是否存在导体无关,只不过有导体存在时,在涡旋电场的作用下会产生涡旋电流。引入涡旋电场的概念后就可以得到动态场电场的旋度方程。因此,从逻辑上看,涡旋电场既是法拉第电磁感应定律的一个引申和推广,它并不是一个独立的逻辑基础。第二个改进是由麦克斯韦一个人完成的,他为了协调当时的磁场旋度方程与电荷守恒定律间的矛盾,天才地提出了位移电流的假设,认为位移电流也是产生磁场的源,于是就得到了动态场磁场的旋度方程。因此,位移电流假设相当于一个定律,是与三大实验定律并列的一个定律。综上所述,从麦克斯韦方程组建立过程来看,库仑定律、毕奥一萨伐尔定律、法拉第电磁感应定律、位移电流假设构成了麦克斯韦方程组简单的逻辑基础。 麦克斯韦方程组的数学形式也具有简单性,而且从麦克斯韦方程组的发展历史来看,它是逐渐变得简单的。麦克斯韦方程最初给出的是20个方程与20个变量,如下式所示:

电磁场试卷及答案

?电磁场与微波技术?试卷A 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共20分) 1. 静电场是(C) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+-,如已知电介质的介电常数 为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( C) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( A ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现(C ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( C ) A.H B μ= B.0H B μ= C.B H μ= D.0B H μ= 0ε0 ε

7. 极化强度与电场强度成正比的电介质称为(C)介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随(B)变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于(D) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是(A)的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_标量函数__的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 3. 一个回路的自感为回路的_自感磁链_与回路电流之比。 4. 空气中的电场强度5sin(2)x E e t z πβ=-V/m ,则位移电流密度d J = 。 5. 安培环路定律的微分形式是 ,它说明磁场的旋涡源是 有旋场。 6. 麦克斯韦方程组的微分形式是 , , , 。 三、简答题(本大题共2小题,每小题5分,共10分) 1.写出电荷守恒定律的数学表达式,说明它揭示的物理意义。

深入浅出讲解麦克斯韦方程组

深入浅出讲解麦克斯韦方程组 前一段时间给大家发过一篇《世界上最伟大的十个公式》,排在第一位的是麦克斯韦方程,它是电磁学理论的基础,也是相对论假定光速不变的依据,可见排在十大公式之首,理所应当!为了让大家更好地理解该方程,我们找到了一篇由孙研发表在知乎上的关于麦克斯韦方程的非常完美的讲解,呈现个大家。在文章的最后,我们还为大家附上了一段讲解麦克斯韦方程的英文动画视频,如果你英文比较好,不妨看一下。以下是正文: 有人要求不讲微积分来讲解一下麦克斯韦方程组?感觉到基本不太可能啊,你不知道麦克斯韦方程组里面每个方程都是一个积分或者微分么??那既然这样,我只能躲躲闪闪,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。 1. 力、能、场、势 经典物理研究的一个重要对象就是力force。比如牛顿力学的核心就是F=m a这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。很多时候,从能量的角度出发反而问题会变得简单很多。能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。 在电磁学里,我们通过力定义出了场field的概念。我们注意到洛仑兹力总有着F=q(E+v×B) 的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。具体到两个电荷间的库仑力的例子,就可以理解为一个电荷制造了电场,而另一个电荷在这个电场中受到了力,反之亦然。类似地我们也可以对能量做相同的事情,刨去能量中的电荷(或电荷×速度),剩下的部分便是势potential。 一张图表明关系: 积分 力--->能 || 场<---势 微分

关于麦克斯韦方程组

麦克斯韦方程组▽-----乐天10518 关于热力学的方程,详见“麦克斯韦关系式”。麦克斯韦方程组(英语:Maxwell's equations)是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组。它含有四个方程,不仅分别描述了电场和磁场的行为,也描述了它们之间的关系。 麦克斯韦方程组Maxwell's equations 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与的四个基 本方程。 方程组的微分形式,通常称为麦克斯韦方程。在方程组中,电场和磁场已经成 为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了 电磁波的存在。 麦克斯韦提出的涡旋电场和假说的核心思想是:变化的磁场可以激发涡旋电场, 变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激 发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立 了完整的体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组在中的地位,如同牛顿运动定律在力学中的地位一样。以麦克斯韦方 程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。它所揭示出的的完美 统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统 一的。另外,这个理论被广泛地应用到技术领域。 [] 历史背景

1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。 概念的产生,也有麦克斯韦的一份功劳,这是当时物理学中一个伟大的创举,因为正是场概念的出现,使当时许多物理学家得以从牛顿“超距观念”的束缚中摆脱出来,普遍地接受了电磁作用和引力作用都是“近距作用”的思想。 1855年至1865年,麦克斯韦在全面地审视了、—毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 [] 积分形式 麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式: 这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。 (1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 变化场与稳恒场的关系: 当 时, 方程组就还原为静电场和稳恒磁场的方程:

关于麦克斯韦方程组的建立

本科毕业论文 题目:关于麦克斯韦方程组的建立

目录 1.引言 (1) 2.麦克斯韦电磁场理论的建立 (1) 3.麦克斯韦方程组 (2) 3.1涡旋电场假说,位移电流假说 (2) 3.2麦克斯韦方程组的简易推导 (3) 3.3麦克斯韦方程组的微分形式 (5) 4.建立麦克斯韦方程组的其他途径 (6) 4.1根据能量原理和近距作用原理建立麦克斯韦方程组 (6) 4.2根据库仑定律和洛论磁力变换建立麦克斯韦方程组 (11) 5.麦克斯韦方程组的物理意义 (15) 6.结束语 (15) 7.参考文献 (16) 8.致谢............................................ 错误!未定义书签。

关于麦克斯韦方程组的建立 摘要:本文中阐述麦克斯韦电磁场理论的历史发展及运用涡旋电场和位移电流的概念,推导出麦克斯韦方程组的基本形式,并麦克斯韦方程组较深刻的进行讨论,推导出符合在任意时变电磁场的麦克斯韦方程组。 关键词:麦克斯韦方程组;电磁场;涡旋电场;位移电流

1.引言 麦克斯韦电磁场理论是十九世纪物理学中最伟大的成就之一,是继牛顿力学之后物理学史上又一次划时代的伟大贡献。麦克斯韦全面总结了电磁学研究的成果。并在此基础上提出了“涡旋电场”和“位移电流”的假说,建立了完整的电磁理论体系,不仅科学地预言了电磁波的存在。而且揭示了光、电、磁现象的内在联系及统一性,完成了物理学的又一次大综合。他的理论成果为现代无线电电子工业奠定了理论基础,麦克斯韦方程组不仅揭示了电磁场的运动规律。更揭示了电磁场可以独立于电荷之外单独存在,这样就加深了我们对电磁场物质性的认识。 2.麦克斯韦电磁场理论的建立 麦克斯韦首先从论述力线着手,初步建立起电与磁之间的数学关系。1855年,他发表了第一篇电磁学论文《论法拉第的力线》。在这篇论文中,用数学语言表述了法拉第的电紧张态和力线概念,引进了感生电场概念,推导出了感生电场与变化磁场的关系。 1862年他发表了第二篇论文《论物理力线》,不但进一步发展了法拉第的思想,扩充到磁场变化产生电场,而且得到了新的结果:电场变化产生磁场。由此预言了电磁波的存在,并证明了这种波的速度等于光速,揭示了光的电磁本质。这篇文章包括了麦克斯韦电磁理论研究的主要成果。 1864年他的第三篇论文《磁场的动力学理》,从几个基本实验事实出发,运用场论的观点,引进了位移电流概念,按照电磁学的基本原理(高斯定理、电荷守恒定律)推导出全电流定理,最后建立起电磁场的基本方程。 麦克斯韦在总结库仑、高斯、欧姆、安培、毕奥、萨伐尔、法拉第等前人的一系列发现和实验成果的基础上。结合自己提出的涡旋电场和位移电流的概念,建立了第一个完整的电磁理论体系。这个重要的研究结果以论文的形式发表在1865年的英国皇家学会的会报上。论文中列出了最初形式的方程组,由20个等式和20个变量组成,包括麦克斯韦方程组的分量形式。

麦克斯韦方程组浅析

麦克斯韦方程 摘要:本文对麦克斯韦方程组作了全面的分析和阐述,主要包括:麦克斯韦方程组的建立与推导,麦克斯韦方程组的表现形式及其意义,麦克斯韦方程组的应用等三个方面的内容。 关键词:麦克斯韦方程组 库仑定律 毕奥—萨伐尔定律 法拉第定律 引言:麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在1865年英国皇家学会上发表的《电磁场的动力学理论》中提出来的。麦克斯韦在全面深入的审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的基础上,经过长达十年的研究后才得到的成果。可以说,麦克斯韦方程组概括了电磁场的基本性质和规律,构成完整的经典电磁场理论体系。它与洛伦磁力方程共同组成经典电磁学的基础方程,其重要性不言而喻。 一 、麦克斯韦方程组的建立与推导 1、麦克斯韦方程组的建立 麦克斯韦方程组是经典电磁学理论的核心,因此麦克斯韦方程组的建立过程实际上就是经典电磁学理论的建立过程。 到1845年,关于电磁现象的三个基本实验定律:库仑定律、毕奥—萨伐尔定律和法拉第定律已经被总结出来,这为麦克斯韦方程组的建立提供了理论基础。此外,19世纪30年代,法拉第创造性的提出了场和场线的概念,结束了长期以来科学历史上关于超距作用与近距作用的争论。随后,场的思想逐渐完善,科学家们建立了较为成熟的电磁场概念,这对麦克斯韦的工作具有极大的帮助。 1855年,麦克斯韦开始了电磁学基础理论方面的研究。在随后的十年里,他相继发表了《论法拉第力线》、《论物理力线》、《电磁场的动力学理论》等三篇论文。麦克斯韦建立电磁理论的过程大致可分为三步:第一步,麦克斯韦分析总结了电磁学已有的成果,提出感生电场的概念;第二步,他设计了电磁作用的力学模型,对已经确立的电学量和磁学量之间的关系给以物理解释。第三步,他把近距作用理论引向深入,明确地提出了电磁场的概念,并且全面阐述了电磁场的含义,建立了电磁场的普遍方程即麦克斯韦方程组。【1】 2、麦克斯韦方程组的推导 我们先来考察一下库仑定律: r e F 2 00 14r q q πε= 因为q F E =,所以E = r e 2 004r q πε。 (1)电场高斯定律推导 (a) 对于真空中静止的单个点电荷,作任意的高斯面,电荷位于面内。则有:

电磁场试卷及答案

期末考试 ?电磁场与微波技术?试卷A 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共20分) 1. 静电场是(C) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+- ,如已知电介质的介电常数为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( C) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( A ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现(C ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( C ) A.H B μ= B.0H B μ= C.B H μ= 0ε0 ε

D.0B H μ= 7. 极化强度与电场强度成正比的电介质称为(C)介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随(B)变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于(D) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是(A)的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_标量函数__的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 3. 一个回路的自感为回路的_自感磁链_与回路电流之比。 4. 空气中的电场强度5sin(2)x E e t z πβ=- V/m ,则位移电流密度 d J = 。 5. 安培环路定律的微分形式是 ,它说明磁场的旋涡源是 有旋场。 6. 麦克斯韦方程组的微分形式是 , , , 。 三、简答题(本大题共2小题,每小题5分,共10分)

《电磁场与电磁波》(2007下A卷)答案

//成都理工大学2007-2008学年第一学期 《电磁场与电磁波》课程考试试卷A 一、选择题(30分,每小题3分) 1. 关于在一定区域内的电磁场,下列说法中正确的是 ( D ) (A )由其散度和旋度唯一地确定; (B )由其散度和边界条件唯一地确定; (C )由其旋度和边界条件唯一地确定; (D )由其散度、旋度和边界条件唯一地确定。 2. 在电磁场与电磁波的理论中分析中,常引入矢量位函数A ,并令A B ??=, 其依据是 ( C ) (A )0=??B ; (B )J B μ=??; (C )0=??B ; (D )J B μ=??。 3.描述不同媒质分界面两侧的电磁场矢量切向分量关系的边界条件是 ( D ) (A )S D n B n ρ=?=?110 (B )0)(0 )(2121=-?=-?D D n B B n (C )011=?=?E n J H n S (D )0)()(2121=-?=-?E E n J H H n s 4.电磁波从理想介质1垂直向理想介质2入射,介质1和2的本征阻抗分别为30Ω和70Ω,则分界面处的反射系数Γ和透射系数τ分别为 ( C ) (A )7.03.0=-=τΓ (B )6.03.0==τΓ (C )4.14.0==τΓ (D )6.04.0=-=τΓ 5.已知均匀平面电磁波的电场强度矢量为jkZ y x e E e e E 0)32( -=,由此可知, 该平面电磁波是 ( D )

(A )沿Z 轴正方向传播的左旋椭圆极化波 (B )沿Z 轴负方向传播的右旋圆极化波 (C )沿Z 轴正方向传播的线极化波 (D )沿Z 轴负方向传播的线极化波 6.当圆极化波以布儒斯特角B θ入射到两种不同介质的分界面上时,反射波和折射波(或透射波)分别是 ( B ) (A )线极化波和圆极化波; (B )线极化波和椭圆极化波; (C )圆极化波和线极化波; (D )椭圆极化波和圆极化波。 7.一圆极化电磁波从媒质参数为13==r r με的介质斜入射到空气中,要使电场的平行极化分量不产生反射,入射角应为 ( D ) (A )15° (B )30° (C )45° (D )60° 8.将90Ω的负载接到特性阻抗为40Ω的主传输线,为了实现阻抗匹配,在负载与主传输线间接入λ/4匹配线,此匹配线的特性阻抗应为 ( B ) (A )30Ω (B )60Ω (C )65Ω (D )130Ω 9.如图,由特性阻抗为0Z 的传输 线构成的传输线网络中,λ为传 输线波长,负载阻抗02Z Z L =。 则该传输线网络的输入阻抗in Z 为 (A )0 (B )0Z C ) (C )02Z (D )∞ 10.电偶极子的辐射场振幅与θ有关,与之成正比的量是 ( A ) (A )θsin (B )θ2sin (C )θcos (D )θ2cos 二、填空题(30分,每小题3分) 1. 圆频率为ω的均匀平面电磁波,从媒质参数为1,411==r r με的均匀无损

麦克斯韦方程组讨论

对麦克斯韦方程组的理解 学生姓名:吴汉 学号:20093380 指导教师:黄维 课程名称:电磁波原理 二0一一年十二月

摘要 麦克斯韦(Maxwell)的电磁场理论是继牛顿之后又一次划时代的伟大成就,它的建立标志着电磁学的研究发展到了一个新阶段,并开拓了广泛的研究领域。麦克斯韦在总结了电磁现象的实验规律和提出位移电流假设之后,把电磁理论总结为麦克斯韦方程组。它既有实验基础,又是经科学分析和实验检验过的方程。麦克斯韦方程组是研究电磁问题的基石,对于不同方向的研究所采用方程组的形式也不同。同时,麦克斯韦方程组中蕴含着深刻的哲学思想。 关键词:电磁场理论,麦克斯韦方程组,积分,微分,复数,哲学思想

目录 摘要 ................................................................................................................................................ II 1麦克斯韦方程组的提出过程 . (4) 1.1 力线与恒定流速场类比的提出 (4) 1.2 电磁以太力学模型的提出 (1) 1.3 电磁场动力学理论的提出 (1) 2 麦克斯韦方程组的三种形式 (6) 2.1 麦克斯韦方程组的微分形式.......................................................... 错误!未定义书签。 2.1.1 麦克斯韦方程组的非限定形式 (3) 2.1.2 麦克斯韦方程组的完备性 (3) 2.2 麦克斯韦方程组的积分形式.......................................................... 错误!未定义书签。 2.3 麦克斯韦方程组的复数形式.......................................................... 错误!未定义书签。 3 麦克斯韦方程组中蕴含的哲学思想 (5) 3.1 麦克斯韦方程组中的演绎与归纳 (5) 3.2 麦克斯韦方程组建立在客观实在的物质基础上 (5) 3.3 麦克斯韦方程组真理性的实践检验 (5) 致谢 (6) 参考文献 (7)

电磁场与电磁波期末试卷A卷答案

淮 海 工 学 院 10 - 11 学年 第 2 学期 电磁场与电磁波期末试卷(A 闭卷) 答案及评分标准 题号 一 二 三 四 五1 五2 五3 五4 总分 核分人 分值 10 30 10 10 10 10 10 10 100 得分 1.任一矢量A r 的旋度的散度一定等于零。 (√ ) 2.任一无旋场一定可以表示为一个标量场的梯度。 (√ ) 3.在两种介质形成的边界上,磁通密度的法向分量是不连续的。 ( × ) 4.恒定电流场是一个无散场。 (√ ) 5.电磁波的波长描述相位随空间的变化特性。 (√ ) 6.在两介质边界上,若不存在自由电荷,电通密度的法向分量总是连续的。( √) 7.对任意频率的电磁波,海水均可视为良导体。 (× ) 8.全天候雷达使用的是线极化电磁波。 (× ) 9.均匀平面波在导电媒质中传播时,电磁场的振幅将随着传播距离的增加而按指数规律衰减。 (√ ) 10.不仅电流可以产生磁场,变化的电场也可以产生磁场。 (√ ) 二、单项选择题(本大题共10小题,每题3分,共30分) 1.设点电荷位于金属直角劈上方,如图所示,则 镜像电荷和其所在的位置为[ A ]。 A 、-q(-1,2,0);q(-1,-2,0) ;-q(1,-2,0) B 、q(-1,2,0);q(-1,-2,0); q(1,-2,0) C 、q(-1,2,0);-q(-1,-2,0); q(1,-2,0); D 、-q(-1,2,0);q(-1,-2,0); q(1,-2,0)。 2.用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是[ C ]。 A 、镜像电荷的位置是否与原电荷对称; B 、镜像电荷是否与原电荷等值异号; C 、待求区域内的电位函数所满足的方程与边界条件是否保持不变; D 、镜像电荷的数量是否等于原电荷的数量。 3.已知真空中均匀平面波的电场强度复矢量为 2π()120 (V/m)j z E z e e π-=x r r 则其磁场强度的复矢量为[ A ] A 、2π=(/)j z y H e e A m -r r ; B 、2π=(/)j z y H e e A m r r ; C 、2π=(/)j z x H e e A m -r r ; D 、2π=-(/)j z y H e e A m -r r 4.空气(介电常数为10εε=)与电介质(介电常数为204εε=)的分界面是0 z =的平面。若已知空气中的电场强度124x z E e e =+r r r ,则电介质中的电场强度应为 [ D ]。 A 、224x z E e e =+r r r ; B 、2216x z E e e =+r r r ; C 、284x z E e e =+r r r ; D 、22x z E e e =+r r r 单选题1

如果上天能再给我一次机会,我会选择看懂麦克斯韦方程组

花了好长好长时间写的,请不要转载。(知乎日报已获授权) 提问简直坑爹。不讲微积分怎么讲麦克斯韦方程组?麦克斯韦方程组里面每个方程都是一个积分或者微分。既然这样,我只能躲躲闪闪,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。 (知乎日报注:虽然作者已经很努力地用通俗的语言讲解,下文仍含大量方程和公式,请理性选择,按需阅读^ ^) 1. 力、能、场、势 经典物理研究的一个重要对象就是力force。比如牛顿力学的核心就是F=m a 这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。很多时候,从能量的角度出发反而问题会变得简单很多。能量energy 说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。 在电磁学里,我们通过力定义出了场field 的概念。我们注意到洛仑兹力总有着F=q(E+v ×B) 的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。具体到两个电荷间的库仑力的例子,就可以理解为一个电荷制造了电场,而另一个电荷在这个电场中受到了力,反之亦然。类似地我们也可以对能量做相同的事情,刨去能量中的电荷(或电荷×速度),剩下的部分便是势potential。

电磁场与电波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答 第七章 正弦电磁波 7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成 j() e n r t m βω?-=e E E 。 解 E m 为常矢量。在直角坐标中 cos cos cos n x y z x y z x y z αβγ=++=++e e e e r e e e 故 (cos cos cos )() cos cos cos n x y z x y z x y z x y z αβγαβγ ?=++?++=++e r e e e e e e 则 j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z z j x y z t m e j e j βωβαβγωβαβγωββ?-++-++-==?=?+?+?==e E E E E e E e E e E E E 而 22 j[(cos cos cos )]22 2{e }x y z t m t t βαβγωω++-??==-??E E E 故 22 2222()(0 j j t μεβμεωμεω??-=+=+=?E E E E E E 可见,已知的() n j e r t m e βω?-=E E 满足波动方程 22 20 t με??-=?E E 故E 表示沿e n 方向传播的平面波。 7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。 解 表征沿+z 方向传播的椭圆极化波的电场可表示为 12 ()j z x x y y E jE e β-=+=+E e e E E 式中取 121 [()()]21 [()()]2j z x x y y x y j z x x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e 显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。 7.3 在自由空间中,已知电场3(,)10sin()V/m y z t t z ωβ=-E e ,试求磁场强度 (,)z t H 。 解 以余弦为基准,重新写出已知的电场表示式 3(,)10cos()V/m 2y z t t z π ωβ=--E e 这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90? -。与之相伴的磁场为

麦克斯韦方程的理解

.麦克斯韦方程组 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组。它含有四个方程,不仅分别描述了电场和磁场的行为,也描述了它们之间的关系。麦克斯韦的四个方程分别表达了:电荷是如何产生电场的(高斯定理);验证了磁单极子的不存在(高斯磁场定律);电流和变化的电场是怎样产生磁场的(安培定律),以及变化的磁场是如何产生电场(法拉第电磁感应定律)。 1865年,麦克斯韦建立了最初形式的方程组,由20个等式和20个变量组成。他在1873年尝试用四元数来表达,但未成功。当代使用的数学表达式是由奥利弗·亥维赛和威拉德·吉布斯于1884年使用矢量分析的形式重新表达的 二.国际单位制下的麦克斯韦方程组 在国际单位制下,真空中的麦克斯韦方程组(微分形式)可以表示成: 介质中的麦克斯韦方程组可以表示成: 另外,还有两个辅助方程经常用到: 其中, ?是电通量密度(单位:库伦/平方米,C/m2); ?是磁通量密度(单位:特斯拉,T),也称磁感强度; ?是电场强度(单位:伏特/米,V/m); ?是磁场强度(单位:安/米,A/m); ?ρ是自由电荷体密度(单位:库伦/立方米,C/m3); ?是自由电流面密度(单位:安/平方米,A/m2);

?是真空介电常数; ?μ0是真空磁导率; ?是介质的极化强度; ?是介质的介电常数; ?是介质的相对介电常数; ?是介质的磁化强度; ?μ是介质的磁导率; ?μr是介质的相对磁导率。 三.麦克斯韦方程组的含义 第一个方程表示电场是有源的。(单位电荷就是它的源) 第二个方程表示变化的磁场可以产生电场。(这个电场是有旋的) 第三个方程表示磁场是无源的。(磁单极子不存在,或者说到现在都没发现) 第四个方程表示变化的电场可以产生磁场。(这个磁场是有旋的) 2009-12-115:25上传 提起电磁波,我们脑海里立刻会浮现出众多科学家的身影,库仑,安培,法拉第,赫姆赫兹,但是,缔造这个帝国大厦的三个代表性人物绝对是麦克斯韦(Maxwell),赫兹(Hertz)和马可尼。其中,麦克斯韦奠定了电磁场的理论基础,人们把他称为电磁波之父。麦克斯韦大约于1855年开始研究电磁学,抱着给法拉第的理论“提供数学方法基础”的愿望,对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组(Maxwell's equations)。

麦克斯韦方程组的理解

麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式: (in matter) 这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。 其中:(1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 变化场与稳恒场的关系: 当 变化场与稳恒场的关系 时, 方程组就还原为静电场和稳恒磁场的方程: (in matter) 在没有场源的自由空间,即q=0, I=0,方程组就成为如下形式:

(in matter) 麦克斯韦方程组的积分形式反映了空间某区域的电磁场量(D、E、B、H)和场源(电荷q、电流I)之间的关系。 编辑本段 微分形式 麦克斯韦方程组微分形式:在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。利用矢量分析方法,可得: (in matter) 注意:(1)在不同的惯性参照系中,麦克斯韦方程有同样的形式。 (2) 应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在各向同性介质中,电磁场量与介质特性量有下列关系: 在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用t=0时场量的初值条件,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t)。 编辑本段 科学意义 (一)经典场论是19世纪后期麦克斯韦在总结电

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案 1-5 CADBC 6-8 CBC 三、稳恒磁场习题 1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中 通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]

4. 无限长载流空心圆柱导体的内外半径分别为 a 、 b ,电流在导体截面上均匀分布, 则空间各处的B ? 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确 的图是 [ ] 5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导 线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ?、2B ? 和3B ?表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0. (D) B ≠ 0,因为虽然021≠+B B ? ?,但B 3 ≠ 0. [ ] 6. 电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆

第05讲 真空中的麦克斯韦方程组

第4讲 真空中的麦克斯韦方程组 第一章 电磁现象的普遍规律(3) §1.3 真空中的麦克斯韦方程组 以上两节由实验定律总结了恒定磁场的基本规律。随着交变电流的研究和广泛应用,人们对电磁场的认识有了一个飞跃。由实验发现不但电荷激发电场,电流激发磁场,而且变化着的电场和磁场可以互相激发,电场和磁场成为统一的整体——电磁场。 和恒定场相比,变化电磁场的新规律主要是: (1)变化磁场激发电场(法拉第电磁感应定律); (2)变化电场激发磁场(麦克斯韦位移电流假设)。 下面分别讨论这两问题。 1. 电磁感应定律 自从发现了电流的磁效应之后,人们跟着研究相反的效应,即磁场能否导致电流?开始人们企图探测处于恒定磁场中的固定线圈上的感应电流,这些尝试都失败了,最后于1831年法拉第发现当磁场发生变化时,附近闭合线圈中有电流通过并由此总结出电磁感应定律:闭合线圈中的感应电动势与通过该线圈内部的磁通量变化率成正比,其方向关系在下面说明。如图1-6,设L 为闭合线圈,S 为L 所围的一个曲面,d S 为S 上的一个面元。按照惯例,我们规定L 的围绕方向与d S 的法线方向成右手螺旋关系。由实验测定,当通过S 的磁通量增加时,在线圈L 上的感应电动势E 与我们规定的L 围绕方向相反,因此用负号表示。电磁感应定律表为 ε=??- S d dt d S B (1.3---1)

线圈上的电荷是直接受到该处电场作用而运动的,线圈上有感应电流就表明空间中存在着电场。因此,电磁感应现象的实质是变化磁场在其周围空间中激发了电场,这是电场和磁场内部相互作用的一个方面。 感应电动势是电场强度沿闭合回路的线积分,因此电磁感应定律(1.3---1)式可写为 L S d d d dt ?=- ?? ?E B S l (1.3---2) 若回路L 是空间中的一条固定回路,则上式中对t 的全微商可代为偏微商 L S d d t ??=-???? B E S l 化为微分形式后得 t ??- =??B E (1.3---3) 这是磁场对电场作用的基本规律。由(1.3---3)式可见,感应电场是有旋场。因此在一般情况下,表示静电场无旋性的(1.1---10)式必须代以更普遍的(1.3---3)式。 2. 位移电流 上面我们研究了变化磁场激发电场问题,进一步我们要问,变化电场是否激发磁场?在回答这问题之前,我们先分析非恒定电流分布的特

相关文档
最新文档