三角函数化一公式例题解析

三角函数化一公式例题解析
三角函数化一公式例题解析

三角函数化一公式解析

一、化一公式

三角函数化一公式是指如下的三角函数公式:

)cos()sin(cos sin 2222θ?-+=++=+x b a x b a x b x a ,

其中

22sin cos b a a

+=

=θ?,2

2cos sin b a b

+=

=θ?,

θ?、

完美地融入直角梯形中。

如果0=ab ,则公式显然成立。不妨假设0≠ab ,则

{

[]),

sin( cos sin sin cos cos sin cos sin 2222222

222???++=++=?

?????++++=+x b a x x b a x b a b

x b a a b a x b x a

同理可得

)cos(cos sin 22θ-+=+x b a x b x a 。

二、公式的应用

化一公式把含有两个三角函数x sin 、x cos 的线性问题转化成了只含一个三角函数式的问题,从而方便了利用三角函数的有关性质解决最值、单调区间、图象对称轴、对称中心、三角方程、三角不等式、图象变换等方面的有关问题。这些问题均是三角函数的基本问题,但学生往往难以掌握。下面举例说明化一公式的应用及其注意事项。

1、三角函数最值问题 例1、求函数

R x x x x x f ∈+=),cos (sin sin 2)(

的最大值。

解析:142sin 212cos 2sin cos sin 2sin 2)cos (sin sin 22+???

?

?-=+-=+=+πx x x x x x x x x 。

于是,函数的最大值是12+。

例2、求函数

R x x x x f ∈??? ?

?

++??? ??+=,94sin 59sin 3)(ππ

的最大值和最小值。 解析:

)

sin(7 )sin(94sin 59sin 394cos 59cos 3 cos 94sin 59sin 3sin 94cos 59cos 394sin 59sin 32

2??ππππππππππ+=+??? ??++??? ?

?

+=??? ??

++??? ??+=??? ??++??? ??+x x x

x x x

因此,该函数的最大值和最小值分别是7、-7。

例3、已知函数

R x x a x x f ∈++=,4cos sin 2)(

~

的小值为1,求参数a 的值。

解析:

R x x a x f ∈+++=,4)sin(4)(?,2

tan a

=

?。 因函数的最小值是1,即144=+-a 。因此5=a 。

2、三角函数的单调区间 例4、求函数

()ππ2,2,2

cos 2sin )(-∈+=x x

x x f

的单调递增区间。

解析:用化一公式将函数简化为

??

? ??+=+42sin 22cos 2sin

πx x x 。 》

注意到函数的定义域,从而??

?

??-

∈+45,4342πππx 。利用正弦函数的单调性立即可知函数f 的单调递增区间为???

?

?-2,2ππ。

例5、求函数

],0[,cos cos sin 32sin )(44π∈-+=x x x x x x f

的单调区间。

解析:因为

??? ?

?

-=-=-+=-+62sin 22cos 2sin 3cos sin 2sin 3cos cos sin 32sin 2244πx x x x x x x x x x 。

利用正弦函数的单调性,立即得到函数f 的单调递增区间为????????????πππ2,653,0 ,单调递减区间

为??

????65,3ππ。

3、三角函数的最小正周期

周期现象是一种普遍而重要的自然现象,对于描述周期现象的有力工具之一——三角函数,其最小正周期实际问题中扮演着一个重要角色,例如Fourier 级数。因此,如何寻求三角函数的最小正周期无疑是一个十分重要的课题。而化一公式无疑又是解决这个问题的一把钥匙。

对于例1中的函数,利用化一公式,我们立即可知该函数的最小正周期为π。类似地,对于另一高考题:求函数x x s y cos sin 32cos -=的最小正周期,也可获知其最小正周期为π )

4、三角函数图象的对称轴、对称中心及相关问题

例6、若函数

R x x a x x f ∈+=,2cos 2sin )(

的图像关于直线8

π-

=x 对称,则参数a

的值为多少

解析:利用化一公式,有

a x a x a x =++=+??tan ),2sin(12cos 2sin 2。

根据题意

43,182ππ?π+=+=??

? ??-k a f 。 进而,1-=a 。对于这个函数,如果图像关于点??

?

??-0,6π对称,用同样的方法可知3=a 。

例7、已知函数

R x x x x x f ∈++=,1cos sin 2

3cos 21)(2。

该函数图象可由R x x y ∈=,sin 的图像经过怎样的平移和伸缩变化得到

解析:首先利用化一公式可得

R x x x f ∈+??? ??+=,4

5

62sin 21)(π。

进而,该问题就可迎刃而解。

5、解三角方程和三角不等式 例8.求三角方程01cos 3sin =--x x

利用化一公式和正弦函数的性质,立即可知其解集为

?

?????∈+=+=Z k k x k x x ,62 22π

πππ或。

例9.解三角不等式1cos 3cos sin 2sin 22≤+-x x x x

同样地,利用化一公式和正弦函数的单调性立即可知解集为

?

?????∈-≤≤-Z k k x k x ,42π

πππ。

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

高三数学三角函数经典练习题及复习资料精析

1.将函数()2sin 2x f x =的图象向右移动02π???? << ?? ? 个单位长度, 所得的部分图象如右图所示,则?的值为( ) A .6 π B .3 π C .12 π D .23 π 2.已知函数()sin 23f x x π??=+ ?? ? ,为了得到()sin 2g x x =的图象,则 只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π 个长度单位 3.若113sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3 π的值为( ) A .12 B . 3 2 C .12- D .32 - 5.记cos(80),tan 80k -?=?那么= ( ). A 2 1k -.2 1k - C 2 1k -.2 1k k -- 6.若sin a = -45 ,a 是第三象限的角,则sin()4 a π +=( ) (A )-7210 (B ) 7210 (C )2 - 10 (D ) 210

7 .若 55 2) 4 sin(2cos -=+ π αα,且)2 ,4(ππα∈,则α2tan 的值为( ) A .3 4- B .4 3- C .4 3 D .3 4 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是 ( ) A .)(x f 的周期为π B .)(x f 在)0,2 (π-上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数2(ωφ),φ<2 π的图象,那么 A.ω=11 10,φ=6 π B.ω=10 11,φ6π C.ω=2,φ=6 π D.ω =2,φ6 π 10.要得到函数sin(4)3 y x π=-的图象,只需要将函数sin 4y x =的 图象( ) A .向左平移3 π个单位 B .向右平移3 π 个单位 C .向左平移12π个单位 D .向右平移12 π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象

《三角函数的诱导公式》(学案)

三角函数的诱导公式(第1课时)(学案) 一.教学目标 1.知识与技能 (1)能够借助三角函数的定义推导三角函数的诱导公式。 (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。 2.过程与方法 (1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。 (2)通过对诱导公式的探求和运用,提高学生分析问题和解决问题的能力。 3.情感、态度、价值观 (1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。 (2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。 二.教学重点与难点 教学重点:探求π-α的诱导公式。π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。 教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。 三.教学方法与教学手段 问题教学法、合作学习法,结合多媒体课件 四.教学过程 角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢? (一)情境创设及问题提出 如何将任意角三角函数求值问题转化为0°~360°角三角函数 求值问题。 【情境创设】摩天轮旋转一周(比如如图30°角的位置)后又会 回到原位,你能否从数学角度或者用数学学语言来刻画一下什么是 “回到原位”?摩天轮旋转一周后,发生变化和没有变化的量分别 是什么?它们之间有何关系?从中你能得到什么结论? 一般地,由三角函数的定义可以知道,终边相同的角的同一三 角函数值__________,三角函数看重的就是终边位置关系。即有: (二)尝试推导 如何利用对称推导出角π-α与角α的三角函数之间的关系。 【问题2】你能找出和30°角正弦值相等,但终边不同的角吗? 角与角α的终边关于y轴对称,有:

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

三角函数综合应用解题方法总结(超级经典)

精锐教育学科教师辅导教案

例3:求函数y=f(x)=cos 2 2x-3cos2x+1的最值. 解 ∵f(x)=(cos2x- 23)2-4 5, ∴当cos2x=1,即x= k π,(k ∈Z)时,y=min=-1, 当cos2x=-1,即x= k π+ 2 π ,( k ∈Z)时,y=max=5. 这里将函数f(x)看成关于cos2x 的二次函数,就把问题转化成二次函数在闭区间[-1,1]上的最值值问题了. 4.引入辅助角法 y=asinx+bcosx 型处理方法:引入辅助角?,化为y=22b a +sin (x+?),利用函数()1sin ≤+?x 即可求解。Y=asin 2 x+bsinxcosx+mcos 2 x+n 型亦可以化为此类。 例4:已知函数()R x x x x y ∈+?+= 1cos sin 2 3cos 212当函数y 取得最大值时,求自变量x 的集合。 [分析] 此类问题为x c x x b x a y 2 2 cos cos sin sin +?+=的三角函数求最值问题,它可通过降次化简整理为 x b x a y cos sin +=型求解。 解: ().4 7,6,2262,4562sin 21452sin 23 2cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+??? ??+=+???? ??+=++=+?++?=y z k k x k x x x x x x x x y ππππππ 5. 利用数形结合 例5: 求函数y x x = +s in c o s 2的最值。 解:原函数可变形为y x x = ---s i n c o s () .0 2 这可看作点Ax xB (c o s s i n )() ,和,-20的直线的斜率,而A 是单位圆x y 2 2 1+=上的动点。由下图可知,过B ()-20,作圆的切线时,斜率有最值。由几何性质,y y m a x m i n .= =-333 3 , 6、换元法 例6:若0

三角函数诱导公式学案(一)

1.2.三角函数诱导公式学案(一) 预习案(限时20分钟) 学习目标: (1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式; (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题 学习重点: 用联系的观点发现并证明诱导公式,体会把未知问题化归为已知问题的思想方法 学习难点:如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法. 预习指导:请根据任务提纲认真预习课本P23-25 ? 任务一:探究三角函数诱导公式(二) (三)(四) 思考: (1)各象限内三角函数值的符号是什么?(只讨论正弦、余弦、正切) (2)任意角的三角函数的定义是什么? (3)公式一的内容与作用是什么? 探究一:任意角α与(π+α)三角函数值的关系. ①α与 (π+α)角的终边关系如何? ②设α与(π+α)角的终边分别交单位圆于点P 1,P 2,则点P 1与P 2位置关系如何? ③设点P 1(x ,y ),那么点P 2的坐标怎样表示? ④sin α与sin(π+α),cos α与cos(π+α),tan α与tan(π+α)的关系如何? 利用三角函数定义,自己探索,归纳成公式(二) _______)tan(_______)cos(_______)sin(=+=+=+απαπαπ 探究二:任意角α与(-α)三角函数值的关系. ①α与(-α)角的终边位置关系如何? ②设α与(-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何? ③设点P 1(x ,y ),则点P'的坐标怎样表示? ④sin α与sin(-α),cos α与cos(-α) ,tan α与tan(-α)关系如何? 利用三角函数定义,经过探索,归纳成公式(三) _______)tan(_______)cos(_______)sin(=-=-=-ααα 探究三:α与(π-α)的三角函数值的关系. ①α与(π-α)角的终边位置关系如何? ②设α与(π-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何? ③设点P 1(x ,y ),则点P'的坐标怎样表示? ④sin α与sin(π-α),cos α与cos(π-α) ,tan α与tan(π-α)关系如何? 经过探索,归纳成公式(四) _______)tan(_______)cos( _______)sin(=-=-=-απαπαπ 预习检测 1.cos 225?=_________ 2.)45sin(ο-=_________ 3.)150tan(ο =________ _______)180tan()cos()180sin(.4=--?+οοααα 5.若,31)tan(=+απ则=αtan __________________

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

最新九年级《三角函数》知识点、经典例题

九年级《三角函数》知识点、例题、中考真题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2 22c b a =+ 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 定 义 表达式 取值范围 关 系 正弦 斜边的对边A A ∠= sin c a A =sin 1sin 0<A (∠A 为锐角) B A cot tan = B A tan cot = A A cot 1 tan = (倒数) 1cot tan =?A A 余切 的对边 的邻边A A A ∠∠= cot a b A =cot 0cot >A (∠A 为锐角) 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 三角函数 0° 30° 45° 60° 90° αsin 0 2 1 2 2 2 3 1 αcos 1 2 3 2 2 2 1 0 αtan 0 3 3 1 3 - αcot - 3 1 3 3 0 6、正弦、余弦的增减性: ) 90cot(tan A A -?=)90tan(cot A A -?= B A cot tan = B A tan cot = )90cos(sin A A -?=) 90sin(cos A A -?= B A cos sin =B A sin cos =A 90B 90∠-?=∠? =∠+∠得由B A 对边 邻边 斜边 A C B b a c A 90B 90∠-?=∠? =∠+∠得由B A

《三角函数的诱导公式》教学设计

1.3 三角函数的诱导公式 (名师:杨峻峰) 一、教学目标 (一)核心素养 从对称性出发,获得一些三角函数的性质.会选择合适的诱导公式将任意角的三角函数转化为锐角三角函数. (二)学习目标 1. 牢固掌握五组诱导公式. 2. 理解和掌握公式的内涵及结构特征,熟练运用公式进行三角函数的求值、化简及恒等证明. 3. 通过诱导公式的推导,培养学生的观察能力、分析归纳能力. 4.渗透把未知转化为已知以及分类讨论的数学思想. (三)学习重点 熟练、准确地运用公式进行三角函数求值、化简及证明. (四)学习难点 相关角终边的几何对称关系及诱导公式结构特征的认识,诱导公式的推导、记忆及符号判断. 二、教学设计 (一)课前设计 1. 阅读教材第23页至第27页,填空: (1)如图,πα+的终边与角α的终边关于 原点 对称; (2)如图,α-的终边与角α的终边关于 x轴 对称; (3)如图,πα-的终边与角α的终边关于 y 轴 对称; (4)如图, 2 π α-的终边与角α的终边关于 直线y =x 对称;

(5)诱导公式: 公式二:()sin πα+=sin α-,()cos πα+=cos α-,()tan πα+=tan α; 公式三:()sin α-=sin α-,()cos α-=cos α,()tan α-=tan α-; 公式四:()sin πα-=sin α,()cos πα-=cos α-,()tan πα-=tan α-; 公式五:sin 2πα??-= ???cos α,cos 2πα?? -= ???sin α; 公式六:sin 2πα??+= ???cos α,cos 2πα?? += ??? sin α-. 2.预习自测 1.下列选项错误的是( ) A.利用诱导公式二可以把第三象限的三角函数化为第一象限的三角函数.? B.利用诱导公式三可以把负角的三角函数化为正角的三角函数. ? C. sin cos 2παα? ?+=- ?? ?. ? ? ? D .若α为第四象限角,则sin cos 2παα? ?-=- ???.? ? ? 答案:C. (二)课堂设计 1.知识回顾

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

《三角函数的诱导公式》

三角函数的诱导公式(第1课时) 南京师范大学附属中学刘洪璐 教材:苏教版《普通高中课程标准实验教科书(必修4)·数学》第1.2.3节 一.教学目标 1.知识与技能 (1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。 (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。 2.过程与方法 (1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。 (2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。 3.情感、态度、价值观 (1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。 (2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。 二.教学重点与难点 教学重点:探求π-α的诱导公式。π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。 教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。 三.教学方法与教学手段 问题教学法、合作学习法,结合多媒体课件 四.教学过程 角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。 (一)问题提出 如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。 【问题1】求390°角的正弦、余弦值. 一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(α+k·360°) = sinα, cos(α+k·360°) = cosα,(k∈Z) tan(α+k·360°) = tanα。 这组公式用弧度制可以表示成sin(α+2kπ) = sinα, cos(α+2kπ) = co sα,(k∈Z) (公式一) tan(α+2kπ) = ta nα。

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

三角函数10道大题(带答案)

三角函数大题转练 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++=π π · (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[ππ-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0,4?? ∈ ? ? ? πα,若()2cos 2,2 f =αα求α的大小 : 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.

5、 设函数2())sin 4 f x x x π = ++. (I )求函数()f x 的最小正周期; ; (II )设函数()g x 对任意x R ∈,有()()2 g x g x π+=,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相 邻两条对称轴之间的距离为2 π, (1)求函数()f x 的解析式; (2)设(0,)2 πα∈,则()22 f α =,求α的值. ' 7、设426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? -???? 上为增函数,求 ω的最大 值.

2019-2020学年高中数学 三角函数诱导公式学案2 新人教A版必修4.doc

2019-2020学年高中数学 三角函数诱导公式学案2 新人教A 版必 修 4 二、重点、难点 重点: 借助于单位圆,推导出正弦、余弦相互转化的诱导公式。 难点: 利用诱导公式解决有关三角函数求值、化简和恒等式证明问题。 三、教学过程 引入新课 1函数名称 )(2Z k k ∈+πα α- απ- απ+ αsin αcos αtan 2.(1)=6 sin π _____;=3 cos π _____。 (2)=4 sin π _____;=4 cos π _____。 (3)=0sin _____;=2 cos π _____。 那么能否将锐角推广到任意角呢? 猜测公式五: 。 3.角6π与3 π 的终边有何关系?利用单位圆,画出三角函数线,证明你的结论。 4.(1)=65sin π_____;=3cos π_____。(2)=43sin π_____;=4cos π_____。 (3)=65cos π_____;=3sin π_____。(4)=43cos π_____;=4 sin π_____。 x y O 知识链接:初中学习过,任意锐角的正弦 值等于它的余角的余弦值;任意锐角的余弦值 等于它的角的正弦值。 由2π βα= +得απ β-= 2 , )2cos(sin απα-=,)2 sin(cos απ α-=

猜测公式六: 。 5.你能否用公式二和五证明你猜测的公式六? 例题剖析 例1.求证:(1)ααπcos )2 3sin(-=+ (2)ααπsin )2 3cos(=+ 例2.已知3 1)75cos(=+α ,且?-<

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

三角函数10道大题(带答案)1

三 角 函 数 1.已知函数()4cos sin()16 f x x x π =+ -. (Ⅰ)求 ()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++ =π π (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在区间]4 ,4[π π- 上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+ π (Ⅰ)求()f x 的定义域与最小正周期; (II)设0,4?? ∈ ?? ? πα,若( )2cos 2,2 f =α α求α的大小 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期;(2)求)(x f 的单调递减区间.

5、 设函数2())sin 4 f x x x π = ++. (I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()()2g x g x π + =,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对 称轴之间的距离为 2 π, (1)求函数()f x 的解析式;(2)设(0,)2π α∈,则()22 f α =,求α的值. 7、设 426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? - ???? 上为增函数,求 ω的最大值.

1.3.2三角函数诱导公式(二)(教、学案)

1. 3.2三角函数诱导公式(二) 【教材分析】 《三角函数的诱导公式》是普通高中课程标准实验教科书必修四第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式六。这节是诱导公式(二)的推导,在诱导公式(一)的推导中用到了一次对称变换,这节是利用两次对称变换推导到的诱导公式,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会的任意性;综合诱导公式(一)、(二)总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。 【教学目标】 1.借助单位圆,推导出正弦、余弦第五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题 2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。 3. 培养学生的化归思想,使学生认识到转化“矛盾”是解决问题的一条行之有效的途径. 【教学重点难点】 教学重点:掌握 απ±2角的正弦、余弦的诱导公式及其探求思路 教学难点:απ ±2角的正弦、余弦诱导公式的推导. 【学情分析】 学生在前面第一类诱导公式学习中感受了数形结合思想、对称变换思想在研究数学问题中的应用,初步形成用对称变换思想思考问题的习惯,对于两次对称变换思想的应用是上一节课的深化;学生对高中数学知识有了一定了解和掌握,也形成了自己的学习方法和习惯,对学习高中数学有了一定兴趣和信心,且具有了一定的分析、判断、理解能力和交流沟通能力。但由于诱导公式多,学生记忆困难,应用时易错,应该渗透归纳总结的学习方法,让学生找规律,体现自主探究、共同参与的新课改理念。 【教学方法】 1.学案导学:见后面的学案。 2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 【课前准备】 1.学生的学习准备:预习“三角函数的诱导公式”,完成预习学案。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。 3.教学手段:利用计算机多媒体辅助教学. 【课时安排】1课时 【教学过程】 一、预习检查、总结疑惑

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

三角函数10道大题(带答案)

三角函数 令狐采学 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()3 2sin()(2R x x x x x f ∈-+-++=π π (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[π π-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0, 4?? ∈ ?? ? πα,若()2cos 2,2 f =α α求α的大小 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间. 5、设函数2())sin 24 f x x x π = ++. (I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()()2 g x g x π+=,且当[0,]2 x π∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3,其图 像相邻两条对称轴之间的距离为2 π, (1)求函数()f x 的解析式;

(2)设(0, )2π α∈,则()22 f α =,求α的值. 7、设426 f (x )cos(x )sin x cos x π =ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )=的值域 (Ⅱ)若y f (x )=在区间322,ππ?? -???? 上为增函数,求ω的最 大值. 8、函数 2 ()6cos 3(0)2 x f x x ωωω=+->在一个周期内的图象 如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ?为正三角形. (Ⅰ)求ω的值及函数()f x 的值域; (Ⅱ)若0()f x =,且0102(,)33 x ∈-,求0(1)f x +的值. 9、已知 ,,a b c 分别为ABC ?三个内角,,A B C 的对边, cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ?的面积为3;求,b c . 10、在?ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cosA =2 3 ,sinB . (Ⅰ)求tanC 的值;(Ⅱ)若a ?ABC 的面积. 答案 1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值. 【 精 讲 精 析 】 ( Ⅰ ) 因 为 ()4cos sin()16 f x x x π =+-14cos cos )12x x x =+-

相关文档
最新文档