Pre- and Post-DFT Combining Space Diversity Receiver for Wideband Multi-Carrier Systems

Pre- and Post-DFT Combining Space Diversity Receiver for Wideband Multi-Carrier Systems
Pre- and Post-DFT Combining Space Diversity Receiver for Wideband Multi-Carrier Systems

Pre-and Post-DFT Combining Space Diversity Receiver for Wideband Multi-Carrier Systems

Muhammad Imadur Rahman,Suvra Sekhar Das,Frank H.P.Fitzek,Ramjee Prasad

Center for TeleInFrastruktur(CTiF),Aalborg University,Denmark

e-mail:{imr,ssd,ff,prasad}@kom.aau.dk;ph:+4596358688

Abstract—The basic receive space diversity combining methods,i.e. Maximum Ratio Combining(MRC),Equal Gain Combining(EGC)and Selection Combining(SC),are studied in this work for Pre-and Post-DFT combining wideband multi-carrier receivers.A common system model for both these schemes are devised.The outage and mean capacity and Frame Error Rate(FER)simulations show that Pre-DFT combining techniques performs quite comparatively in indoor scenario,while Post-DFT combining performs far better in outdoor https://www.360docs.net/doc/e76019776.html,pared to Pre-DFT combining schemes in indoor scenario,Post-DFT MRC and SC obtain an increment of1.4and0.9bps/Hz respectively in terms of 10%outage capacity.At10?3of FER,Post-DFT MRC obtains a gain 2dB and4dB in required Signal to Noise Ratio(SNR)for indoor and outdoor scenario respectively.In contrary to performance degradation, Pre-DFT schemes require much less computational complexities and they are simpler to implement compared to Post-DFT schemes.

I.I NTRODUCTION

One well-known way of improving the system performance in hostile wireless channel scenario is exploiting the spatial diversity using multiple receive antennas.Traditionally receive diversity is used in the Base Stations(BSs)to obtain full diversity at the BS receiver.In receive diversity systems,multiple copies of originally single transmitted signal is received via separate antennas.Given that the antennas are suf?ciently separated in space such that the receive signals do not experience any signi?cant spatial correlation, we can easily say that full diversity advantages can be achieved,i.e. the diversity order will be equal to the number of receive branches. This can also be achieved by using transmit diversity schemes,where multiple copies of transmitted signals are received at one single receive antenna simultaneously and full diversity advantages are achieved.The only difference between transmit and receive diversity is that,when Channel State Information(CSI)is not available at the transmitter,then array gain is not possible to obtain,whereas array gain is possible to obtain in the receive diversity system,as we assume that perfect CSI is always available at the receiver[1]. While using the space diversity receiver,three kinds of combiner can be used,namely Maximal Ratio Combining(MRC),Equal Gain Combining(EGC)and Selection Combining(SC).MRC being the most complicated with the best performance,while SC is the least complicated with the worst performance among the three schemes.In Orthogonal Frequency Division Multiplexing(OFDM)systems,these three techniques can be applied either before the Discrete Fourier Transform(DFT)demodulation(i.e.in time-domain on received samples),or after the DFT demodulation(i.e.in frequency-domain on each sub-carrier symbols).We denote the schemes as Pre-DFT and Post-DFT combining respectively.In Post-DFT combining,all the signal processing is performed on sub-carrier basis,thus,best case performance is achieved.While in Pre-DFT combining,all the signal processing needed is performed in time domain,so the duplication of the DFT operation for each receiving antenna branch is not a requirement any more,thus the receiver has lower computational cost compared to Post-DFT techniques[2].

When we implement the above mentioned combining technique after the DFT operation,we can name the receive diversity techniques as Post-DFT MRC,Post-DFT EGC and Post-DFT SC respectively. Their three counterparts in Pre-DFT operation can be called as Pre-DFT Maximal Average Ratio Combining(MARC),Pre-DFT Equal Average Gain Combining(EAGC)and Pre-DFT Antenna Selection Combining(ASC)respectively.

In this work,we have established a system model for Pre-and Post-DFT receive diversity schemes in OFDM systems.Then we have obtained theoretical capacity curves to determine outage and mean capacity of the combining schemes under indoor and outdoor channel conditions.We have obtained FER performance of the Pre-and Post-DFT combining schemes under certain OFDM system parameters. Finally,we have done a preliminary analysis of required system complexity for Pre-DFT MARC and Post-DFT MRC schemes in terms of number of multiplications required.

The rest of this paper is organized as follows.We have presented the system model for Pre-and Post-DFT combining schemes in Sec-tion II.The analysis and simulation results are placed in Section III. Some initial conclusions and the topics to be included in the?nal paper are discussed in Section IV.

II.S YSTEM M ODEL

We adopt a system model that is originally established in[3].The transmitted signal vector for the s th OFDM symbol,s s,is given by:

s s=T cp F H d s(1) where d s is the data vector,F H is Inverse Discrete Fourier Transform (IDFT)matrix,and T cp is the Cyclic Pre?x(CP)addition matrix.The elements of d s is taken from a complex constellation diagram.Since only one antenna is used at the transmitter while multiple antennas are deployed at the receiver,the channel matrix becomes:

G s=

?

G s1,1G s2,1...G s Q,1

?T

(2) with G s q,1is the Channel Impulse Response(CIR)convolution matrix between the transmit antenna and the q th receive antenna.Q denotes number of receive antennas in the system and q denotes receive antenna index.In this case,the dimensions of the CIR convolution matrix will be G s∈C[(N+N g)Q×(N+N g)].N and N g denotes number of OFDM sub-carriers and the CP length in samples respectively.

The received signal vector r s∈C[(N+N g)Q×1]may be expressed as:

r s=G s s s+v(3) where v is the time-domain noise vector at the receiver.At the receiver,the time-domain received signal is down-converted and the CP is removed:

y s=T+cp r s(4)

The

time-domain OFDM symbol vector after CP removal,y s ,can be decomposed into Q vectors,each representing a diversity branch,or one received OFDM symbol at a particular receiving antenna:

y s =?y s 1y s 2...y s Q ?T

(5)At this point,there are two methods for combining the diversity

branches to obtain the desired diversity gain,namely Post-DFT combining and Pre-DFT combining .The former performs OFDM demodulation before combining the diversity branches on sub-carrier basis,while the latter ?rst combines diversity branches over time-domain samples and then the OFDM demodulation is carried out.Both of these diversity combining techniques will be explained in the following sections.A.Post-DFT Combining

Outputed stream

Fig.1.Post-DFT combining technique

Figure 1illustrates the diagram of an OFDM receiver using Post-DFT combining method.The received signal at each antenna branch is DFT demodulated separately before combining.Signal at the output of the DFT demodulator can be expressed as:

z s =Fy s =?z s 1z s 2...z s Q ?T

(6)where F is the DFT-process matrix,analogous to F H given in (1),

and z s q is output sub-carrier vector at the q th

antenna branch:

z s q =?z s q,1z s q,2...z s

q,N ?T

;q =1,2,...,Q (7)The sub-carriers at the output of the OFDM demodulators are

combined separately so as to maximize the instantaneous SNR on sub-carrier basis.For each sub-carrier,the signals from multiple antennas are linearly combined,i.e.:

z s k =αs 1,k z s 1,k +αs 2,k z s 2,k +···+αs Q,k z s Q,k

(8)

where z s k is the k th combined sub-carrier,z s

q,k is de?ned as in (7)

and αs

q,k is the weight factor associated with the k th sub-carrier and the q th antenna (k =1,2,...,N and q =1,2,...,Q ).The complex weight factor can be written as,αs q,k =βs q,k e ?jθs

q,k ,where βs

q,k and θs

q,k are amplitude and phase of the weight factor respectively.The linear combination operation can be expressed in matrix form:

z s =αs z

s

(9)

with αs

∈C N ×NQ

is the weight factor matrix for Q receive antenna

at the s th

OFDM symbol.In case of Post-DFT combining schemes,this matrix is given by:

αs =?αs 1αs 2...αs Q

?

(10)where αs q is the diagonal weight matrix associated with the q th

antenna branch:

αs

q =26664αs q,10 0

0αs q,2...0............00...αs

q,N

37775

(11)For the k th sub-carrier,the choice of weight factors,

{αs 1,k ,αs 2,k ,...,αs Q,k },depends on the combination technique used at the diversity combiner module,namely MRC,EGC and SC.These techniques will be discussed in the following sections.

1)Post-DFT MRC:In MRC,the output is a weighted sum of all

diversity branches,i.e.αs

q,k =0;?q &?k .This multiplication is performed such that each of the signal branches are co-phased (i.e.

all branches have zero phase).The gain factors αs

q,k are selected

so that P Q q =1|βs q,k |2

=1,which implies that the noise power after

diversity combining is not modi?ed.βs

q,k is assigned based on the instantaneous power or the SNR from each received signal branch.If the power is small in any particular branch,then it will be assigned a small gain factor,and vice versa.

2)Post-DFT EGC:The EGC technique is similar to MRC because the diversity branches are co-phased,and all of them contribute to the output of the combiner.However,it is different from MRC that the diversity branches are not weighted corresponding to their instantaneous SNRs.This reduces the complexity of obtaining the SNR for each diversity branch.Equal values are selected for all gain

factors,i.e.e βs q,k =1

√Q

;?q .For example,in case of dual antenna systems,βs 1,k =βs

2,k =0.5;?k .

3)Post-DFT SC:The principle of SC method is to deliver to the detector the diversity branch which yields the highest SNR.In other words,the SC algorithm needs to monitor the SNR levels of all branches,and select the i th branch with the highest SNR value.

The weight factor αs

i,k associated with that branch will be 1,and all

other weight factors,αs

q,k (q =0,1,...,Q ;q =i ),are zeros [4].In practice,it is dif?cult to measure the SNR levels of diversity branches.Therefore,the instantaneous signal plus noise value is usually used instead of the SNR,with the assumption that the noise power (N 0)is constant for all branches.The selected diversity branch can be used for a duration of several OFDM symbols,provided that the duration is less than the channel coherence time [4].B.Pre-DFT Combining

Outputed

stream

Fig.2.An OFDM receiver employing Pre-DFT combining technique

The pre-DFT combining technique combines the time-domain

OFDM samples from multiple receive antennas and delivers the combined samples to the DFT demodulator [5].The process is shown in Figure 2.Clearly,the computational complexity is dramati-cally reduced for pre-DFT combining technique:only one OFDM demodulator and one diversity combiner are required.After the

pre-DFT diversity combining module,the receiver architecture is identical to that of the Orthogonal Frequency Division Multiple Access(OFDMA)receiver discussed in[6].

The output of the pre-DFT combining module is y s∈C N×1,and it can be expressed as:

y s=αs y s(12) where y s is the time-domain OFDM symbol vector after CP removal in(4)andαs∈C N×QN is the weight factor matrix used for linear combination operation on Q antennas.

αs=?

αs0αs1...αs Q?1

?

(13)

whereαs q is the diagonal weight matrix associated with the q antenna

branch:αs q=2

66

64

αs q0 0

0αs q 0

..

.

..

.

..

.

..

.

00...αs q

3

77

75q=0,1,...,Q?1

(14)

It is important to note that the same weight factorαs q is applied for all time-domain samples of an OFDM symbol on the q th antenna branch.This makes the scheme different from the above mentioned post-DFT combining technique.Analogously to post-DFT combining, there are three options for selecting the weight factors for pre-DFT combining scheme,namely Antenna Selection Combining(ASC), Equal Average Gain Combining(EAGC),Maximal Average Ratio Combining(MARC)and Orthogonal Combining(OC).

1)Pre-DFT MARC:The Pre-DFT Maximal Average Ratio Combining(MARC)selects the optimal set of weight factors for Q receive antennas,i.e.{αs0,αs1,...,αs Q},so as to maximize the SNR of the signal after combining.In[5],[7],it is proven that the optimal weight factors are the?rst column of left singular matrix of the CIR

matrix,corresponding to the highest Eigenvalue of CIR matrix,λ2H

1.

In this case,the receive SNR is equal to E s

N0λ2H

1

,

The Pre-DFT MARC requires the estimation of CIR on all receive antenna.The computational complexity in this case is comparable to post-DFT scheme,as each antenna branch requires a DFT processor for frequency-domain channel estimation.In order to reduce the complexity,the correlation matrix of received signals is used instead of CIR matrix[5].

The performance of Pre-DFT MARC scheme depends on type of channel models it is operating on.If channel response is?at over the OFDM spectrum,the Pre-DFT MARC performed equivalently to post-DFT MRC,but with less complexity.However,if the channel is frequency-selective,the performance of Pre-DFT MARC is degraded and less diversity gain is achieved compared to post-DFT MRC[5].

2)Pre-DFT EAGC:All Q weight factors for Q receive antennas, {αs0,αs1,...,αs Q},are set to one in the Pre-DFT Equal Average Gain Combining(EAGC)scheme.As a result,the output signal is the sum of all time-domain signals at different receive antenna.

In order to achieve diversity gain in the Pre-DFT EAGC scheme, the branches must be co-phased before summing.This operation often requires separate channel estimator and equalizer for each receive antenna branch,which increases computational complexity at the receiver,especially when the channel is frequency-selective.However, if the channel coherence time is much longer than the OFDM symbol duration,such requirement could be negligible.

3)Pre-DFT ASC:In the Pre-DFT Antenna Selection Combining (ASC)scheme,only the diversity branch with the highest average SNR is selected and delivered to the OFDM demodulator.In other words,the weight factor for the q th diversity branch,whose average SNR is the highest,is1and all other weight factors are zeros.

In[7],it is shown that the performance of the Pre-DFT ASC scheme is always worse than that of the Pre-DFT MARC scheme, and the receive SNR is equal to max

q

E s

H q 2F.The H q 2F is the squared Frobenius norm of the channel matrix associated with the q th antenna,and,in this case,can be interpreted as the total power gain of the Single Input Single Output(SISO)channel between the transmit antenna and the q th receive antenna[1].

III.A NALYSIS,S IMULATIONS AND D ISCUSSIONS

A.Simulation Parameters

We have used two simulation scenarios as explained in Table I. For all our analysis and simulations,we have con?ned ourselves to the case of dual antenna receiver diversity(i.e.Q=2).We assume that perfect time and frequency synchronization is established.We also assume that perfect channel estimation values for each sub-carrier for both the spatial channels are available at the receiver.We use exponential channel model to generate corresponding CIR and Channel Transfer Function(CTF)of the channel.In our exponential model,channel impulse response in exponentially distributed with decay between the?rst and last impulse as-40dB.

TABLE I

OFDM S IMULATION P ARAMETERS FOR I NDOOR AND O UTDOOR

S CENARIO

Parameters Indoor Outdoor

OFDM sub-carriers,N64512

Data sub-carriers,N data48388

Pilot sub-carriers,N pilot460

Null sub-carriers,N null1264

CP length,N CP16100

OFDM Symbol Duration,T s4μs30.6μs

Useful data period,T data 3.2μs25.6μs

CP period,T CP0.8μs5μs

Data Symbol mapping QPSK

Pilot Symbol mapping BPSK

Channel coding scheme1

2

-rate Convolutional coding System bandwidth20MHz

Carrier frequency 5.4GHz

B.System Capacity Analysis

The theoretical outage capacity of Post-DFT MRC,Post-DFT SC, Pre-DFT MARC and Pre-DFT EAGC are evaluated in this section via a semi-analytical monte-carlo simulation approach.This is done for both indoor and outdoor environment.First,the channel is simulated using the model mentioned above.Then the instantaneous channel capacity is obtained using the simulated CTF based on the following equation:

C=

1

N

N?1

X

k=0

log2(1+ρh k h?k)(15)

whereρis the transmit SNR and h k is the equivalent CTF of k th sub-carrier.Equivalent CTF means the CTF at the particular sub-carrier after the diversity combining.The above instantaneous capacity is derived for each channel realization and then Cumulative Distribution Function(CDF)of instantaneous channel capacity is

Capacity in bps/Hz

P

r

o

b

a

b

i

l

i

t

y

t

h

a

t

q

u

a

n

t

i

t

y

<

a

b

s

c

i

s

s

a

Fig.3.CDF of the corresponding capacity of1×2SIMO System at10dB

SNR in indoor scenario’

Capacity in bps/Hz

P

r

o

b

a

b

i

l

i

t

y

t

h

a

t

q

u

a

n

t

i

t

y

<

a

b

s

c

i

s

s

a

Fig.4.CDF of the corresponding capacity of1×2SIMO System at10dB

SNR in outdoor scenario

plotted in Figure3and4for indoor and outdoor scenario respectively.

For a large number of random channels,the outage and mean capacity

can be determined from these two?gures.In our case,we have

simulated10,000random channels and obtained the CDFs.

As we see from the?gures,Post-DFT schemes always give

better outage capacity values and better mean capacity than Pre-DFT

schemes.Post-DFT MRC and Post-DFT SC depict a10%outage

capacity capacity of2.7and2.2bps/Hz respectively,where as both

Pre-DFT schemes show1.3bps/Hz only.One possible reason for

this is,Post-DFT schemes exploit the available diversity in much

ef?cient way than the Pre-DFT schemes.The mean capacity of Post-

DFT MRC and Pre-DFT MARC are4.1575and3.7702bps/Hz re-

spectively.Higher mean capacity in Post-DFT MRC means a steeper

CDF,which obviously comes from more diversity exploitation.

The difference in outage situation is more evident in outdoor

scenario.Now the mean capacity values are 4.0605bps/Hz and

3.3051bps/Hz for Post-DFT MRC and Pre-DFT MARC respectively.

The differences in10%outage capacity follows the same trend as it

is experienced in indoor scenario.As the combining in done in time-

domain in Pre-DFT schemes,the average gain determination does not

’capture’the effect of all the multipaths.As we have done sub-carrier

by sub-carrier combining for Post-DFT schemes,the diversity order

is fully achieved in those schemes.This is the reason that Post-DFT

schemes always perform better in terms of outage and mean capacity.

10

10

10

10

10

SNR, dB

F

E

P

Fig.5.FER of different Pre-and Post-DFT Combining receiver diversity

C.FER Performance in Indoor and Outdoor Scenario

Figures5shows the Frame Error Rate(FER)performance of the

combining schemes in indoor and outdoor scenarios respectively.In

indoor scenario,a frame consists of64?16?2?0.5=1024source bits,

while in outdoor scenario,it is512?16?2?0.5=8192source bits

in one frame.In indoor scenario,Post-DFT MRC,Pre-DFT MARC

and Post-DFT SC performs almost similar.At10?3of FER,Pre-

DFT MRC obtains a gain2dB in required SNR in this scenario.

While in outdoor scenario,both Post-DFT schemes performs better

than Pre-DFT MARC scheme.This is because of the averaging effect

of Pre-DFT MARC https://www.360docs.net/doc/e76019776.html,pared to indoor scenario,here Pre-

DFT MRC performs even better with respect to10?3of FER,the

gain now becomes4dB.It is interesting to note that even Post-

DFT SC performs better than Pre-DFT MARC in outdoor frequency

selective scenario by nearly1dB at10?3of FER.

While indoor scenario depicts much less severe frequency-

selectivity,the Pre-DFT MARC scheme can still perform on par

with Post-DFT schemes.But,in outdoor scenario,the frequency

selectivity is very severe(5μs of maximum delay spread in our

case),and thus,the average gain at the time-domain samples in Pre-

DFT MARC scheme does not provide enough SNR enhancements,in

other words,the time-domain averaging does not exploit full spatial

diversity available in the system.

D.Implementation Complexity

We compared the complexity of the schemes in terms of number of

multiplications required.Considering that we have a channel which is

time-invariant for considerable amount of time,so that N pkt number

of OFDM symbols can be put in one OFDM packet,then the number

of multiplications required for one OFDM symbol are

X pre=

Q(Q?1)N o

2N pkt

+N pkt

N

2

log2N+QN

?

(16)

X post=N pkt

QN

2

log2N+QN

?

(17)

where N

2

log2N multiplications are required for FFT module per

OFDM symbol[8].N o is the number of time-domain data samples

that need to be acquired to obtain the correlation matrix.The

computational complexity associated with Eigen analysis for gain

factors is not taken into account,as it only required only once for

complete OFDM packet[5].

Figure

6and 7show the relative processing cost between Pre-DFT MARC and Post-DFT MRC in comparison to N and N pkt respectively for different values of Q .The relative processing cost is

de?ned as X

post X pre

from (17)and (16).In both ?gures,we can see that the processing cost is drastically reduced in Pre-DFT MARC scheme when N or N pkt or Q increases.For N =256,Post-DFT MRC with Q =2and 8require 1.7and 3.3times more processing capabilities respectively compared to Pre-DFT MARC scheme.The same trend is seen when the complexities are also compared in terms of number of symbols per OFDM packet.

Number of Subcarriers, N

R e l a t i v e P r o c e s s i n g C o s t

Fig.6.Relative Processing cost for Pre-DFT MARC and Post-DFT MRC in comparison to number of OFDM sub-carriers;N pkt =150and N o =50.

OFDM symbols/packet, N pkt

R e l a t i v e P r o c e s s i n g C o s t

Fig.7.Relative Processing cost for Pre-DFT MARC and Post-DFT MRC in comparison to number of OFDM symbols/packet;N =64and N o =50.

IV.C ONCLUSION

In this paper,we have brie?y discussed the merits and demerits of Pre-and Post-DFT combining diversity receiver for wideband OFDM systems.We have found that Post-DFT schemes are always superior to Pre-DFT schemes.In indoor scenario,this is not so evident,but this is very evident in outdoor scenario.The advantage that Pre-DFT schemes offer is simpler implementation and lesser computational requirements.This becomes very evident when the number of sub-carriers is very large and when the number of received branches are also high.Thus,the choice between these two types of receive diversity combining schemes are a trade-off problem between performance and system complexity.

In our opinion,the advantages of Pre-DFT schemes in terms of system complexity compared to performance loss with regard to Post-DFT schemes is acceptable in indoor scenario.Where as,in outdoor scenario,the system performance degradation in Pre-DFT schemes

are very high compared to their counterparts.To end,the decision between Pre-and Post-DFT combining reception should be taken based particular system environment,system parameters and expected system performance.

In the current work,the combining schemes are studied when no spatial correlation due to antenna spacing,presence of Line of Sight (LOS)component etc are considered in the channel model.These can be studied as a next step.The effect of channel correlations can be studied for outage and mean capacity.Some innovative techniques to extract more spatial diversity in Pre-DFT techniques can be investigated to reduce the performance gap between Pre-and Post-DFT combining techniques.

A CKNOWLEDGEMENT

The authors would like to thank Daniel V .P.Figueiredo,Huan C.Nguyen and Nicola Marchetti of WINGlab,CTIF,Aalborg University,Denmark for the useful discussions and cooperations in performing this work.

R EFERENCES

[1] A.J.Paulraj,R.Nabar &D.Gore,Introduction to Space-Time Wireless

Communications ,1st ed.Cambridge University Press,September 2003.[2]M.I.Rahman et al.,“Optimum Pre-DFT Combining with Cyclic Delay

Diversity for OFDM Based WLAN Systems,”in proc.VTC Spring ,Milan,Italy,May 2004.

[3]——,“Multi-antenna Techniques in Multi-user OFDM Systems,”Aalborg

University,Denmark,JADE project Deliverable,D3.2[1],September 2004.

[4]G.L.Stuber,Principles of Mobile Communications .Kluwer Academic

Publisher,January 1996.

[5]M.Okada and S.Komaki,“Pre-DFT Combining Space Diversity Assisted

COFDM,”IEEE Trans.Veh.Tech.,vol.50,no.2,March 2001.

[6]M.I.Rahman et al.,“Comparison of Various Modulation and Access

Schemes under Ideal Channel Conditions,”Aalborg University,Denmark,JADE project Deliverable,D3.1[1],July 2004.

[7]S.Sandhu and M.Ho,“Analog Combining of Multiple Receive Antennas

with OFDM,”in IEEE ICC ,vol.5,May 2003,pp.3428–3432.

[8]R.V .Nee &R.Prasad,OFDM for Wireless Multimedia Communications .

Artech House Publishers,January 2000.

proe导入ansys

目的:用PRO/E进行3D实体建模,然后用ANSYS进行有限元分析。优点:可快速生成复杂的3D实体零件模型(包括装配模型ASM);一次性导入ANSYS后基本不用进行修修补补,兼容性较好,可认为是无缝连接。 一次导入成功率:99.9% 步骤:(须严格按照顺序操作) 1、首先安装PRO/E WILDFIRE 2.0,并进行正常使用; 2、按照ANSYS的安装说明安装ANSYS(最好是ANSYS 8.0以上版本),记录下your PC ID and MAC Address,修改ANSYS.dat(也许是,有点忘了是哪个文件),然后代替此文件中第一行原来的ID and MAC Address,保存退出,用KEYGEN生成License.txt。然后进行安装(在第二步安装License过程中,对于安装提示①是否是1或3 SERVER,选择“是”;②是否有License文件时,选“是”(有点忘了,看情况吧);③选刚才生成的License文件,如此时有提示说找不到,不要紧,请见下面的步骤),注意要设置环境变量,然后Reboot。同时在运行License Server要将生成的License.txt拷贝到License Guide第三步提示的目录里(如果一开始就知道是应该拷贝到哪个目录,就在第③步前将此文件拷贝过去)。 3、安装完成以后不要立即运行ANSYS,首先运行License Server管理器,完成License注册。

4、运行ADMIN,配置ANSYS和PRO/E的连接,按照提示操作即可。 5、如果第4步成功的话,运行PRO/E后就可在其菜单栏里面看见多了一个ANSYS的选项,注意此时还没有最后成功。 6、最好将PRO/E和ANSYS的工作目录设成同一个,同时将此目录设成PRO/E启动目录,并在此目录中配置一个config.pro,对其中几项做调整: Option Value Description FEM_ANSYS_annotation yes FEM_ANSYS_grouping yes FEM_default_solver ANSYS FEM_which_ansys_solver FRONTAL Pro_ANSYS_path ANSYS.exe的安装路 径 保存此config.pro

ANSYS导入proe之part档的问题

ANSYS导入proe之part档的问题【转帖】 为了保证上述两种软件的版木兼容,Pro/E的版木不得高于同 期的AnsyS的版本:同时要安装ansys里的和proe接口模块!ansys安装程序里已经有了不需要下载。 (l)在开始程序下运行Ansys,选择utilities下的ans_admin 项,在ans_dmin弹出图框中选择configuration options,在下一 个confirguration options弹出图框中选择configuration connection for pro/E,在configure ansys connection for pro/E中的ansys prod- uct中选择ansys multip,在graphicsdevice name中选择 win32,在出现SuccesS图框中记下config.anscon文件位置。在出 现的Pro/Einstallationinformation下的Pro/Einstallationpath中 填入安装Pro/E的路径。在language used with Pro/E中选择语言 为usa,最后将记录下的config.anscon拷贝到Pro/E的安装目录 下。这样就可以将Pro/E的模型直接传到Ansys中了。同时应注 意在Pro/E中建立的模型应予存盘.设置好以后重气计算机!在proe菜单栏里就有ansys菜单了!在proe里建好模型点ansys菜单就可以在proe 里启动ansys 找到proe工作目录下的.anf 文件!从ansys里读入那个文件在执行plot画图命令就可以把proe里建的模型导入到ansys里了! 我用的是ansys8.0和proe野火2.0 成功关联 大家好像对ANSYS导入proe之part档的问题一直没有很好的解决,在此我把我的方法给大家。 1) 在同机的同一操作系统下安装有Pro/E和ANSYS两种软件; 2) 保证上述两种软件的版本兼容,Pro/E的版本不得高于同期的ANSYS 的版本;我的是ANSYS8.1 PROE2001 3) 开始-选择ANSYS-unitilities-ANS_ADMIN-Configuration Conn ection for Pro/E?-OK?-Configuration options?Utility Work space in? 选择Graphics device name(NT: Win32)?Product 给出Language used with?给出Pro/Engineer installation path 如"e:\proe2001"- OK;?Pro/E ngineer:usascii 4) 运行Pro/Engineer并配置config.pro; 名称值说明 fem_ansys_annotations yes 输出“模拟”分析名为ANSYS中的注释。 fem_ansys_grouping yes 切换组and/or层的转移到ANSYS。 fem_default_solver ANSYS 指定到一个求解器的路径。 fem_which_ansys_solver FRONTAL 允许指定使用Frontal ANSYS求解器还是Iterative ANSYS求解器。 femansys_annotations yes 切换载荷工况名称到ANSYS。 pro_ansys_path <路径名> 指定到可执行的ANSYS (ansys.e)的路径。

proe模型如何导入ansys

proe零件导入ANSYS的方法 {方法一:在Pro/E中建立好模型后(一般是part),从菜单File_save a copy中 选择IGES类型存盘,这种格式是几乎所有CAD软件都可以识别的。注意文件最好存放在名字无空格的目录中,否则在Ansys 中不能识别!启动Ansys ,从菜单file_import_IGES ,选择刚才形成的文件就可以输入模型了。 在Ansys 中输入模型时,可能出现模型断裂的结果,可以对" defeature 、 合并重合的关键点、产生实体、删除小面积"等选项进行改变,反复试验直到输入满意为止。方法二:首先,安装Ansys 时,必须安装了ANSYS Connection For Pro/ENGINEER 模块(代号82)。在"开始_程序_ Ansys 5.6_ANS_ADMIN Utility"中,选择configuratio n options,选择configure connection for Pro/E,输入模块类型,图形类型、工作空间 大小等,再输入Pro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个protk.dat 文件。运行Pro/E,窗口中可能出现一个不能连接的提示,不必理睬他! 打开一个已建好的模型(可以不必输入材料特性),此时在Pro/E的菜单中(屏幕右边)最后一行会出现Ansys GEOM,单击它,直到自动调用并启动了Ansys ,此时再选取Fil e_import_Pro /E,在文件名栏中输入正确的文件名,点OK即可完成输入。 应特别注意的问题是,被打开的*. prt 文件必须在Pro/E的工作目录中,或者Pro/E与An sys 有相同的工作目录,否则会出现找不到*. anf 文件的错误。 上述方法在Ansys57中似乎不能使用,会出现命令无效的错误。我估计是由于Ansys 的安装路径中包含的文件名有空格的的缘故!? 另外,如果在Pro/E command栏中填入您系统的正确的命令如proe2000i2或proe2001,再点 取OK则会重新传输模型后再导入,不知是何道理? 方法三:首先,安装Ansys 时,必须安装了ANSYS Interactive For Pro/ENGINEE R模块(代号83) 在"开始_程序_ Ansys 5.7_ANS_ADMIN Utility"中,选择configuration options,选择c onfigure connection for Pro/E,输入模块类型,图形类型、工作空间大小等,再输入P ro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个 protk.dat 文件。此时,不必运行Pro/E,可以直接运行Ansys ,从File_import_Pro /E出现的对话框中,填入正确的文件名,并在Pro/E command栏中填入您系统的正确的命令如proe200 1,点OK即可完成输入。在输入的过程中,Ansys 将自动调用Pro/E,并在Ansys 自己的工作目录中生成一个*。Anf 文件。 注意:这一办法在Ansys5.6以下的版本中,*. prt 文件必须存放在不包含空格的路径中,否则将出现Ansys 致命错误并退出,估计是一个bug! 方法四:上面方法二和方法三中产生的anf 文件其实是一个文本文件,而且实际上起作用的就是这个文件,因此,完全可以不必拘泥于上面的方法,只要产生好了anf 文件,随时可以运行Ansys ,从File_Read input from...中选择该文件,完成模型的输入, 不过模型输入完成后不显示图形--只要plot一下就可以了! 方法五:不必安装上面方法2、3、4中的"连接",在Pro/E中,打开建好的模型,选择菜单Applications_Mechanica ,此时会进入有限元FEM模式,可以进行结构,热等的分析,选择结构- -分网(mesh)--create--solid--start,开始分网,完成后关闭对话框, 选择菜单中的Run,在对话框的求解器中选择Ansys ,输出到文件,填入文件名,点取OK(材料不必输入),即可生成一个*. ans 文件。上面产生的*. ans 文件其实是一个文 本文件,与上面方法4产生的anf 文件功能完全一样,因此运行Ansys ,从File_Read

如何设置ProE与ANSYS接口连接与使用方法

1. 如何设置Pro/E与ANSYS接口连接与使用方法(图文教程)- 机 械工程... 使得在Pro/E中建好的模型直接导入到ANSYS中, 由于目前CAD 和CAE这两个领域最具代表性的应用软件分别是Pro/E 和ANSYS。Pro/E 拥有强大的实体和曲面造型功能,而ANSYS具有完善的有限元分析功能,这两个软件各自的长处恰恰又是对方的短处。解决这一矛盾的有效途径是:在Pro/E中进行建模,然后将模型导入到ANSYS 软件中进行有限元分析,从而实现用计算机完成零件设计和分析。所以,问题的关键是如何把这两个软件结合起来,将Pro/E中生成的模型完整地导入到ANSYS 中去,进而完成所需的有限元分析。 我们以目前流行的版本Pro/ENGINEERWildfire3.0 与ANSYS10.0 为研究对象,进行了实体模型在两个不同软件之间的转换和连接。 1 ANSYSI0.0 与ProlE接口连接 ANSYS l0.0 软件安装选项中包含与Pro/Engineer 软件的接口模块"Connection for Pro/Engineer" (见图1)。此模块不仅能将ProlE模型数据直接转换给ANSYS ,同时还提供了以执行部件为基础的参数优化设计功能。该功能允许从建立以部件为基础的参数化Pro/E模型开始,用ANSYS程序对其进行优化,并以一个优化的模型结束,而且建立好的模型仍是以部件为基础的参数化模型。此模块能给工程人员在有限元分析过程中考虑采用何种前后处理提供最好的支持。利用软件自带接口能够快速准确地导入数据,因此下面将对此类方案着重进行分析。 2 ANSYS直接集成在Pro/E中的方法 (1) ANSYS 直接集成在Pro/E步骤

pro e导入gambit方法

各种格式的模型与gambit接口教程 1.ProE实体倒入: 在proe中export成step文件,之后在gambit中import 注:ProE中点选保存副本图标,选择以STL格式保存副本。参见附图。 注意,实体必须画在几何空间中第一象限。(即实体上所有点的X、Y、Z坐标都为正) 附件为一个可用的STL格式文件,你可以试试导入GAMBIT。 2. UG和PRO/E中的风机import到gambit中 Ug或pro/e中生成了几何模型可以以很多种形式导入gambit,如step igs stl等。 3如何将cad导入到gambit中 在AutoCAD中输出的sat格式文件,到了gambit里面输入时出错-- ACIS error 3205:save file is from a later version of ACIS 我用的是cad2004,这条出错信息搞得我一头雾水 既然出错有编号3205,我可以在帮助文件里看到它的详细解释吗? A:file-->import-->acis... 存sat格式的较低版,如8。0版,11。0版gambit不认识 你可以采用较低的AutoCAD版本 A:可以使用igs模式导入 A:(1)Gambit只适用于创建简单的三维几何体,对于复杂形体而言,其绘图功能是远远不够的,这时Gambit允许我们引入一些其他软件创建的文件,常用的有Autocad创建的ASCI 形式的文件.sat。 CAD中创建的图形要输出为.sat文件,要满足一定的条件。对于二维图形来说,它必须是一个region,也就是说要求是一个联通域。对于三维图形而言,要求其是一个ASCI body。(2)先把autoCAD对象构成实体,导出.sat文件,再在gambit导入,注意有版本高低问题 4 fluent中的cas文件能变成gambit里的dbs文件 Q:在我现在想将cas文件中的网格做修改,该怎么办? A:可以,import进来就能得到 5.怎么在ansys中制作模型导入fluent? A:存成一个gambit可以识别的格式。 可以打开gambit看看可以导入什么格式,看看ansys可以输出什么格式。 A: ansys use .cdb file存成.iges文件格式比较好,在gambit中读入。 6.hypermesh文件如何导入fluent? Q:用fluent求解器计算流体,想利用hypermesh做前处理,可不知怎么将建好的模型导入fluent(hm不提供fluent摸板),可不可以利用其它的什么软件转一下呢? A: hypermesh和CAE软件连接比较紧密,所以最好从CAE软件下手,而Fluent支持的CAE软件的网格格式包括Ansys、Patran和Nastran,你可以试一下。 还有一种方法就是,清楚Hypermesh网格文件的结构,又清楚Fluent网格文件的结构,随便找个编辑器手动修改。网格文件虽然可能很大,但是关键的部分都不会很多。hypermesh里模板设成hm的generel,然后划分网格,export,再导入gambit(import

proE模型导入ANSYS后的简化

ansys模型简化 首先,模型并不是直接在ANSYS里建立的,而是借助Pro/E建立好模型后,转化成IGES格式后导入到ANSYS里面的。这里便存在一个问题,Pro/E建立的一些模型特征或几何特征在导入ANSYS后会提示错误,比如钣金的折弯在Pro/E 里面处于贴合状态,即没有缝隙,直接导入ANSYS里面会提示错误,这时需要对模型在不影响整体特性及刚度的前提下进行适当的修正,这里就可以将贴合处改成具有一定微小的尺寸。 此外,模型中一些不必要的特征,比如倒圆角,非装配孔等,并没有起到提高刚度的作用,反而白白增加了ANSYS中的节点和单元数,是一种得不偿失的做法,在导入ANSYS之前就应及时予以剔除。 还有一种情况,就是一些主体特征无法确定其在被剔除后是否会对结构刚度造成比较大的影响,这时可以采取对初始模型及简化后的模型分别进行自由模态分析,在确保单元类型,材料属性,分网方式全部一致的情况下,对比最终的模态结果,按照以下的简化准则决定最佳的简化结果: 一、简化前后模型对应阶数的固有频率相差应在5%~10%以内,这里我们定义以8%为准; 二、简化前后模型对应阶数的振型应大体一致,即云图图层位置大致相同; 三、在保证以上两条的基础上,最大限度的去除模型主体特征。 以硬盘框的某一块金属板为例,进行详细的说明。 图1-2 某块金属板主体特征 从图1-2可以看到,在这块金属板上分别有冲孔网、钣金折弯、冲压槽主体特征,这些特征在分网过程中会占用掉比较多的节点,如果没有起到提高刚度的作用,去掉后可以节省ANSYS的计算时间,提高工作效率。

该物体为板件材料,在ANSYS里面应该使用shell单元为宜,但shell单元需要对物体进行重新抽壳,而模型简化对比试验只需要单元类型,材料属性,分网方式保持一致即可,所以选用ANSYS 13.0里面最常用的solid单元185,如图1-3。 图1-3 solid185单元 SOLID185 用于建立三维实体结构模型。该单元由八个节点定义,每个节点有三个自由度:节点坐标系的x、y、z方向的平动。本单元具有塑性、超弹性、应力刚化、蠕变、大变形和大应变等功能。该单元具有塑性、超弹、应力刚化、大变形以及大应变等功能。也可利用混合公式模拟几乎或完全不可压超弹材料的变形。 该板材料为某钢材,材料参数如表1-1: 表1-1 某钢材材料参数 分网方式统一采用整体网格大小为1的自由分网,分网结果如图1-4所示。

把 PROE文件导入ANSYS问题

把PROE文件导入ANSYS问题 经过几天的总结,终于把pro/e直接导入到ansys里面了 现总结如下,希望能对各位有所帮助 方法一:在Pro/E中建立好模型后(一般是part),从菜单File_save a copy中选择IGES类型存盘,这种格式是几乎所有CAD软件都可以识别的。注意文件最好存放在名字无空格的目录中,否则在Ansys 中不能识别!启动Ansys ,从菜单file_import_IGES ,选择刚才形成的文件就可以输入模型了。 在Ansys 中输入模型时,可能出现模型断裂的结果,可以对" defeature (毁容)、合并重合的关键点、产生实体、删除小面积"等选项进行改变,反复试验直到输入满意为止。 方法二:首先,安装Ansys 时,必须安装了ANSYS Connection For Pro/ENGINE ER模块(代号82)。在"开始_程序_ Ansys 5.6_ANS_ADMIN Utility"中,选择configura tion opti*****,选择configure connection for Pro/E,输入模块类型,图形类型、工作空间大小等,再输入Pro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个protk.dat 文件。运行Pro/E,窗口中可能出现一个不能连接的提示,不必理睬他!打开一个已建好的模型(可以不必输入材料特性),此时在Pro/E的菜单中(屏幕右边)最后一行会出现Ansys GEOM,单击它,直到自动调用并启动了Ansys ,此时再选取File _import_Pro /E,在文件名栏中输入正确的文件名,点OK即可完成输入。 应特别注意的问题是,被打开的*. prt 文件必须在Pro/E的工作目录中,或者Pro/E与An sys 有相同的工作目录,否则会出现找不到*. anf 文件的错误。 上述方法在Ansys57中似乎不能使用,会出现命令无效的错误。我估计是由于Ansys 的安装路径中包含的文件名有空格的的缘故!? 另外,如果在Pro/E command栏中填入您系统的正确的命令如proe2000i2或proe2001,再点取OK则会重新传输模型后再导入,不知是何道理? 方法三:首先,安装Ansys 时,必须安装了ANSYS Interactive For Pro/ENGINE ER模块(代号83) 在"开始_程序_ Ansys 5.7_ANS_ADMIN Utility"中,选择configuration opti*****,选择co

proe和ansys连接设置

关于PRO/E的问题: ansys中有与PRO/E连接的设置功能,开始-ansys61-ans_admin-configuration(ok)-configure connection for Pro/e……(添pro/e的目录等等) 设完后在Pro/e的main menu中会有与ansys的连接命令(最后一个命令ANSYS Geom),Pro/e中建完实体后点该命令,会在工作目录下生成一个 *.anf文件,启动ansys,用input命令读它就行了。 试试看吧,我的模型还可以。 Pro/E和ANSYS的连接*作过程如下: 1) 在同机的同一*作系统下安装有Pro/E和ANSYS两种软件; 2) 保证上述两种软件的版本兼容,Pro/E的版本不得高于同期的ANSYS的版本; 3) 开始?程序?ANSYS?ANS_ADSIN Utility?Configuration options?OK? Configuration Connection for Pro/E?选择ANSYS Product?选择Graphics device name(NT: Win32)?Work space in megabytes(128)?给出Pro/Engineer installation path?给出Language used with PROE4.0与ANSYS10.0链接问题

我在链接PROE4.0与ANSYS10.0时按照以下步骤: (1)设置ANSYS与Pro/E的接口。选择“程序” 一ANSYS Release9.0—Utilities—Ans ADMIN。打开ANSYS管理器,点击“OK”确定,在配置选项对话框中选择与Pro/E的连接。确定后再随之打开的对话框中将图形显示设备设置为“3D”。最后在Pro/E安装信息对话框中输入Pro/E在本计算机中的安装路径,点击“OK”完成ANSYS与Pro/E的接口设置。②打开Pro/E,在菜单管理器中这时多出了两个选项“ANSConconfig”和“ANSYS Geom”,这表明己经将ANSYS集成在Pro/E中了。(3)在Pro/E中完成建模后直接点击“ANSYS Geom”,系统会自动将ANSYS打开,将当前模型导人到ANSYS中去,只要使用“Plot"菜单中的“Volume,”选项,就可以将实体模型显示出来。值得一提的是,由于导入的是实体模型而非有限元模型,故“Plot”菜单下的“Elements”选项不可用。(4)在ANSYS中设置模型材料、选择单元、添加约束和载荷、分网,最后进行分析和显示分析结果。由于这个方法是将ANSYS直接集成在Pro/E之中,所以模型的整个转换过程可以在不脱离Pro/E和ANSYS这两个软件的情况下进行。从而实现了无缝连接,真正做到了CAD/CAE的一体化。 可是在第二步打开proe时出了这样的一个问题:注册表文件 'D:\Program Files\proeWildfire 4.0\i486_nt\text\usascii\protk.dat' 中的Pro/TOOLKIT 应用程序'ac4pro100dll' 在日期上先于 Pro/ENGINEER Wildfire v4.0,但并未按使用继承编码进行标记。 我查看了下,网上并无此解法,所以发出来与大家讨论

proecatia零件导入ansys的方法

proe零件导入ANSYS的方法 2009-03-12 15:41 {方法一:在 Pro/E中建立好模型后(一般是part),从菜单 File_save a copy中 选择IGES类型存盘,这种格式是几乎所有CAD软件都可以识别的。注意文件最好存放在名字无空格的目录中,否则在 Ansys 中不能识别!启动 Ansys ,从菜单 file_import_IGES ,选择刚才形成的文件就可以输入模型了。 在 Ansys 中输入模型时,可能出现模型断裂的结果,可以对" defeature 、合并重合的关键点、产生实体、删除小面积"等选项进行改变,反复试验直到输入满意为止。 方法二:首先,安装 Ansys 时,必须安装了 ANSYS Connection For Pro/ENGINEER 模块(代号82)。在"开始_程序_ Ansys Utility"中,选择configuratio n options,选择configure connection for Pro/E,输入模块类型,图形类型、工作空间 大小等,再输入Pro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生 一个文件。运行Pro/E,窗口中可能出现一个不能连接的提示,不必理睬他!打开一个已建好的模型(可以不必输入材料特性),此时在Pro/E的菜单中(屏幕右边) 最后一行会出现 Ansys GEOM,单击它,直到自动调用并启动了 Ansys ,此时再选取 Fil e_import_Pro /E,在文件名栏中输入正确的文件名,点OK即可完成输入。 应特别注意的问题是,被打开的*. prt 文件必须在Pro/E的工作目录中,或者Pro/E与 An sys 有相同的工作目录,否则会出现找不到*. anf 文件的错误。 上述方法在Ansys57中似乎不能使用,会出现命令无效的错误。我估计是由于Ansys 的安 装路径中包含的文件名有空格的的缘故! 另外,如果在Pro/E command栏中填入您系统的正确的命令如proe2000i2或proe2001,再点 取OK则会重新传输模型后再导入,不知是何道理 方法三:首先,安装 Ansys 时,必须安装了 ANSYS Interactive For Pro/ENGINEE R模块(代号83) 在"开始_程序_ Ansys Utility"中,选择configuration options,选择c onfigure connection for Pro/E,输入模块类型,图形类型、工作空间大小等,再输入P ro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个文件。此时,不必运行Pro/E,可以直接运行 Ansys ,从 File_import_Pro /E 出现的对话 框中,填入正确的文件名,并在Pro/E command栏中填入您系统的正确的命令

ansys读入txt数据文件

Ansys 读入txt数据文件 1 不能直接在命令窗口中执行*vread 命令*read 命令的使用格式为: *READ,PARR,FNAME,EXT,--,LABEL,N1,N2,N3,NSIP前三项不用解释,ext是文件的开展名,--表示该域是不需要使用的值域label是取值顺序标识字,ijk,ikj,jik,jki,kij,kji,空格表示ijkn1,n2,n3,是当label=kij ,n2,n3,缺省等于1时按照格式(((parr(i,j,k),k=1,n1),i=1,n2),j=1,n3)读入数据的nskip是读入数据文件时需要调过的开始行数 2 你在ansys的help里面察看vread命令,然后看它的用法格式,把你写的小程序写成一个mac文件,倒入mac文件就能从array parameter 里面看到你倒入的txt文件的数组形式 3ansys如何读入txt文本中的地震波数据? 命令流(下面的命令必须用文本读入的方法实现,命令窗无法实现): *DIM,EQ,,6000,1,,, !首先定义一个EQ数组 *VREAD,EQ,earthquake,TXT,,,,,,0, !将earthquake.txt读入EQ数组里(e16.0) 用的时候: *DO,EQ,0.02,0.02*6000,0.02 TIME,TM acel,EQ !求解过程... *ENDDO 一、输入格式要求 ANSYS的APDL语言其语法等各方面均与Fortran有很大的共通之处。在数据的输入输出格式方面也可以参考Fortran。对于初学者来说,输入数据时更容易引发错误,所以下面谈几点在这方面的小认识。APDL 从外部文件输入数据,一般是采用*vread命令实现,而输入格式一般是在此命令的下一行定义,关于此命令的具体应用,可参见ANSYS帮助。 在输入格式方面与Fortran不同: (1)APDL在数值方面没有整型(I)、G型描述符,字符型数据采用A描述符,没有H描述符。 (2)在Fortran中如果数据是整数,但是输入格式采用实数(如单精度浮点型 F),则系统可以按指定格式自动为数据加上小数点,但在APDL中如输入数据为整数,如:6,则格式Fw.d中的d只能为零,否则会出现读入错误;而如果是6.则Fw.d中的d可以不为0。

Proe中建立的模型导入Ansys中分析的方法

Proe中建立的模型导入Ansys中分析的方法 发信人: Zengxiaodong (小Z), 信区: CAD 标题: Proe中建立的模型导入Ansys中分析的方法 发信站: 饮水思源(2001年10月08日09:10:33 星期一), 站内信件 方法一: 在Pro/E中建立好模型后(一般是part),从菜单File_export_model_IGES,输出IGES格式的文件,这种格式是几乎所有CAD软件都可以识别的(当然Autocad除外,因为它根本就不能称作CAD软件),注意文件最好存放在名字无空格的目录中,否则在Ansys中不能识别My documents和Mydocuments的区别,会出现明明文件存在却告知文件不存在的错误 !好了,现在就可以启动Ansys了,从菜单File_import_IGES,选择刚才形成的文件就可以输入模型了。 以上是对于Pro/E2000i2而言的,对于Pro/E2001,已经没有export了,不过可以在菜单F ile_save a copy中选择IGES类型存盘,其他就同上,不必细说了。 在Ansys中输入模型时,可能出现模型断裂的结果,可以对"defeature(毁容)、合并重 合的关键点、产生实体、删除小面积"等选项进行改变,反复试验直到输入满意为止,其 他内容请各位参考有关资料。 另外说一句,这一方法也可以用在将UGII的模型传到Ansys中,在UG17中很简单,但是在 UG16中,必须安装IGES的转换模块,不过仅仅这样仍然不能运行,提示缺少一个dll文件,应将。。。\UGII\目录中的一个文件edsps110.dll_old更名为edsps110.dll即可。 方法二: 首先,安装Ansys时,必须安装了ANSYS Connection For Pro/ENGINEER模块(代号82 。 在"开始_程序_Ansys 5.6_ANS_ADMIN Utility"中,选择configuration options,选onfigure connection for Pro/E,输入模块类型,图形类型、工作空间大小等,再? Pro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个protk. 文件。 运行Pro/E,窗口中可能出现一个不能连接的提示,不必理睬他!打开一个已建好的? (可以不必输入材料特性),此时在Pro/E的菜单中(屏幕右边)最后一行会出现Ans GEOM,单击它,直到自动调用并启动了Ansys,此时再选取File_import_Pro/E,在文 名栏中输入正确的文件名,点OK即可完成输入。 应特别注意的问题是,被打开的*.prt文件必须在Pro/E的工作目录中,或者Pro/E与A s有相同的工作目录,否则会出现找不到*.anf文件的错误。 上述方法在Ansys57中似乎不能使用,会出现命令无效的错误。我估计是由于Ansys的 装路径中包含的文件名有空格的的缘故!? 另外,如果在Pro/E command栏中填入您系统的正确的命令如proe2000i2或proe2001 再点取OK则会重新传输模型后再导入,不知是何道理? 方法三: 首先,安装Ansys时,必须安装了ANSYS Interactive For Pro/ENGINEER模块(代号8 。不知ANSYS-Pro/ENGINEER Interface模块(代号81)是干啥用的,难道可以代替82

Proe文件如何导入ANSYS

方法一:在Pro/E中建立好模型后(一般是part),从菜单File_save a copy中选择IGE S类型存盘,这种格式是几乎所有CAD软件都可以识别的。注意文件最好存放在名字无空格的目录中,否则在Ansys中不能识别!启动Ansys,从菜单file_import_IGES,选择刚才形成的文件就可以输入模型了。 在Ansys中输入模型时,可能出现模型断裂的结果,可以对"defeature(毁容)、合并重合的关键点、产生实体、删除小面积"等选项进行改变,反复试验直到输入满意为止。 方法二:首先,安装Ansys时,必须安装了ANSYS Connection For Pro/ENGINEER 模块(代号82)。在"开始_程序_Ansys 5.6_ANS_ADMIN Utility"中,选择configuration options,选择configure connection for Pro/E,输入模块类型,图形类型、工作空间大小等,再输入Pro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个protk.dat文件。运行Pro/E,窗口中可能出现一个不能连接的提示,不必理睬他!打开一个已建好的模型(可以不必输入材料特性),此时在Pro/E的菜单中(屏幕右边)最后一行会出现Ansys GEOM,单击它,直到自动调用并启动了Ansys,此时再选取File_import_ Pro/E,在文件名栏中输入正确的文件名,点OK即可完成输入。 应特别注意的问题是,被打开的*.prt文件必须在Pro/E的工作目录中,或者Pro/E与Ansy s有相同的工作目录,否则会出现找不到*.anf文件的错误。 上述方法在Ansys57中似乎不能使用,会出现命令无效的错误。我估计是由于Ansys的安装路径中包含的文件名有空格的的缘故!? 另外,如果在Pro/E command栏中填入您系统的正确的命令如proe2000i2或proe2001,再点取OK则会重新传输模型后再导入,不知是何道理?

Proe导入Ansys总结

Proe导入Ansys总结 开始-->程序-->ansys_7.1-->utilities-->ans_admin 转自钢结构-- Pro/E和ANSYS的连接*作过程如下: 1) 在同机的同一*作系统下安装有Pro/E和ANSYS两种软件; 2) 保证上述两种软件的版本兼容,Pro/E的版本不得高于同期的ANSYS的版本; Pro/Engineer:usascii ?megabytes(128) OK;?给出Pro/Engineer installation path?Product 给出Language used with?选择Graphics device name(NT: Win32)?Utility Work space in?Configuration options?OK? Configurat ion Connection for Pro/E?3) 开始选择ANSYS?程序?ANSYS?ANS_ADSIN

4) 运行Pro/Engineer并配置config.pro; 名称值说明 fem_ansys_annotations yes 输出“模拟”分析名为ANSYS中的注释。 fem_ansys_grouping yes 切换组and/or层的转移到ANSYS。 fem_default_solver ANSYS 指定到一个求解器的路径。 fem_which_ansys_solver FRONTAL 允许指定使用Frontal ANSYS求解器还是Iterative ANSYS求解器。 femansys_annotations yes 切换载荷工况名称到ANSYS。 pro_ansys_path <路径名> 指定到可执行的ANSYS (ansys.e)的路径。 5) 创建一个新零件,并在PART菜单下这出现ANSCon Config & ANSYS Geom 菜单,打开ANSCon Config并作如下编辑; Keyword Default V alue Description ANSYS_CMD UNIX:/ansys56/bin/ansys Pathname to the version of ANSYS to be run. Windows::\ansys56\bin\\ansys56.exe ANSYS_GRIPHIC_DEVICE UNIX:x11-stat Graphics driver for ANSYS. Windows:win32 ANSYS_MEMORY_SIZE 128 Amount of RAM, in megabytes, suggested to run ANSYS. ANSYS_NEUTRAL_FORMA T YES Store the part as a neutral file or as a solid model file. ANSYS_PRODUCT_NAME ANSYS The default ANSYS product, ANSYS/Multiphysics. ANSYS_SOLVER Frontal Included for compatibility only. ANSYS_SELECTED_LAYERS 1-256 Included for compatibility only. ANSYS_GEOMETRY_TYPE Solids Only Included for compatibility only. ------------------------------------------------ 以上似乎是针对ansys5.6版的,其实第5步没什么必要。关键是在第3步中正确设置了proE 的的安装路径。然后用proe建模

ProE与ANSYS的连接接口设置如何将ProE模型导入ANSYS进行有限元分析

PRO/E与ANSYS的连接接口设置——如何将Pro/E模型导入ANSYS进行有限元分析 ANSYS在默认的情况下是不能将Pro/E中的“.prt”文件直接进行转换的,必须通过相应的配置设置来激活该数据连接接口使其正常工作。 下面就是进行配置的整个过程(Pro/E4.0与ANSYS10.0): 1. 点击开始菜单里的所有程序中的ANSYS10.0]\[Utilities]\[ANS_ADMIN],出现ANS_ADMIN 10.0对话框,如图所示,选择[Configuration options]\[OK],出现Configuration options配置对话框。 2. 在接下来的对话框中分别做如下选择:[Configure Connection for Pro/E]\[OK]; [ANSYS Multiphysics &win32]\[OK];如图所示。

配置成功后会出现连接成功的对话框,如图所示。 3. 再进行如下设置:Pro/Engineer installation path:输入Pro/E的安装路径,如,C:\Program Files\proeWildfire 4.0,Language used with Pro/Engineer:中文版就填chinese_cn,OK; 然后会出现如图所示的配置成功对话框,提示在Pro/E目录下成功建立了一个“prokt.dat”文件,点击确定即完成配置。

4. 修改“protk.dat”文件。在Pro/E安装目录文件中找到“protk.dat”文件,路径是“C:\Program Files\proeWildfire 4.0\i486_nt\text\chinese_cn\protk.dat”。用记事本打开“protk.dat”,然后在“allow_stop TRUE”和“revision 24.0”之间加上“unicode_encoding FALSE”,如图6所示,最后保存并关闭。 在上述配置过程全部完成之后,Pro/E主菜单上出现如图所示的ANSYS 10.0菜单,包括ANSConconfig和ANSYSGeom 两个子菜单,其中ANSYSGeom就可以把Pro/E 4.0中的模型直接传送到ANSYS中。 5. PROE中的配置为了实现ANSYS与Pro/E更全面的连接,我们还需要对Pro/E的config.pro文件作进一步的配置。点击[Tools]\[options],在出现的Options对话框中,分别找到所需的选项名称并设置相应的值,其中各个选项名称及值如下:config.pro 选项设置值: fem_ansys_annotations——yes——将外壳名称的传递切换到ANSYS fem_ansys_grouping——yes——将组/层的传递切换到ANSYS fem_default_solver——ANSYS——指定缺省的求解器 fem_which_ansys_solver——FRONTAL——指定要使用的ANSYS求解器 fem_ansys_annotations——yes——切换载荷工况名称到ANSYS pro_ansys_path——“ansys.exe的路径”——指定到可执行的ANSYS的路径

proe导入ansys

Pro/Engineer 与 ANSYS 的数据交换 1. 常用交换方法 (1) 利用 IGES 中间标准格式转换。由pro/engineer 保存的IGES 文件格式属于固定每行80 字符的ASCII 格式文件。而ANASY 本身内置了IGES 转换过滤器,所以它支持IGES 格式文件的导入。但是转换过滤程序允许输入部分模型参数,所以 ANSYS 有时会把不能识别的特征省略掉。当Pro/Engineer 中建立的模型特征过多或结构过于复杂时,使用 IGES 文件格式输入到 ANSYS 后很可能产生模型断裂、丢失实体等情况,会直接影响模型后续分析的准确性。(2) 使用 ANSYS—Pro/Engineer 接口转换。 ANSYS 软件安装选项中包含与Pro/Engineer 软件的接口模块“Connection for Pro/Engineer”。此模块不仅能将Pro/Engineer 模型数据直接转换给 ANSYS,同时还提供了以执行部件为基础的参数优化设计功能。该功能允许从建立以部件为基础的参数化Pro/Enginee 模型开始,用 ANSYS 程序对其进行优化,并以一个优化的模型结束,而且建立好的模型仍是以部件为基础的参数化模型。此模块能给工程人员在有限元分析过程中考虑采用何种前后处理提供最好的支持。利用软件自带接口能够快速准确地导入数据,ANSYS 在默认状态无法识别Pro/Engineer 中的prt 文件,以下就是具体的配置方案。 1) 单击【开始】【程序】【ANSYS10.0】【Utilities】【ANS-ADMIN】----命令,点选【Configuration options】单选按钮,再单击OK 按钮。在弹出的对话框中点选【Configuration Connection for Pro/Engineer】按钮,再单击OK。【ANSYS Multiphysics】,在弹出的对话框中的下拉菜单 ANSYS Product 中选择并在Graphics device name 中选择【win32】,单击OK 按钮。

相关主题
相关文档
最新文档