中颖电子动力锂电池BMS简介

中颖电子动力锂电池BMS简介
中颖电子动力锂电池BMS简介

动力电池基础知识普及

动力电池基础知识普及 动力电池是纯电动汽车的唯一能量来源,同时也是整车成本较高的一个关键动力总成部件。自电动汽车诞生以来,铅酸电池、镍氢电池以及锂电池等具有较为广泛的应用。 1)最早应用于电动汽车上的是铅酸电池,并且在较长的一段时间内都是电动汽车的主要能源方案,其主要特点是原材料易得、安全耐用、价格低廉,并且技术较为成熟。尤其是20 世纪70 年代以后,密封免维护铅酸电池的出新极大提升了性能水平和使用方便程度,在市场中占据了较大的份额。但是比能量和比功率低是铅酸电池的最大缺点,能量密度大概在35Wh/kg 左右,一般400 次左右的循环寿命也在一定程度上制约了铅酸电池的应用。目前虽然在电动汽车市场上仍有应用,但一般都是局限在对整车性能水平要求不高且注重成本的车型上,如电动自行车以及一些场地用车等。 2)镍氢电池的比能量和比功率均在一定程度上优于铅酸电池,但其价格是同容量铅酸电池的5~8 倍,特性与镍镉电池相似,但不存在镍镉电池的重金属污染问题。快速充电和深度放电的性能较好,效率较高,且无需维护,目前主要是在混合动力汽车中应用较多。不过镍氢电池自放电率较高,且对环境温度较为敏感,尤其是单体电压较低约为 1.2V 左右,对于纯电动汽车来说,往往需串联大量的电池才能满足其高压系统需求,所以在纯电动汽车上的应用相对较少。 3)锂离子电池与其他电池相比,在单体电压、容量、比功率方面具有较大的优势,且可进行大电流充放电、循环充放电性能好、较为安全,目前在纯电动汽车、混合动力汽车以及燃料电池车上均有应用。随着锂电池材料技术以及加工工艺的进一步发展,已逐渐成为国内外电动汽车用动力电池的首选方案。 三类主要电池的性能对比

四大锂电池材料介绍

四大锂电池材料分析 一、锂电池材料组成 正极材料 负极材料 隔膜 电解液 锂电池 正极材料、负极材料、隔膜、电解液是锂电池最主要的原材料,占整个材料成本近80%。二、锂电池材料介绍1.正极材料 1) 正极材料分类及对比正极材料包括钴酸锂(LCO)、锰酸锂(LMO)、镍钴锰三元材料(NMC)、磷酸铁锂(LFP)等。 1)正极材料行业现状 LCO最早实现商业化应用,技术发展至今已经比较成熟,并已广泛应用在小型低功率的便携式电子产品上,如手机、笔记本电脑、数码电子产品等。LCO的国产化已经接近十年,自2004年以来市场发展很快,2006年至今年平均增幅25%左右;据了解,目前国内锂电池企业的正极材料国产化近90%,供求关系比较稳定,从行业生命周期看,LCO市场经过近几年的高速发展,即将进入稳定期。目前,国内LCO

生产企业主要有湖南杉杉、湖南瑞翔、国安盟固利、北京当升等。 LMO主要作为LCO的替代产品,优点是锰资源丰富,价格便宜,安全性高,但其最大的缺点是容量低,循环性能不佳,这也是限制LMO发展的主要原因,目前通过掺杂等方法提高其性能。LMO应用范围较广,不仅可用于手机、数码等小型电池,也是目前动力电池主要选择材料之一,与LFP在动力电池领域形成竞争态势。国内LMO生产企业包括湖南杉杉、国安盟固利、青岛乾运、深圳源源等。 NMC,即三元材料,融合了LCO和LMO的优点,在小型低功率电池和大功率动力电池上都有应用。主要厂家包括深圳天骄、河南思维等。LFP是被认为最适合用于动力电池的正极材料,具有高稳定性,安全性,现已成为各国、各企业竞相研究的热点。慧聪邓白氏认为,目前,国内宣称可以生产LFP的企业很多,全国LFP产能规模近6,000吨,但实际量产数远低于产能数,主要原因在于技术性能仍达不到锂电池厂家的要求,并且LFP专利的国际纠纷仍然影响了其在国内的发展。目前,主要厂家包括天津斯特兰、北大先行等。 2.负极材料国内应用的负极材料主要包括人造石墨、天然石墨、CMS(中间相炭微球)、钛酸锂等,其中人造石墨分为人造石墨和复合人造石墨等,天然石墨分为天然石墨、改性天然石墨等。近几年负极材料行业发展迅速,国内企业增长较快,2008年全国负极材料实际供货量近9,000吨,同比增长41。目前,负极材料仍然以人造石墨与天然石墨为主,石墨材料在整个负极材料中占85%左右;其次是CMS。负极材料厂家包括深圳贝特瑞、上海杉杉、长沙海容等。 3.隔膜 随着国内锂电池生产规模扩大,对隔膜的需求也年年上升,自2006年来,整体隔膜市场容量年增幅均在30%左右。自2006、2007年多个国内隔膜企业投产以来,

详细分析锂离子电池的电极材料选择

详细分析锂离子电池的电极材料选择 锂离子电池在使用的过程中,能够进行二次充电,属于一种二次可充电电池,主要工作原理为锂离子在正负极之间的反复移动,无论电池的形状如何,其主要组成部分都为电解液、正极片、负极片以及隔膜。目前,国际上锂离子电池的生产地主要集中在中国、日本和韩国,主要的锂离子应用市场为手机和电脑。随着锂离子电池的不断发展,应用领域也在逐渐的扩大,其在正极材料的使用方面已经由单一化向多元化的方向转变,其中包括:橄榄石型磷酸亚铁锂、层状钴酸锂、尖晶石型锰酸锂等等,实现多种材料的并存。从技术发展方面能够看出,在日后的发展中还会产生更多新型的正极材料。对于动力电池的正极材料来说,其在成本费用、安全性能、循环能力以及能量密度等多个方面都具有较为严格的要求。在应用材料领域中,由于钴酸锂的费用较高、安全性较低,因此在具体的使用中通常适用于普通消费类电池,难以符合动力电池的相关要求。而上述列举的其他材料均已在目前的动力电池中得到了充分的利用。在锂离子电池材料中,负极材料属于重要的组成部分,能够对整体电池的性能产生较大影响。目前,负极材料主要被划分为两个类别,一种为商业化应用的碳材料,例如天然石墨、软碳等,另一类为正处于研发状态,但是市场前景一片大好的非碳负极材料,例如硅基材料、合金材料、锡金材料等等。 1碳负极材料:此种类型的材料无论是能量密度、循环能力,还是成本投入等方面,其都处于表现均衡的负极材料,同时也是促进锂离子电池诞生的主要材料,碳材料可以被划分为两大类别,即石墨化碳材料以及硬碳。其中,前者主要包括人造石墨以及天然石墨。人造石墨的形成过程为:在2500℃以上的温度中,将软碳材料进行石墨化处理之后得到,MCMB属于人造石墨中比较常用的一种,其结构为球形,表面质地较为光滑,直径大约为5-40μm。由于受其表面光滑程度影响,使电极表面以及电解液之间发生反应的几率降低,进而降低了不可逆容量。同时,球形结构能够方便锂离子在任何方向进行嵌入和脱出活动,对保障结构稳定具有较大的促进作用。天然石墨也具有诸多优势,其结晶度较高、可嵌入的位置较多,并且价格较低,是较为理想的锂离子电池材料。但其也存在一定的弊

锂电池各个体系性能参数

钴酸锂 1.钴酸锂的概述 1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。Sony公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。其中,决定电池的可充电最大容量及开路电压的主要是正极材料。因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。与钴酸锂同属4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。但在容量和循环寿命上存在不足。钴酸锂的实际使用比容量为130mAh/g,循环次数可达到300至500次以上:而锰酸锂的实际比容量在100mAh /g左右,循环次数为100至200次。另外,磷酸铁锂电池有安全性高。稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。因此其在小型电池应用上没有优势。国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。 2002年,国内钴酸锂材料市场需求量为2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升,2006年需求量达到6500吨,2008年需求量接近9000吨。 2001年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时Umicore 公司,美国OMG和FMC公司,日本的SEIMEI和日本化学公司等国外企业。另外台湾地区的台湾锂科科技公司也是重要的生产企业。而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。 2.钴酸锂的材料构成 LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。 3.钴酸锂的制备 1活性钴酸锂的制备方法,其特征是包括以下步骤:以原生钴矿石为原料,制取高纯钴盐溶

动力锂离子电池及其负极材料的现状和发展范文

动力锂离子电池及其负极材料的现状和发展 2010-11-10 14:45:06 中国石墨碳素网 文/苗艳丽杨红强岳敏 天津市贝特瑞新能源材料有限责任公司 随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。为解决能源问题、实现低碳经济,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等特性,成为目前各国发展的重点。 国外政府及企业在动力锂离子电池研发上均做出了很大的努力。我国的锂离子电池产业起步虽较晚,但发展速度非常快,同时,政府给予了大力的支持。“十一五”期间,“863”电动汽车重大专项对混合动力(HEV)、外接充电式混合动力(PHEV)用锂离子电池关键材料和电池进行了专门的研究。 与锂离子电池其他部件相比,锂离子电池负极材料的发展较为成熟。在商业应用中,石墨类碳材料技术较为成熟,市场价格也比较稳定,但随着锂离子动力电池对能量密度、功率密度、安全等性能的要求不断提升,硬碳、钛酸锂(Li4Ti5O12)、合金等其他材料也相继成为研究热门。 一、动力锂离子电池负极材料简介 1.动力锂离子电池负极材料特性 锂离子电池由正极、负极、电解液、隔膜和其他附属材料组成。锂离子电池负极材料要求具备以下的特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。 2.动力锂离子电池负极材料主要类型 早期人们曾用金属锂作为负极材料,但由于存在安全问题没有大规模商业应用。目前,对锂离子电池负极材料的研究较多有:碳材料、硅基材料、锡基材料、钛酸锂、过渡金属氧化物等。本文将主要介绍3类负极材料:碳材料、合金材料(锡(Sn)、硅(Si)等)和钛酸锂。 (1)碳材料 碳材料是人们最早开始研究并应用于锂离子电池生产的负极材料,至今仍然为大家关注和研究的重点。碳材料根据其结构特性可分成3类:石墨、易石墨化碳及难石墨化碳(也就是通常所说的软碳和硬碳)。软碳主要有中间相炭微球、石油焦、针状焦、碳纤维等;硬碳主要有树脂碳(如酚醛树脂、环氧树脂、聚糠醇PFA-C 等),有机聚合物热解碳(包括聚乙烯醇基、聚氯乙烯基、聚丙烯腈基等)以及碳黑等。由于软碳与石墨的结晶性比较类似,一般认为它比硬碳更容易插入锂,即更容易充电,安全性也更好些。 石墨类碳材料技术比较成熟,在安全和循环寿命方面性能突出,并且廉价、无毒,是较为常见的负极材料。常规锂离子电池负极材料包括天然石墨、天然石墨改性材料、中间相炭微球和石油焦类人造石墨。天然石墨和天然石墨改性材料价格比较低,但是在充放电效率和使用寿命方面有待进一步提高。中间相炭微球结构特殊,呈球形片层结构且表面光滑,直径在5~40μm之间,该材料独特的形貌使其在比容电量(可达到330mAh/g以上)、安全性、放电效率、循环寿命(循环次数达到2000次以上)等方面具有显著优势,但是成本有待降低。石油焦类的产品在放电效率和循环寿命方面比较突出,但存在着高成本和制备工艺复杂的问题。 近年来,随着研究工作的不断深入,研究者发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,有利于锂在其中的嵌入-脱

动力电池材料体系及结构选择分析

动力电池材料体系及结构选择分析 材料体系选择分析 1、下表是理论上可以在锂离子电池中应用的正负及材料体系 正极材料(阳灿/^) 200 400 600 800 1000 负极材料比(阳八卜/妒 综合考虑材料体系的安全、成本、能量密度、电性能、原材料的自然界资源储量等条件,目前具备产业化条件,最有可能成为新一代车载动力电池的材料主要分为以下几个体系,1、 2、0^111204/01^11116 3、 4、 5、1^1^11204/1-14115012 几种常用的正极材料的特性以及优缺点分析

700:^3;^1:十2;胞:44; 7^1是材料容量的主要来源,^2^-14; 705在高电位时才能发生反应,^3^44,起到稳定晶体结构的作用; 7―保持44价不变,在―含量偏高时易出现价态变小的趋势,出现十3的\111; ^^的容量要高于尺0从,是目前容量最高的正极材料,其安全性能差是突出的问题;解决层状晶体材料安全性能差的问题主要从以下几个方面入手 ^表面涂层,减少反应活性区域的直接接触(八1203、 ^陶瓷隔膜技术; ^活性低的负极材料 ^正极材料的掺杂改性; 2、1^1^10204 ^成本低,储量丰富; 7能量密度偏低’高温性能差是其主要缺点; 改善高温循环的方法 ^元素掺杂,掺入低价态元素提高锰价态(灰1、^); ^表面修饰,包覆氧化物,减少材料与电解液的接触; ^采用新型电解质盐,0608; ^活性低的负极材料 3、01^?04 7成本低、储量丰富; 7循环性能优良、安全性能优良; 7材料稳定性差、合成过程质量控制困难; ^加工性能差工艺要求高; 7材料电子导电性差、低温性能差、能&密度偏低; 改善电子传导性差的手段 ^元素掺杂与表面包覆扣材料 ^纳米级导电材料、高效分散技术; ^箔材预处理技术; 几种常见的外部包装结构及分析 目前,在传统锂离子电池基础上发展起来的锂离子动力电池呈现出结构多样化,缺乏统一 的标准,而外部的结构对工艺布局有着决定性的影响,目前主流电池在外部封装结构上主 要可分为以下几类: 1、圆柱型电池 2、方型硬壳电池 3、方型软包装电池 几种不同类型结构的优缺点分析 1、圆柱型电池代表厂家(江森自控、八123、531^0、300)0 7工艺成熟度高、生产效率高、过程控制严格,成品率及产品一致性都较其他结构电池 高; 7壳体结构成熟,成本低; 7极片过长,卷绕方向上集流体电流密度分布不均匀,造成内部各部分反应程度不一致;^直径过大,电芯内部产生的热量很难得到快速释放,内部的热量累积,给电池的安全

如何选择动力锂电池的正极材料及安全性分析

如何选择动力锂电池的正极材料及安全性分析 目前,在锂离子电池中使用量最多的正极材料有以下几种:钴酸锂(LiCoO2),锰酸锂(LiMn2O4),镍钴锰酸锂(LiCoxNiyMnzO2)以及磷酸铁锂(LiFePO4)。究竟选择哪种正极材料的锂电池?下文会做详细地分析。 测试锂离子电池的安全问题,过充(指充电电压超过其充电截止电压,对锂离子电池来说,一般可以将10V/节定为过充电压)是一个很好的方法。谈到过充,我们应该首先了解一下锂离子电池的充电原理(如图1所示)。锂离子电池的充电过程是Li 从正极跑出来,通过电解液游到负极并得到电子,嵌入到负极材料中,而放电的过程则相反。 衡量正极材料安全性主要考验: A:容不容易在充电时形成枝晶。 锂离子电池的充电过程就是Li 从正极跑出来,通过电解液游到负极被还原并嵌入到负极材料中;放电的过程则相反,负极材料中的锂被氧化,通过电解液,嵌入正极材料。 基于循环性地考虑,钴酸锂(LiCoO2 )材料的实际使用容量只有其理论容量的二分之一,即使用钴酸锂作为正极材料的锂离子电池在正常充电结束后(即充电至截止电压4.2 V左右),LiCoO2正极材料中的Li 将还有剩余。可用以下的简式表示:LiCoO2→0.5Li Li0.5CoO2 (正常充电结束)。此时如果充电电压继续升高,那么LiCoO2正极材料中的剩余的Li 将会继续脱嵌,游向负极,而此时负极材料中能容纳Li 的位置已被填满,Li 只能以金属的形式在其表面析出。一方面,金属锂的表面沉积非常容易聚结成枝杈状锂枝晶,从而刺穿隔膜,造成正负极直接短路;另外,金属锂非常活泼,会直接和电解液反应放热;同时,金属锂的

波特五力模型分析动力锂电池行业及其战略群组概要

动力锂电池,是以锂离子电池为材料的一种高能量密度电池。磷酸铁锂具有很好的安全性能,因而是目前最理想的动力汽车用锂电正极材料。我国车企推出的纯电动车车型中,动力电池均为锂电池,奇瑞、比亚迪使用的均是磷酸铁锂。磷酸铁锂是引发锂电革命行业的一种新兴材料,是锂电池行业发展的最前沿。 下面将用波特五力模型分析动力锂电池行业: (一新进入者的威胁 新进入者在给行业带来新生产能力、新资源的同时,将希望在已被现有企业瓜分完毕的市场中赢得一席之地,这就有可能会与现有企业发生原材料与市场份额的竞争,最终导致行业中现有企业盈利水平降低,严重的话还有可能危及这些企业的生存。 磷酸铁锂行业有一定的门槛,不是谁来做就会做成功的,尤其是材料领域,技术壁垒很高,可以避免太多的竞争。作为新进入这个产业的企业,选择做材料可能要比做电池更为明智,因为现有的一些锂电池厂商很多,尤其是大厂的地位很难撼动,他们切入到磷酸铁锂电池更具优势。 由于制造动力电池涉及到电芯的组合,必须保证电芯的一致性,这样对电池的生产设备提出了更高更专业的要求,所以设备资金投入很大,一般来说,建设一条磷酸铁锂电芯生产线至少需要5000万元的启动资金。创业企业在进入这一领域有一定的 难度,传统的电池生产企业将具有较大的优势。 (二供应商的议价能力 供方主要通过其提高投入要素价格与降低单位价值质量的能力,来影响行业中现有企业的盈利能力与产品竞争力。 锂离子电池的性能主要取决于正负极材料,其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。磷酸铁锂正极材料做出大

容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点。 目前磷酸铁锂材料全球可查的产能是1500吨,如果按照未来5年内年产100万辆电动汽车的需求,每年就需要6万吨磷酸铁锂,潜在的供需缺口非常大,锂电池原材料之一是电解液,电解液约占锂电池成本12%,毛利率约40%,是锂电 产业链中盈利能力较强的环节之一。目前全国产能约 1.8万吨,供需基本平衡。 我国磷酸铁锂原材料丰富,价格低廉,这对于磷酸铁锂产业是一个极大的利好。 (三购买商的议价能力 购买者主要通过其压价与要求提供较高的产品或服务质量的能力,来影响行业中现有企业的盈利能力。 (1目前中国大陆锂电池产业正处于优胜劣汰的发展过程,唯具有技术和品牌优势的厂家,才有机会获得更大的市场空间。 (2电芯生产由于生产工艺和技术相对成熟,在有稳定的正极材料货源情况下,国内大部分锂离子电池厂商均能生产出磷酸铁锂电芯。 (四替代品的威胁 两个处于不同行业中的企业,可能会由于所生产的产品是互为替代品,从而在它们之间产生相互竞争行为,这种源自于替代品的竞争会以各种形式影响行业中现有企业的竞争战略 随着补贴和充电便利性的解决,新能源汽车市场将出现爆发式增长,而随着新能源汽车规模的迅速扩大,对动力电池、电机、电控等的需求也将显著增加,这有望成为未来10年行业增长的核心驱动因素。这其中,动力电池的性能对新能源汽车的发展

锂离子电池正极材料的几种体系

锂离子电池正极材料的几种体系 主要包括:锂钴氧化物、锂镍氧化物、锂锰氧化物和聚阴离子正极材料系列。 1. 锂钴氧化物 锂钴氧化物是现阶段商品化锂离子电池中应用最成功、最广泛的正极材料。其在可逆性、放电容量、充放电效率和电压稳定方面是比较好的。LiCoO2属于α-NaFeO2型结构,它具有二维层状结构,适合锂离子的脱嵌,其理论容量为274mAh/g,但在实际应用中,由于结构稳定性的限制,最多只能把晶格中的一半Li+脱出,因此实际比容量约为140mAh/g 左右,其平均工作电压高达3.7V。因其容易制备,具有电化学性能高,循环性能好、性能稳定和充放电性能优良等优点,成为最早大规模商业化应用于锂离子电池的正极材料,目前商品化锂离子电池70%以上仍然采用钴酸锂作为其正极材料。LiCoO2一般采用高温固相法制备,该种方法工艺简单、容易操作、适宜于工业化生产,但是也存在着以下缺点:反应物难以混合均匀,需要较高的反应温度和较长的反应时间,能耗大,产物颗粒较大,形貌不规则,均匀性差,并且难以控制,从而导致电化学性能重现性差。为了克服固相反应的缺点,溶胶-凝胶法、水热法、共沉淀法、模板法等方法被用来制备LiCoO2,这些方法的优点是可以使Li+和Co2+之间充分接触,基本达到原子水平的混合,容易控制产物的粒径和组成。但是这类制备方法工序比较繁琐,工艺流程复杂,成本高,不适用于工业化生产。 2. 锂镍氧化物 镍酸锂(LiNiO2)为立方岩盐结构,与LiCoO2相同,但其价格比LiCoO2低。LiNiO2理论容量为276mAh/g,实际比容量为140~180mAh/g,工作电压范围为2.5V~4.2V,无过充或过放电的限制,具有高温稳定性好,自放电率低,无污染,是继LiCoO2之后研究得较多的层状化合物。但LiNiO2作为锂离子电池正极材料存在以下问题亟待研究解决。首先,LiNiO2制备困难,要求在富氧气氛下合成,工艺条件控制要求较高且易生成非计量化合物。LiNiO2合成技术的关键是将低价的镍完全转变为高价镍,高温虽然可以实现LiNiO2的高效合成,但由于温度超过600℃时合成过程中的Ni2O3易分解成NiO2,不利于LiNiO2的形成,所以必须选用苛刻的低温合成方法。此外,在制备三方晶系的LiNiO2过程中,容易生成立方晶系的LiNiO2,由于立方晶系的LiNiO2在非水电解质溶液中无活性,因此,工艺条件控制不当,极易导致LiNiO2材料的电化学性能不稳定或下降。其次,LiNiO2与LixCoO2一样,在充放电过程中,也会发生从三方晶系到单斜晶系的转变,导致容量衰减[69],与此同时,相变过程中排放的O2可能与电解液反应,此外,LiNiO2在高脱锂状态下的热稳定性也较差,,易于引发安全性问题。可喜的是,通过掺入少量Cu、Mg、Al、Ti、Co等金属元素,可使LiNiO2获得较高的放电平台和电化学循环稳定性。 3. 锂锰氧化物 我国锰资源储量丰富,而且锰无毒,污染小,因此层状结构的LiMnO2和尖晶石型的LiMn2O4都成为了正极材料研究的热点。锂锰氧化物主要有层状LiMnO2和尖晶石型LiMn2O4两类。LiMnO2属于正交晶系,岩盐结构,氧原子分布为扭变四方密堆结构,其空间点群为Pmnm,理论比容量达到286mAh/g,充放电范围为2.5~4.3V,是一种较

国内外锂离子动力电池发展概况

1 引言 锂离子动力电池具有比能量高、重量轻、绿色环保无污染等优点,应用范围广泛,其应用领域包括数码产品、家用电器、电动工具、电动汽车、航空、航天和武器装备等。随着技术的不断进步,锂动力电池安全性不断提高,锂电池单体容量越来越大,其应用于潜艇等大型军事装备的可行性也不断提高。 2 锂离子电池发展历程 二十世纪六十、七十年代发生的石油危机促使人们寻找新的替代能源。1962 年,美国军方的“锂非水电解质体系”研究报告,最早提出了把活泼金属锂引入到电池设计中的构想。1973 年,氟化碳锂原电池在日本松下电器公司实现量产,商品化锂电池面世。1978 年,日本三洋公司的锂/二氧化锰电池实现量产,锂电池价格下降,市场占有率上升。锂一次电池的成功刺激了锂二次电池的研究热潮。80 年代末,加拿大MoLi 能源公司研发的Li/Mo2 锂金属二次电池面世,第一块商品化锂二次电池诞生。1991 年6 月,日本索尼公司将液态电解液锂离子电池成功实现了商品化。自此之后,锂离子电池在便携式电源领域的市场份额不断扩展。近年来,随着一些无人电子装备(如无人水下航行器、无人机)、电动工具、电动汽车等发展的需要,锂离子电池以其高比能、长寿命、自放电小、无记忆效应和绿色环保等优点备受青睐,在动力电源领域得到迅速发展。 3 国外锂离子动力电池发展概况 日本索尼公司对锂离子电池的研究开展较早,生产的锂离子电池在性能上和品种上已经具备相当高的水平。该公司生产的圆柱型单体电池分为高能型和高功率型。其中高能型电池的比能量为110 Wh/kg,80%DOD 的比功率300 W/kg,充放电次数1200 次。高功率型的圆柱电池80%DOD 的比功率高达800 W/kg。日本三井造船生产的磷酸铁锂动力电池能以20C 的倍率放电,10C 左右的倍率进行快速充电,在3C 充放电条件下循环500 次,容量保持90%以上。日本汤潜公司(YAUSA)生产的锰酸锂电池,比能量是铅酸电池的3 倍,计划取代潜艇用铅酸电池。装有该公司锂离子电池的无人试验小潜艇已于1999年10 月完成了水下试验。法国SAFT 公司是世界著名的锂电池生产公司,其各种型号锂离子电池已广泛应用于卫星、UUV(无人水下航行器)以及各类便携式电子设备上。据美国能源杂志报道,上世纪末,SAFT英国分公司就曾与英军合作研制过一款24 V,12Ah 容量的锂电池。目前该公司生产的圆柱型单体锂离子电池比能量达到143 Wh/kg,80%DOD 的比功率为345 W/kg,为装备潜艇而制造的锂离子动力电池,单体容量为3000 Ah 级。德国瓦尔塔公司也在研制高能量密度型和高功率密度型电池。其高能密度型电池为方型,容量为60 Ah,比能量为115 Wh/kg,使用寿命达900 次(100%DOD)。在上世纪末,美军也在商品化的锂离子电池基础上展开了军事化应用。据美国能源杂志介绍,美国YARDNEY 公司已为水下军事装备研制了三款锂离子动力电池,包括:①水下无人作战平台(UUV)电池系统,总能量10 kWh,360 块单体容量8 Ah(4 并90 串),电压324 V。②全电动鱼雷高功率锂离子电池系统,由100 块单体容量25 Ah 的锂动力电池组成电池组,最大功率密度650 W/kg。③袖珍潜艇装置(ASDS-1)的高能量锂离子电池系统,2005 年首次安装于ASDS-1 艇,锂离子电池总能量1.2 MWh,单体电池能量密度170 ~200 Wh/kg[1] 。美军在水下自动航行器(AUV)中已应用锂离子电池,其功率密度达到100 Wh/kg[2]。据美国能源杂志介绍,HUGIN1000型AUV 的电池系统为聚合物锂离子电池与燃料电池组合而成[3],该系统性能先进,HUGIN1000型AUV 总

锂电池四大核心材料发展解读

锂电池四大核心材料发展解读锂电池加速成长!四大核心材料大有可为

从中国汽车工业协会获悉,11月,新能源汽车产销量同比双双增长,动力电池的产量同样也增长。 数据显示,11月新能源汽车产销分别完成19.8万辆和20万辆,同比分别增长75.1%和104.9%,其单月产销第5次刷新了当月历史记录;动力电池产量共计12.7GWh,同比增长40.7%,环比增长29.1%。 累计方面,1-11月,我国动力电池产量累计68.3GWh,同比累计下降13.8%。 从细分产品来看,2020年11月,三元电池产量7.3GWh,占总产量57.3%,同比增长35.6%,环比增长32.1%;磷酸铁锂电池产量5.4GWh,占总产量42.5%,同比增长49.3%,环比增长25.1%。 锂电池的应用场景主要分为三类:消费类(消费电子、电动工具等)、动力类(电动汽车)、储能类(通信基站备用电源、电力电网储能、家庭电力储能等)。消费类中,由于钴酸锂

LCO的能量密度最高、成本最高(采用的贵金属钴最多),对电池价格并不敏感的消费电子多数使用钴酸锂LCO。在动力类领域,2009-2016年间,磷酸铁锂LFP凭借着低成本、高安全性,成为乘用车领域(即9座以下)、商用车领域(9座以上,或以载货为主要目的)的主流选择。2016年后,在汽车消费者对续航能力的高要求、政策对高能量密度电池的倾斜的背景下,三元材料凭借着高能量密度在乘用车领域异军突起,但商用车领域依然主要使用磷酸铁锂LFP。储能类中,国外主要采用三元材料,国内主要采用磷酸铁锂,尤其是是梯次利用的磷酸铁锂。随着国产磷酸铁锂LFP电池技术成熟、成本下降、安全性被验证,国产磷酸铁锂LFP逐渐渗透到全球储能市场。 当前动力电池行业内量产的三元软包动力电池平均电芯能量密度已达240-250Wh/kg,但同材料体系的三元方形动力电池能量密度为210-230Wh/kg。 三元软包动力电池单体电芯能量密度比三元方形动力电池平均高10%-15%。循环寿命方面,软包电池循环寿命更长,100次循环衰减比方形电池少4%-7%。电芯层面,三元软包动力电池电芯的尺寸以及形状设计灵活,企业可以依据自身产品设计、客户需求进行定制。

动力电池项目申报材料

动力电池项目 申报材料 规划设计/投资分析/实施方案

报告说明— 该动力电池项目计划总投资21609.30万元,其中:固定资产投资16689.57万元,占项目总投资的77.23%;流动资金4919.73万元,占项目总投资的22.77%。 达产年营业收入48899.00万元,总成本费用37193.63万元,税金及附加422.04万元,利润总额11705.37万元,利税总额13741.94万元,税后净利润8779.03万元,达产年纳税总额4962.91万元;达产年投资利润率54.17%,投资利税率63.59%,投资回报率40.63%,全部投资回收期 3.96年,提供就业职位812个。 全球汽车电动化加速。近年来,各国政府陆续制定发展规划、给予补贴或者明确燃油车禁售时间表,汽车巨头纷纷发布电动化战略,全球电动化进程加速。特斯拉2018年7月与上海市签订纯电动车项目投资协议,计划年产能50万辆电动车。以戴姆勒、大众、宝马、丰田、福特等为代表的传统主流车企,将在未来5-10年内大力发展新能源汽车,制定了中长期发展规划和销售目标。在2020-2025年期间,众多国际车企的新能源汽车销量目标占其年度销量的10%-25%。全球主流车企将陆续密集推出新车型,全球新能源汽车产销量将迎来持续爆发。

第一章基本情况 一、项目概况 (一)项目名称及背景 动力电池项目 (二)项目选址 xx新区 场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。对周围环境不应产生污染或对周围环境污染不超过国家有关法律和现行标准的允许范围,不会引起当地居民的不满,不会造成不良的社会影响。 (三)项目用地规模 项目总用地面积57075.19平方米(折合约85.57亩)。 (四)项目用地控制指标

动力电池各种正极材料性能比较

动力电池各种正极材料性能比较 来源:中国储能网 链接:https://www.360docs.net/doc/e77874297.html,/tech/23760.html 动力电池各种正极材料性能比较 锂离子动力电池是目前最有潜力的车载电池,主要由正极材料、负极材料、隔膜、电解质等部分组成。目前负极材料的研发和生产已比较成熟。正极材料、隔膜和电解质是锂离子电池的核心材料,占据电池成本的70%;其中又以正极材料附加值最高,约占锂电池成本的30%。这三种核心材料的技术突破,将对锂离子动力电池的性能提升起到重要推动作用。 目前已批量应用于锂电池的正极材料主要有钴酸锂、镍酸锂、锰酸锂、钴镍锰酸锂(三元材料)以及磷酸铁锂。 钴酸锂:研究始于1980 年,20 世纪90 年代开始进入市场。它属于α-NaFeO2型层状岩盐结构,结构比较稳定 ,是一种非常成熟的正极材料产品,目前占据锂电池正极材料市场的主导地位。但由于其高昂的价格和较差的抗过充电性,使其使用寿命较短,而且钴有放射性,不利于环保,因此发展受到限制。 镍酸锂:氧化镍锂的价格较钴酸锂便宜,理论能量密度达276mAh/g,但制作难度大,且安全性和稳定性不佳 。技术上采用掺杂Co、Mn、Al、F 等元素来提高其性能。由于提高镍酸锂技术研究需考察诸多参数,工作量大,目前的进展缓慢。 锰酸锂:锰资源丰富、价格便宜,而且安全性较高、易制备,成为锂离子电池较为理想的正极材料。早先较 常用的是尖晶石结构的LiMn2O4,工作电压较高,但理论容量不高,与电解质的相容性不佳,材料在电解质中会缓慢溶解。近年新发展起来层状结构的三价锰氧化物LiMn2O4,其理论容量为286mAh/g,实际容量已达200mAh/g 左右,在理论容量和实际容量上都比LiMn2O4 大幅度提高,但仍然存在充放电过程中结构不稳定,以及较高工作温度下的溶解问题。 钴镍锰酸锂:即现在常说的三元材料,它融合了钴酸锂和锰酸锂的优点,在小型低功率电池和大功率动力电 池上都有应用。但该种电池的材料之一——钴是一种贵金属,价格波动大,对钴酸锂的价格影响较大。钴处于价格高位时,三元材料价格较钴酸锂低,具有较强的市场竞争力;但钴处于价格低位时,三元材料相较于钴酸锂的优势就大大减小。随着性能更加优异的磷酸铁锂的技术开发,三元材料大多被认为是磷酸铁锂未大规模生产前的过渡材料。 磷酸铁锂:在所有的正极材料中,LiFePO4 正极材料做成的锂离子电池在理论上是最便宜的。它的另一个特点 是对环境无污染。此外,它在大电流放电率放电(5~10C 放电)、放电电压平稳性、安全性、寿命长等方面都比其它几类材料好,是最被看好的电流输出动力电池。目前A123 公司已能将磷酸铁锂正极材料制造成均匀的纳米级超小颗粒,使颗粒和总表面积剧增,进一步体高了磷酸铁锂电池的放电功率和稳定性。 原文地址:https://www.360docs.net/doc/e77874297.html,/tech/23760.html 页面 1 / 1

锂离子动力电池PACK部BMS系统

先给初学者一个简单的科普,因为几年前我和人家说起BMS,大部分是不知道是什么东西。BMS就是Battery Management System,中文就是电池管理系统,一般针对动力电池组,很多电芯串并的情况来说的。 BMS的作用是保护电池安全,延长电池的使用寿命,实时监测电池的状态并把电池的情况告诉给上位机系统。 为什么说BMS才是动力电池PACK厂的核心竞争力,两个方面的原因,第一个原因是电芯最终要成为一个标准品,第二个原因是BMS很复杂,且非常重要。 针对第一个原因,电芯最终要成为一个没有科技含量的标准品,一起来分析一下。 动力电池的电芯最后的发展会像手机电池一样,用不了几年的时间就会达到这种状态。最后能够在动力电池领域活的很好的电芯厂不会很多的,一大批电芯厂会慢慢出局的。 现在这个状态是因为动力电池的需求还没有完全起来,加之电芯的工艺还没有成熟和稳定,且电芯的尺寸和材料体系各式各样。 其实统一到几种电芯用不了多长时间。这是市场决定的,一旦动力电池放量,竞争就会加剧,成本的要求就会苛刻,市场就会趋于同质化竞争,慢慢把需求不大的类型淘汰掉,因为没有量的支撑就不会有竞争力(一些高性能或特殊领域的小众应用另当别论),这是自然竞争的结果。 不得不说另外一个事,所有的电芯厂,全球任何一家电芯厂,都是研究电化学和材料相关的,绝大部分的人才都是集中在这个领域的,他们对BMS这种对电子和系统要求极高的东西很难有好的理解,也不会有好的建树,更不可能做出有竞争力的BMS产品和电池PACK 了。 因此最后电芯厂和PACK厂一定会分化,一定会专业分工,这是自然规律,市场竞争的规律。 针对第二个原因,BMS的复杂和系统要求较高,是PACK竞争的基础。 为什么说BMS比较复杂,因为BMS涉及到的东西很多,不但要求懂电池知识很多,还要对整个系统(电动汽车或储能等)很懂,不但要懂电子,还要懂结构,不仅要会硬件,还要会软件,要做好BMS,要对电子技术、电工技术、微电子及功率器件技术、散热技术、高压技术、通信技术、抗干扰及可靠性技术等很多东西都要专业才行,它是一个负责的系统

动力电池种类及新能源汽车

电池 ———新能源汽车电池(battery)指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间。随着科技的进步,电池泛指能产生电能的小型装臵。如太阳能电池。电池的性能参数主要有电动势、容量、比能量和电阻。 电池原理 在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等 化学反应的结果,这种反应分别在两个电 极上进行。负极活性物质由电位较负并在 电解质中稳定的还原剂组成,如锌、镉、 铅等活泼金属和氢或碳氢化合物等。正极 活性物质由电位较正并在电解质中稳定 的氧化剂组成,如二氧化锰、二氧化铅、 氧化镍等金属氧化物,氧或空气,卤素及 其盐类,含氧酸及其盐类等。电解质则是 具有良好离子导电性的材料,如酸、碱、 盐的水溶液,有机或无机非水溶液、熔融 盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质

与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。因此,电极反应可逆是构成蓄电池的必要条件。G为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安〃小时;n为电池反应的当量数。这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是造成电池能量损失的重要原因之一。极化的原因有三:①由电池中各部分电阻造成的极化称为欧姆极化;②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;③由电极-电解质界面层中传质过程迟缓而造成的极化称为浓差极化。减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。 2012年4月18日国务院总理温家宝主持召开国务院常务会议,研究部署今年政府信息公开重点工作,讨论通过《节能与新能源汽车产业发展规划(2012—2020年)》,会议指出,加快培育和发展节能与新能源汽车产业,对于缓解能源和环境压力,推动汽车产 业转型升级,培育新的经济增长点,具有重要意义。要以纯电驱动为汽车工业转型的 主要战略取向,当前重点推进纯电动汽车和插电式混合动力汽车产业化,推广普及非 插电式混合动力汽车、节能内燃机汽车,提升我国汽车产业整体技术水平。争取到2015年,纯电动汽车和插电式混合动力汽车累计产销量达到50万辆,到2020年超过500万辆;2015年当年生产的乘用车平均燃料消耗量降至每百公里6.9升,到2020年降至5.0升;新能源汽车、动力电池及关键零部件技术整体上达到国际先进水平

动力电池基础知识

动力电池的主要性能参数 1、电压:开路电压=电动势+电极过电位,工作电压=开路电压+电流在电池部阻抗上产生的电压降。电动势由电极和电解质材料特性决定,电极的过电位与材料活性、荷电状态和工况有关。 2、阻:电池在短时间的稳态模型可以看作为一个电压源,其部阻抗等效为电压源阻,阻大小决定了电池的使用效率。电池阻包括欧姆电阻和极化电阻两部分,欧姆电阻不随激励信号频率变化,又称交流电阻,在同一充放电周期,欧姆电阻除温升影响外变化很小。极化电阻由电池电化学特性对外部充放电表现出的抵抗反应产生,与电池荷电、充放强度、材料活性都有关。同批电池,阻过大或过小者都不正常,阻过小可能意味材料枝晶生长和微短路,阻太大又可能是极板老化、活性物质丧失、容量衰减,阻变化可以作为电池裂化的充分性参考依据之一。 3、温升:电池温升定义为电池部温度与环境温度的差值。多数锂电池充电时属吸热反应,放电时为放热反应,两者都包含阻热耗。充电初期,极化电阻最小,吸热反应处于主导地位,电池温升可能出现负值,充电后期,阻抗增大,释热多于吸热,温升增加,过充时,随不可逆反应的出现,逸出气体,压升高、温度升高,直到变形、爆裂。 4、压:电池部压力,由于电池部反应逸出气体导致气压增大,气压过大将撑破壳体和发生爆裂,基于安全考虑,一方面锂电池都设计了单向的防爆阀门,一方面用塑壳制造。析气反应常伴随着不可逆反应,也就意味着活性物质的损失、电池容量的下降,无析气、小温升充放电是最理想的工况。 5、电量:电学里,电量用Wh(瓦时)表示,是能量单位,一度电等于1kWh;电池常用Ah(安时)计算电量,对于动力电池侧重于功率和能量大小,用Wh更直接一些,因为电池的电压是变化的,其全程变化量可达到极大值的一半左右,用Ah计算电量不能正确描述电池的动力驱动能力,但Ah作为电池的电量单位自有其历史和道理,在不引起歧义的地方两种电量单位都可以使用。 6、荷电(SOC):电池还有多少电量,又称剩余电量,常取其与额定容量或实际容量的比值,称荷电程度。是人们在使用中最关心的、也是最不易获得的参数数据,人们试图通过测量阻、电压电流的变化等推算荷电量,做了许多研究工作,但直到目前,任何公式和算法都不能得到统计数据的有效支持,指示的荷电程度总是非线性变化。 7、容量:电池在充足电以后,开始放电直到放空电为止,能输出的最大电量。容量与放电电流大小有关,与充放电截止电压也有关系,故容量定义为小时率容量,动力电池常用1小时率(1C)或2小时率(0.5C)容量。电池在化成之前材料的活性不能正常发挥,容量很小,化成过程开始后,电池进入其生命期,在整个生命期里,电池的活化和劣化过程是一个问题的两个方面,初期活化作用处于主导地位,电池容量逐渐上升;以后,活化和劣化作用都不明显或相当;后期,劣化作用显著,容量衰减,规定容量衰减到一定比例(60%)后,电池寿命终结。(一般所指电池寿命是指剩余容量为80%的循环次数) 8、功率:电学定义直流电源的输出功率等于输出电压与电流的乘积,锂电池单体电压高,在相同的输出电流下,其功率分别是铅酸(2.0V)、镍镉(1.2V)或镍氢(1.2V)的1.6倍和3倍。电动汽车用动力电池组的负载是电机控制器,电机控制器根据车速变化调整输出功率,短时间来看,电池组驱动的是恒功率负载,这个功率变化的围极大,制动时有与加速时相近的反向逆变功率。 9、效率:电池的效率指电池的充放电效率或能量输出效率,本文指后者。对于电动汽车,续驶里程是最重要指标之一,在电池组电量和输出阻抗一定的前提下,根据能量守恒定律,电池组输出的能量转化为两部分,一部分作为热耗散失在电阻上,另一部分提供给电机控制器转化为有效动力,两部分能量的比率取决于电池组输出阻抗和电机控制器的等效输入

相关文档
最新文档