血液流动与血管壁的流固耦合现象分析

血液流动与血管壁的流固耦合现象分析
血液流动与血管壁的流固耦合现象分析

血液流动与血管壁的流固耦合现象分析

随着人体力学的研究越来越深入,我们认识到血液流动中的力学问题与流场分布、壁面剪应力、流动分离等密切相关。。早在1775年,Euler就用数学表达式描述了动脉中的血流。Young于1808年从数学理论的角度研究了动脉血流的波的性质。从理论上来说,可以用不可压缩黏性流体Navier-Stokes方程:

Ρ(?u/?t+u?▽u)=-▽p+▽T

和连续性方程:

▽?u=0

来描述血流。式中,u是速度矢量;t为时间;r为密度,p为压力,T为应力张量。这里没有考虑体力的影响。同时有

γ.)D

T=2?(

D=1/2(▽u+▽u T)

γ.是剪切率;?是血液黏度,?是γ.的函数。

式中:

因此,数值方法成为血流动力学研究的主要手段。为了简化计算,目前在血流动力学研究中,大部分还是基于血管壁面为刚性这一假设,没有考虑动脉壁的顺应性。虽然刚性边界假设在某种程度上来说是一种较好的近似,在刚性假设的条件下也得到了许多有意义的结果,但是当血液在动脉血管中流动时,流体压力使血管产生变形,而血管的变形又反过来影响血液的流,即流固耦合作用。弹性边界的引入会给血液流场带来什么变化是人们非常关注的,目前已发展的动脉

壁模型有线弹性、非线性弹性、黏弹性、弹塑性、多孔介质等。在流固耦合研究中,线弹性和非线性弹性的动脉壁模型较为常见。考虑血管壁的运动能够更真实地反映在体血管中血流的情况。

算法在流固耦合研究中是十分重要的,目前已发展的算法有可移动网格算法和非移动网格算法两类。ALE法是最为熟悉和常用的可移动网格算法,它利用了拉格朗日格式在固体表达中网格可以随材料变形而变形和欧拉格式在流体表达中网格不移动不至于引起网格扭曲和交错的优点,将这两种格式进行组合。ALE法可以利用网格的调整来跟踪材料的变形,非常适合大变形的流固耦合问题,当使用ALE法来分析流固耦合问题时,流固耦合界面附近的流体区域用ALE参考系建模,但远离结构的流体使用欧拉参考系。流体体积法的基本原理是通过研究网格单元中流体和网格体积比函数F来确定自由面,追踪流体的变化,而非追踪自由液面上质点的运动。根据F定义,整个计算区域的网格单元可划分为三类。显然,F函数是一个阶跃函数。F=1的单元中充满流体,称为流体单元;F=0的单元内无流体,成为空单元;0

节点来确保界面区域适当的分辨率,因此,对于大尺度变形和波动界面的模拟来说耗费太大。而可移动网格算法因为通过网格移动和变形可以追踪和反应材料区域的变形,能够较好地解决大变形问题,所以在流固耦合研究中受到了广泛的应用。研究现状在动脉血管的流固耦合研究中,ALE法应用最为普遍。

对于刚性管壁,弹性管壁中在动脉窦处流动分离轻微减小,而在分支旁的区域流动分离有所增大;壁面切应力大小降低了25%;流动和应力整体的模式保持不变。采用空间守恒法,通过对直管的脉动血流模拟分析,结果表明,动脉壁的膨胀减小了血管段的壁面切应力;几何有突变的区域,环向应变和壁面切应力间的相位角也有突变。血流与血管壁的流固耦合将是今后血流动力学研究的主流。

需要指出的是,对血流与血管壁的流固耦合研究目前主要集中在直管和分支管,弯曲血管还未涉及。血管弯曲不但带来更为复杂的流场分布,而且也是疾病的常发区和高发区,对于它的流固耦合研究应该得到更多的关注。在体血管壁中存在残余应力和应变,在考虑血液和血管壁的流固耦合作用时,建立完善的血管壁固体模型应该计及残余应力和应变,残余应力和应变不仅影响血管壁,而且对血流动力学参数也有影响。

ansys流固耦合模态分析

有问题可以发邮件给我一起讨论xw4996@https://www.360docs.net/doc/e812360747.html, FSI流固耦合命令求解流固耦合问题 使用ANSYS计算结构在水中的模态时, FLUID29,FLUID30单元分别用来模拟二维和三维流体部分,相应的结构模型则利用PLANE42单元和SOL ID45等单元来构造,其中,PLANE42和SOL ID45分别是用来构造二维和三维结构模型的单元。FLUID30是流体声单元,主要用于模拟流体介质及流固耦合问题。该单元有8 个节点,每个节点上有4 个自由度,分别是XYZ上3个方向位移自由度和1个压力自由度,为各向同性材料。输入材料属性时,需要输入流体的材料密度(作为DENS 输入)及流体声速(作为SONC输入),流体粘性产生的损耗效应忽略不计。FLUID29是FLUID30单元在二维上的简化,少了一个Z向的位移。SOLID45单元用于构造三维实体结构。单元通过8 个节点来定义,每个节点有 3 个沿着XYZ方向平移的自由度。PLANE42是SOLID45单元在二维上的简化。 在利用ANSYS建模分析时,流场域单元属性分为2种,由KEYOPT(2)(指定流体和结构分界面处结构是否存在) 控制,在流固耦合交界面上的单元KEYOPT(2) = 0 ,表示分界面处有结构,其他流体单元KEYOPT(2)=1,表示分界面处无结构。流体-结构分界面通过面载荷标志出来,指定FSI label可以把分界面处的结构运动和流体压力耦合起来,分界面标志在分界面处的流体单元标出。 数值分析的步骤 1) 建立流体单元的实体模型。建立流体模型,需要确定流体域的范围,可以把无限边界流体简化成流体区域的半径为固体结构半径的10倍。 2) 标记流固耦合界面。选取流体单元中流固交界面上的节点,执行FSI 命令,流固耦合交界面的处理:流体与固体是两个独立的实体,在划分单元时在两者交界面上的单元网格要划分一致,这样在交界面上的同一位置一般就有两个重合的节点,一个节点属于流体单元,一个节点属于固体单元,这两个重合节点在交界面的位移强制保持一致。 3) 建立固体结构实体模型。建立固体结构模型,定义单元属性,采用映射方式进行网格的划分。 4) 施加约束条件。由于流体区域的尺寸远大于固体结构尺寸,故可以不考虑流体液面的重力的影响,将流体边界处的单元节点上施加压力(PRES) 为零的约束。因为选择的算例为悬臂结构,在固体结构底部加全约束。 5) 选择求解算法,进行求解。定义分析类型为模态分析,设定提取频率阶数和提取模态的方法。因为耦合问题的刚度矩阵,质量矩阵都不对称,需要采用非对称矩阵法(UNSYMMETRIC)求解。 6) 查看结果。进入后处理模块,查看结构模型的频率及振型。 以半浸没与水中的桥墩模态问题为背景,并假设: 1. 桥墩为实心等截面的实体,实际桥墩模型应该是空心壳体,截面尺寸也 非常复杂,因而需要分块划分单元。

ANSYS流固耦合计算实例

ANSYS流固耦合计算实例 Oscillating Plate with Two-Way Fluid-Structure Interaction Introduction This tutorial includes: , Features , Overview of the Problem to Solve , Setting up the Solid Physics in Simulation (ANSYS Workbench) , Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre , Obtaining a Solution using ANSYS CFX-Solver Manager , Viewing Results in ANSYS CFX-Post If this is the first tutorial you are working with, it is important to review the following topics before beginning: , Setting the Working Directory , Changing the Display Colors Unless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File. Sample files referenced by this tutorial include:

基于MpCCI的Abaqus和Fluent流固耦合案例1

CAE联盟论坛精品讲座系列 基于MpCCI的Abaqus和Fluent流固耦合案例 主讲人:mafuyin CAE联盟论坛总监 摘要:通过MpCCI流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus和Fluent相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks建立了一个管径为1m的弯管,结构尺寸如图1a所示,管的结构如图1b所示,流体的模型如图1c所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in=600K 外壁面 压力出口 P=0Pa;T out=300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。

双向流固耦合实例

双向流固耦合实例(Fluent与structure) 说明:本例只应用于FLUENT14.0以上版本。 ANSYS 14.0是2011年底新推出的版本,在该版本中,加入了一个新的模块System Coupling,目前只能用于fluent与ansys mechanical的双向流固耦合计算。官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。 模块及数据传递方式如下图所示。 一、几何准备 流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。在geometry模块中同时创建流体模型与固体模型。到后面流体模型或固体模块中再进行模型禁用处理。 模型中的尺寸:v1:32mm,h2:120mm,h5:60mm,h3:3mm,v4:15mm。 由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice切割。这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。 二、流体部分设置 1、网格划分 双击B3单元格,进入meshing模块进行网格划分。禁用固体部分几何。设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。这里设定全局尺寸为1mm。划分网格后如下图所示。

2、进行边界命名,以方便在fluent中进行边界条件设置 设置左侧面为速度进口velocity inlet,右侧面为自由出流outflow,上侧面为壁面边界wall_top,正对的两侧面为壁面边界wall_side1与wall_side2(这两个边界在动网格设定中为变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为system coupling类型)。 操作方式:选择对应的表面,点击右键,选择菜单create named selection,然后输入相应的边界名称。注意:FLUENT会自动检测输入的名称以使用对应的边界类型,当然用户也可以在fluent进行类型更改。完成后的树形菜单如下图所示。 本部分操作完毕后,关闭meshing模块。返回工程面板。 3、进入fluent设置 FLUENT主要进行动网格设置。其它设置与单独进行FLUENT仿真完全一致。 设置使用瞬态计算,使用K-Epsilon湍流模型。 这里的动网格主要使用弹簧光顺处理(由于使用的是六面体网格且运动不规律),需要使用TUI命令打开光顺对六面体网格的支持。使用命令 /define/dynamic-mesh/controls/smoothing-parameters。 动态层技术与网格重构方法在六面体网格中失效。因此,建议使用四面体网格。我们这里由于变形小,所以只使用光顺方法即可满足要求。 点击Dynamic mesh进入动网格设置面板。如下图所示,激活动网格模型。

血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例 根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。谢谢! 1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。 图1 模型图 2、新建工程。在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure. 图2 计算工程 3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.

图3 修改工程材料 4、模型导入,进入gemetry模块,import外部模型文件。 图4 模型导入图 5、进入FLUENT网格划分。 在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分

图6 禁用血管模型 6、设置网格方法。 默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry 图7 设置网格划分方式 图8 最终出网格

几个耦合的例子

一般说来,ANSYS的流固耦合主要有4种方式: 1,sequential 这需要用户进行APDL编程进行流固耦合 sequentia指的是顺序耦合 以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。ANSYS CD中包含有MpCCI库和一个相关实例。关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin 2,FSI solver 流固耦合的设置过程非常简单,推荐你使用这种方式 3,multi-field solver 这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合 4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵 一个流固耦合的例子 length=2 width=3 height=2 /prep7 et,1,63 et,2,30 !选用FLUID30单元,用于流固耦合问题 r,1,0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水 mp,sonc,2,1400 mp,mu,0, ! block,,length,,width,,height esize,0.5 mshkey,1 ! type,1 mat,1 real,1 asel,u,loc,y,width amesh,all alls ! type,2 mat,2 vmesh,all

基于LSDYNA及FLUENT的板壳结构流固耦合分析

基于 LS-DYNA 及 FLUENT 的板壳结构流-固耦合分析
汪丽军 北京航空航天大学,交通科学与工程学院 100191
[摘 要]: 本文采用 ANSYS 显示动力分析模块 LS-DYNA 及流场分析模块 FLUENT,对水下的板壳 结构运动及其界面的流-固耦合现象进行了仿真分析。流场计算得到的界面压强数据以外载荷 的形式施加于结构表面,使其产生位移及变形;同时,结构的变化又进一步影响了流场的分 布。通过往复的双向耦合迭代,得到了板壳结构的动力学响应以及流场的分布情况。仿真结 果与试验结果的对比表明,此方法适用于解决兼有大位移及较大变形特征的流-固耦合问题。 [关键词]: 板壳结构 流-固耦合 有限元方法 ANSYS
Analysis of Fluid-Structure Interaction for Plate/Shell Structure Based on LS-DYNA and FLUENT
Wang Lijun School of Transportation Science & Engineering, Beihang University 100191
Abstract: In this paper,the movement of plate under water and the fluid-structure interaction(FSI) is simulated numerically by combining explicit dynamic solver LS-DYNA and computational fluid dynamics solver FLUENT in ANSYS. The pressure obtained from the calculation of flow field are applied as external loads on the surface of the plate, then the structural deformation and displacement can be calculated as well, which will affect the shape and pressure distribution of the flow field reversely. After sequential coupling iterations the dynamic response of the structure and flow field distribution are obtained consequently. By comparing numerical and experimental results it is proved that this proposed coupling method is suitable for solving such a kind of FSI problems considering both large displacement and comparatively large deformation. Keyword: Plate/shell structure, Fluid-Structure Interaction, Finite element method,ANSYS
1
前言
在自然界中,流-固耦合现象广泛存在于航空、航天、汽车、水利、石油、化工、海洋 以及生物等领域。很多实际问题中流体载荷对于结构的影响不可忽略;同时,结构的位移 和变形也会对流场的分布产生重要影响。例如各种水下运动机构都需要考虑这种现象。

(完整版)流固耦合教学

1、打开ANSYS Workbench, 拖动各模块到空白区,并照此连接各模块。 2 2、打开第一个模块当中的Geometry,建立几何模型: (1)在XY Plane内建立Ship Shell 船长:0.4、船宽:0.14、型深0.11 将第一个Solid重命名为Ship Solid 在Concept中选择Surfaces From Faces,选中模型的六个面,然后Apply、Generate。 重命名第二个Ship Solid为Ship Shell 右击Ship Solid, 选择Hide Body,显示Ship Shell, 然后对Ship Shell执行同样操作(即隐去)

(2)在YZ Plane内建立液舱 单击(New Plane),选择YZ plane,,Apply一下 将YZ Plane 向X正方(图中为法向,即Z)向偏移0.02m Generate一下,然后Show body 一下Ship Solid 与Ship Shell 可以看到YZ Plane已平移到Body内了 再将Ship Solid 与Ship Shell 都Hide,选择Plane 4,调为正视,Generate一下 新建一个Sketch:单击,显示,在此Sketch中建立液舱模型草图

单击约束(Constrains),将草图中的“水平线”调整为水平,“垂直线”调整为垂直: 事实上仅用Horizontal(水平)和Vertical(垂直)就OK了。以水平约束为例,先单击Horizontal,再依次单击草图中的水平线段。调整后如下图所示: 定义尺寸: 左下角空缺的部分是预留贴“应变片”的部分,需要单独建模 单击Extrude(拉伸),设置Operation(下拉列表中改选为Add Frozen)与拉伸尺寸(0.1m): 然后Generate一下

abaqus与fluent流固耦合

基于MPCCI的流固耦合成功案例 基于MPCCI的流固耦合成功案例 (一)机翼气动弹性分析 1 问题陈述 机翼绕流问题是流固耦合中的经典问题。以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。这个强硬的假设很难准确的描述流场的实际情况。更无法预测机翼的振动。MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。我们通过MPCCI,能很好的预测真实情况下的机翼绕流问题。采用ABAQUS结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Fluent软件来计算由于固体运动和变形对整个流场的影响。 2 模拟过程分析顺序 MpCCI的图形用户界面可以方便的读入结构和流体的输入文件。后台调用ABAQUS和FLUENT。在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。启动MpCCI进行耦合。 3 边界条件设置

图1 无人机模型和流体计算模型 结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。在固体中除了固定端的面外,其他三个面为耦合面。流体部分采用四面体网格,采用理想气体作为密度模型。流体的入口和出口以及对称性边界条件如下图所示。 图2 固体有限元模型 4 计算方法的选择 通过结合ABAQUS和FLUENT,使用MPCCI计算流固耦合。在本例中,固体在流场作用下产生很大的变形和运动。在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCCI传输给FLUENT的耦合界面,FLUENT 计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQUS。在MPCCI的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。采用ABAQUS中的STANDARD算法,时间增量步长为0.1毫秒。 5 计算结论 通过MPCCI结合ABAQUS和FLUENT,成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

(整理)FLUENT14双向流固耦合案例.

说明:本例只应用于FLUENT14.0以上版本。 ANSYS 14.0是2011年底新推出的版本,在该版本中,加入了一个新的模块System Coupling,目前只能用于fluent与ansys mechanical的双向流固耦合计算。官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。 模块及数据传递方式如下图所示。 一、几何准备 流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。在geometry模块中同时创建流体模型与固体模型。到后面流体模型或固体模块中再进行模型禁用处理。 模型中的尺寸:v1:32mm,h2:120mm,h5:60mm,h3:3mm,v4:15mm。

由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice切割。这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。 二、流体部分设置 1、网格划分 双击B3单元格,进入meshing模块进行网格划分。禁用固体部分几何。设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。这里设定全局尺寸为1mm。划分网格后如下图所示。 2、进行边界命名,以方便在fluent中进行边界条件设置 设置左侧面为速度进口velocity inlet,右侧面为自由出流outflow,上侧面为壁面边界wall_top,正对的两侧面为壁面边界wall_side1与wall_side2(这两个边界在动网格设定中为变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为system coupling类型)。 操作方式:选择对应的表面,点击右键,选择菜单create named selection,然后输入相应的边界名称。注意:FLUENT会自动检测输入的名称以使用对应的边界类型,当然用户也可以在fluent进行类型更改。完成后的树形菜单如下图所示。

基于Ansys12.0的Workbench血管流固耦合之最详尽小火车之旅

承蒙“水若无痕”版主信任,我把我做过的血管流固耦合以小火车的形式发出来,与大家共同讨论学习。首先概述一下:1:血管建的比较短,这样单元会少些,调试比较方便,但效果可能没官方视频的好看,但原理步骤没错就行 2:原来流体为自己建的Blood,为可压缩流体,我自己试了下,用Water也可以,所以就简化了建新材料这一步 3:我用的是Ansys12.0版本,我建的模型保存成多种格式,欢迎大家下载做着玩玩 01 A:首先打开Ansys Workbench 拖出各个模块,连接关系如下图: 02 B:可双击Engineering Data编辑材料,因为进入Ansys结构部分设置时候要用到血管材料,默认是结构钢,太硬了,所以要自己重新设材料,这点很重要! 03 C:单击我画的第一个大圈(左列),右击我画的第二个大圈(左列)——Duplicate,复制一个同种材料。在复制的材料后面框里有链接,这个链接是链接到材料库的,右键把链接打断,我是这么做的。如果双击Engineering Data看不到

我图中的界面的话,可以在主菜单中——View——Properties以及接下来的两个选项给选上就可以看见了。改好材料后可以把对新材料重命名,用右键。然后再主菜单上点击update project,材料就可以在材料设置里用了。 04 D:更改密度,杨氏模量,和泊松比。重命名。上一步给出了怎么保存修改结果 05 E:这个是Ansys model部分,这里是不需要用到流体部分的,不需要删掉,只要右键对它Suppress就可以了。单击Pipe,可以在下面设置材料

06 F:对血管加约束,可以把两端完全约束,对称面部分在垂直面内不可运动,也可以所有平面部分都完全约束,这个没关系,都可以计算。 07 G:右键插入流固耦合面,当然就是流体固体接触面了

AnsysCF流固耦合分析

A n s y s C F流固耦合分析 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

流固耦合FSI分析 分析原理:流场采用CFX12,固体采用ANSYS12分别计算,通过界面耦合。流体网格:流体部分采用分网,按照流体分网步骤即可,没有特殊要求。 网格导出:CFX可以很好的支持Fluent的.cas格式。直接导出这个格式即可。流体的其余设置都在CFX-PRE中设置。 固体网格即设置:划分固体网格。设置边界条件,载荷选项,求解控制,导出.cdb文件。 实例练习: 以CFX12实例CFX tutorial 23作为练习。 为节省时间,将计算时间缩短为2s。 网格划分:提取CFX tutorial 23中的实体模型到hm中,分别划分流体,固体网格。分别导出为fluent的.cas格式和ansys的cdb格式。 流体网格如下: 网格文件见: 固体网格为: 特别注意: 做FSI分析时,ANSYS固体部分必须在BATCH下运行(即将.cdb文件导入ansys不需要任何操作就能直接计算出结果),所以导出的.CDB文件需要添加一个命令,在hm建立FSIN_1的set,以方便在.cdb中手动添加命令 SF,FSIN_1,FSIN,1,具体位置在定义了节点集合FSIN_1之后。 另一个set:pressure用于施加压强。 这里还设置了一些控制卡片用于分析,当然也可以直接修改.cdb文件

详细.cdb文件请参看 将固体部分在ansys中计算一下,以确定没有问题。 通过ansys计算检查最大位移:最上面的点x向变形曲线 至此,固体部分的计算文件已经准备好,流体网格需要导入CFX以进一步设置求解选项和耦合选项。 以下在CFX-PRE中进行设置 由于固体模型已经生成,故不需要利用workbench,所以不必按照指南的做法。 启动workbench,拖动fluid flow(CFX)到工作区 直接双击setup进入CFX-PRE 导入流体网格 然后设置分析选项: 注意:mechanical input file即是固体部分网格。 再新建一个流体,取名fluid。 设置domain 添加边界条件 取名为interface设置流固耦合界面,对应为abc。 这就是流固耦合界面的设置过程。 同理,建立sym1 Sym2 这个选项默认为no slip 的 wall,最普通的那种,不必特殊设置 初始化: 求解控制

【达尔整理】ANSYS流固耦合分析实例命令流

达尔文档DareDoc 分享知识传播快乐 ANSYS流固耦合分析实例命令流 本资料来源于网络,仅供学习交流 2015年10月达尔文档|DareDoc整理

目录 ANSYS流固耦合例子命令流.......................................................................... 错误!未定义书签。ANSYS流固耦合的方式 (3) 一个流固耦合模态分析的例子1 (3) 一个流固耦合模态分析的例子2 (4) 一个流固耦合建模的例子 (7) 一加筋板在水中的模态分析 (8) 一圆环在水中的模态分析 (10) 接触分析实例---包含初始间隙 (14) 耦合小程序 (19) 流固耦合练习 (21) 一个流固耦合的例子 (22) 使用物理环境法进行流固耦合的实例及讲解 (23) 针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30) 1、流固耦合 (30) 2、SPH算法 (34) 3、ALE(接触算法) (38) 脱硫塔于浆液耦合的分析 (42) ANSYS坝-库水流固耦合自振特性的例子 (47) 空库时的INP文件 (47) 满库时的INP文件 (49) 计算结果 (52)

ANSYS流固耦合的方式 一般说来,ANSYS的流固耦合主要有4种方式: 1,sequential 这需要用户进行APDL编程进行流固耦合 sequentia指的是顺序耦合 以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。ANSYS CD中包含有MpCCI库和一个相关实例。关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin 2,FSI solver 流固耦合的设置过程非常简单,推荐你使用这种方式 3,multi-field solver 这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合 4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵 一个流固耦合模态分析的例子1 这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。处理过程中需要注意以下几个方面的问题: 1、单元的选择; 2、流体材料模式; 3、流固耦合关系的定义; 4、模态提取方法。 length=2 width=3 height=2 /prep7 et,1,63 et,2,30 !选用FLUID30单元,用于流固耦合问题 r,1,0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水 mp,sonc,2,1400 mp,mu,0, ! block,,length,,width,,height esize,0.5 mshkey,1

三个流固耦合分析实例

length=2 !定义体各种变量参数,长宽高 width=3 height=2 /prep7 et,1,63 !选用壳模型 et,2,30 !选用FLUID30单元,用于流固耦合问题r,1,0.01 增加实常数,壳厚为0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 !定义壳单元的各种单元属性 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水mp,sonc,2,1400 !定义声单元声速 mp,mu,0, !定义吸声系数 ! block,,length,,width,,height !建立长方体 esize,0.5 mshkey,1 ! type,1 !选择壳单元 mat,1 real,1 asel,u,loc,y,width !选择面 amesh,all !划分面单元 alls !选择所有项 ! type,2 !选择声单元 mat,2 vmesh,all !划分体单元 fini /solu antype,2 modopt,unsym,10 !非对称模态提取方法处理流固耦合问题eqslv,front mxpand,10,,,1 nsel,s,loc,x, nsel,a,loc,x,length nsel,r,loc,y d,all,,,,,,ux,uy,uz, nsel,s,loc,y,width, d,all,pres,0 !上面几步为定义边界条件和约束 alls asel,u,loc,y,width, sfa,all,,fsi !定义流固耦合界面

alls !选择所有项 solv !求解 fini /post1 !后处理 set,first plnsol,u,sum,2,1 !显示图形 fini /PREP7 !定义壳材料与性质 !壳元素与材料 ET,1,shell63 $MP,EX,1,201E9 $MP,prxy,1,0.26 $MP,dens,1,7.85E3 $r,1,0.006 !流体元素与材料 ET,2,FLUID80 $MP,EX,2,1.5e9 $MP,DENS,2,0.84e3 $mp,visc,2,1.0e-10 !以下这个keyoption怎么用? 如过用1,就会显示[Element 877 may not have a positive Z coordinate IF KEYOPT(2) = 1.],显示这个错误代表要做什么修正吗?所以我暂时用KEYOPT(2) = 0就可以跑。 KEYOPT,2,2,0 !建立壳关键点 K,1,10,0,0 $K,2,10,0,12 !建立中心线关键点 k,3,0,0,0 $k,4,0,0,20 !定义壳壁线 L,1,2 $L,1,3 !以关键点3,4为中心线旋转360度生成壳体 AROTAT,all,,,,,,3,4,360 !划分壳体网格 AATT,1,1,1 $esize,2 $mshape,0,3D $mshkey,2 $amesh,all $alls !延伸出水位体积 VEXT,2,8,2,0,0,10,0,0,0 $vglue,all

血液流动与血管壁的流固耦合现象分析

血液流动与血管壁的流固耦合现象分析 随着人体力学的研究越来越深入,我们认识到血液流动中的力学问题与流场分布、壁面剪应力、流动分离等密切相关。。早在1775年,Euler 就用数学表达式描述了动脉中的血流。Young 于1808年从数学理论的角度研究了动脉血流的波的性质。从理论上来说,可以用不可压缩黏性流体Navier-Stokes 方程: Ρ(?u /?t+u ?▽u )=-▽p+▽T 和连续性方程: ▽?u =0 来描述血流。式中,u 是速度矢量;t 为时间;r 为密度,p 为压力,T 为应力张量。这里没有考虑体力的影响。同时有 T =2?(γ. )D D =1/2(▽u +▽u T ) 式中:γ.是剪切率;?是血液黏度,?是γ.的函数。 因此,数值方法成为血流动力学研究的主要手段。为了简化计算,目前在血流动力学研究中,大部分还是基于血管壁面为刚性这一假设,没有考虑动脉壁的顺应性。虽然刚性边界假设在某种程度上来说是一种较好的近似,在刚性假设的条件下也得到了许多有意义的结

果,但是当血液在动脉血管中流动时,流体压力使血管产生变形,而血管的变形又反过来影响血液的流,即流固耦合作用。弹性边界的引入会给血液流场带来什么变化是人们非常关注的,目前已发展的动脉壁模型有线弹性、非线性弹性、黏弹性、弹塑性、多孔介质等。在流固耦合研究中,线弹性和非线性弹性的动脉壁模型较为常见。考虑血管壁的运动能够更真实地反映在体血管中血流的情况。

算法在流固耦合研究中是十分重要的,目前已发展的算法有可移动网格算法和非移动网格算法两类。ALE法是最为熟悉和常用的可移动网格算法,它利用了拉格朗日格式在固体表达中网格可以随材料变形而变形和欧拉格式在流体表达中网格不移动不至于引起网格扭曲和交错的优点,将这两种格式进行组合。ALE法可以利用网格的调整来跟踪材料的变形,非常适合大变形的流固耦合问题,当使用ALE 法来分析流固耦合问题时,流固耦合界面附近的流体区域用ALE参考系建模,但远离结构的流体使用欧拉参考系。流体体积法的基本原理是通过研究网格单元中流体和网格体积比函数F来确定自由面,追踪流体的变化,而非追踪自由液面上质点的运动。根据F定义,整个计算区域的网格单元可划分为三类。显然,F函数是一个阶跃函数。F=1的单元中充满流体,称为流体单元;F=0的单元内无流体,成为空单元;0

滚筒洗衣机ABAQUS流固耦合实例分析步骤共24页.docx

例子的来源是Abaqus CLE的官方教程,可是写的太粗线条,我还是搞了两天才做 出了这个例子。其实就是个滚筒洗衣机带着洗衣机里的水一起转的问题。 1. 分别为Eulerian domain和Lagrangian domain建立两个part 建立Lagrangian domain的Part,类型设置为Discrete rigid,并设置Reference Point。 建立Eulerian domain的Part,类型设置为Eulerian,要注意Eulerian domain 和Lagrangian domain要保证有重叠的部分,这是一种弱耦合,数据在两个区域间抛来抛去,所以网格要有重叠部分。这导致在Eulerian domain里有的部分是有材料的,有的地方是没有材料的。为了之后设置材料分布时候方便,要把part实现划出几个辅助的partition。黄色虚线是在划分partition时,为了指明 Extrude/Sweep方向用到的辅助坐标轴。

2. 定义水的材料属性 选择状态方程模型EOS中Us-Up,设置声速c0=1483m/s;密度为1000kg/m3;粘度为0.001kg/ms。并把截面属性赋给Eulerian domain。

3. 把两个Part组装起来

4. 新建一个Step-1 5. 为Eulerian domain和Lagrangian domain划分网格

6. 设置接触 新建一个Contact Property,因为不是普通的面和面的接触,水中的任何的一个部

分可能在流动区域里的任何一个地方和Lagrangian domain接触,设置Tangential Behavior为Rough,赋给水和洗衣机之间的关系。新建一个Interaction,把刚才的Contact Property赋给它。 更重要的是设置接触的两个Surface。其中一个Surface是Lagrangian domain 部分的内侧面,为Geometry类型,另一个Surface是Eulerian domain的全部网格,为Mesh类型。

弹性血管流固耦合教程

基于Ansys12.0的W orkbench血管流固耦合之最详尽小火车之旅 Workbench, 血管, 小火车, 耦合Workbench, 血管, 小火车, 耦合 承蒙“水若无痕”版主信任,我把我做过的血管流固耦合以小火车的形式发出来,与大家共同讨论学习。首先概述一下: 1:血管建的比较短,这样单元会少些,调试比较方便,但效果可能没官方视频的好看,但原理步骤没错就行 2:原来流体为自己建的Blood,为可压缩流体,我自己试了下,用Water也可以,所以就简化了建新材料这一步 3:我用的是Ansys12.0版本,我建的模型保存成多种格式,欢迎大家下载做着玩玩 图1 geometry.rar (31.03 KB) A:首先打开Ansys Workbench 拖出各个模块,连接关系如下图: 实际上可以在Transient Structural的setup上面点右键,transfer data to new simulation FLOW(CFX)同样可以建立新的CFX分析模块,而且不用自己连线,本图 图 2 B:可双击Engineering Data编辑材料,因为进入Ansys结构部分设置时候要用到血管材料,默认是结构钢,太硬了,所以要自己重新设材料,这点很重要!

图3的这个对号加小箭头的状态只调试出来一次,其他的都没弄出来过,索性全部给updata了 图 3 C:单击我画的第一个大圈(左列),右击我画的第二个大圈(左列)——Duplicate,复制一个同种材料。在复制的材料后面框里有链接,这个链接是链接到材料库的,右键把链接打断,我是这么做的。如果双击Engineering Data看不到我图中的界面的话,可以在主菜单中——View——Properties以及接下来的两个选项给选上就可以看见了。改好材料后可以把对新材料重命名,用右键。然后再主菜单上点击update project,材料就可以在材料设置里用了。 图4D:更改密度,杨氏模量,和泊松比。重命名。上一步给出了怎么保存修改结果 图5E:这个是Ansys model部分,这里是不需要用到流体部分的,不需要删掉,只要右键对它Suppress 就可以了。单击Pipe,可以在下面设置材料 图6也不是必须空缺Analysis Settings,如果这里不给出,到CFX中会提示错误,但是没有任何影响,在CFX里面设置就可以 遵照教程,是在CFX中给出的

相关文档
最新文档