一种推挽式Boost DCDC变换器的研究

一种推挽式Boost DCDC变换器的研究
一种推挽式Boost DCDC变换器的研究

一种推挽式Boost DCDC变换器的研究

摘要:随着电力电子技术的迅速发展,双向DC/DC变换器的应用日益广泛。文章提出在双向DC/DC变换器中用到的一种推挽式Boost DC/DC变换器,全面分析这种变换器的工作原理并阐述其缺点,利用PSPICE仿真软件对其进行建模仿真。 0 引言电力电子技术是研究电能变换原理与变换装置的综合性学科,是电力行业中广泛运用的电子技术。电力电子技术研究的内容非常广泛,包括电力半导体器件、磁性元件、电力电子电路、集成控制电路以及由上述元件、电路组成的电力变换装置,其中电力变换技术是开关电源的基础和核心。由于生产技术的不断发展,双向DC/DC变换器的应用也越来越广泛,主要有直流不停电电源系统(DC-UPS)、航空电源系统、电动汽车等车载电源系统、直流功率放大器以及蓄电池储能等应用场合。而双向DC/DC变换器中,升压变换和降压变换是双向DC/DC变换器中两个组成部分,在DC/DC升压式电路中,通常采用的拓扑结构有Boost、Buck、Boost和推挽三种。而当输入电压比较低,功率不太大的情况下,一般优先采用推挽结构。本文着重介绍一种推挽式Boost DC/DC变换器,对其工作原理进行分析并对这种变换器进行建模及仿真。 1 推挽式Boost DC/DC变换电路工作原理推挽式Boost DC/DC变换器的拓扑结构,如图1所示,前面一级升压电路可以看作是一个Boost升压电路,通过调整开关管S1的占空比来调节变压器原边输入电压;后面一级升压电路是一个推挽式变换电路,也可以看作是由两个正激式变换器组合来实现的,该变换器是由一个具有中心抽头的变压器和两只开关管S2、S3构成的。这两个正激式变换器在工作过程中相位相反,在一个完整的周期中交替把能量传递给负载,所以称为推挽式变换。图1 推挽式Boost

DC/DC变换器功率开关管S1、S2、S3的发射极直接连接在电源负极,因此该变换器的驱动电路继承了一般推挽式变换电路的优点:基极驱动十分方便、简单,不需要进行电气隔离就可以直接驱动。该拓扑结构具有结构紧凑、驱动电路简单以及升压效果明显等优点。升压变换时其具体的工作过程如图2所示,高压侧开关管的驱动信号被封锁。功率开关管S1和升压电感L1构成的Boost电路将电源电压初次升高到一定的电压值;S2和S3驱动信号的占空比均为50%,构成的推挽变换电路将升高后的直流电压变换成交流电压,通过高频变压器传送到副边,并将电压进一步升高,利用反向电路中的开关管的反并二极管进行整流。在任一时刻,电流仅仅流过一个开关器件,这大大降低了变换器的通态损耗,同时提高了变换器的效率、缩小了变换器的体积。开关管S1、S2、S3的驱动信号,以及开关管所承受的电压波形、电感L1中的电流波形,如图2所示。图2 升压变换时开关管上的电压、电感中的电流和变压器副边电压波形在分析之前,假设所有的开关器件和整流二极管器件均为理想器件,变压器为理想变压器,电感L1足够大,能够保证流过它的电流的连续性。其中电容C2是为了防止电流偏磁的。各开关状态如下:(1)t0~t1阶段 t0时

刻,S1导通,低压侧直流电压加在L1的两端,电感中的电流线性增长。此期间电源对电感充电,储存能量,为了能够保证电流的连续性,要求电感L1要足够大。这期间虽然开关管S2有触发信号,但是开关管S1的导通对L2回路形成短路,加在变压器原边的电压为零,变压器副边输出电压也为零。(2)t1~t2阶段 t1时刻,S1关断,S2承受正向电压导通,L1中的电流将通过开关管S2流经变压器,此时变换器对负载供电,L1中的电流线性下降。(3)t2~t3阶段 t2时刻,S1再次导通,工作过程同t0~t1阶段。(4)t3~t4阶段 t3时刻,S1关断,S3承受正向电压导通,L1中的电流将通过开关管S3流经变压器,此时变压器对负载供电,L1中的电流线性下降。通过分析得到如下结论:该电路采用Boost升压电路和推挽式升压电路两种升压电路相结合的方式对输入电压进行升压,大大地提升了升压的整体效率。但是其主要缺点是:电路主体部分仍然采用硬开关电路,造成的开关损耗也比较大,变换器的工作效率受到一定的限制。因此有必要对变换电路进行改进,可以将串联谐振软开关技术引入到推挽式Boost变换器中。【分页导航】第1页:推挽式Boost DC/DC变换电路工作原理第2页:建模与仿真《电子设计技术》网站版权所有,谢绝转载 2 建模与仿真为了验证上述分析,下面应用PSPICE电路仿真软件对这种推挽式Boost DC/DC变换电路进行建模仿真,观察其仿真波形。(1)图3给出了升压变换电路的主电路的仿真图,其仿真主要参数如下:输入直流电压:Uin=28VDC;输出直流电压:Uo=270VDC;变压器原、副边匝比:n=5;升压电感:L4=200μH;输出滤波电容:

C1=200μF;开关管: IRF460;功率二极管:MUR460。(2)功率开关管的驱动信号设置首先在Pspice的Schematic中绘制如图3所示的电路原理图,选用暂态分析,在给定输入激励信号的作用下,调用PspiceA/D程序进行电路的模拟仿真。图3 升压变换电路的主电路仿真图三个开关管的驱动信号如表1所示进行设置。此仿真开关管的驱动信号采用脉冲信号激励源VPULSE,其主要有7个参数设置。升压开关管的开关频率为推挽管开关频率的两倍,推挽管的开关周期为25μs。表1 开关管驱动脉冲信号设置表(3)仿真结果及分析图4为升压变换电路中升压开关管和推挽开关管的驱动波形。S1为升压开关管,S2和S3为推挽功率开关管。图中S2和S3为推挽开关管的驱动波形,占空比为50%,为两个互为180°的方波。图4 升压开关管S1和推挽管S2、S3的驱动波形图5为变换器升压开关管的驱动波形及其升压电感中的电流波形。从图中可知,当升压开关管S1导通,低压侧的直流电压Uin加在升压电感L5的两端,所以电感中的电流线性上升,此时直流电压源对电感充电来存储能量。此时虽然推挽开关管S2驱动导通,但是S1的导通对S2的回路形成短路,加在变压器原边的电压为零。当开关管S1关断时,升压电感L5中的电流将通过开关管S2流经变压器对负载供电,此时L5中电流线性下降,依次循环。图5 开关管S1的驱动波形及升压电感中的电流波形图6为升压开关管S1和推挽开关管S2漏源极之间的电压波形。从图中可以看出开关管漏源极之间电压有少量振荡,这是由于变压器中存在有漏感

而引起的电压峰值,这个电压峰值直接加在关断的开关管两端。图6 S1和S2漏源极之间的电压波形3 结束语通过上述仿真分析,这种新型的采用Boost升压和推挽式升压相结合的升压方式,大大地提高了升压效率,但缺点是仍然采用硬开关,这样一来变换器的体积大,二是有一定的开关损耗,下一步的研究即在此基础上引入软开关技术。【分页导航】第1页:推挽式Boost DC/DC变换电路工作原理第2页:建模与仿真

自动自偶降压启动的控制线路图

自动自偶降压启动的控制线路图 (一次二次) 自偶降压一次线路的接法: 利用三相自耦变压器将降低的电压加到电机定子绕组上,使电机在低于额定电压下起动,以减小起动电流。等电机转

速成达到或接近额定转速时,通过操作机构甩开自耦变压器,使电机在额定电压下正常运行。为了满足不同的要求,自耦 变压器一般都设有0.65、0.80两组电压抽头。自偶降压一次线路的原理接线就一种接法,其控制手法有自动和手动两种方 法。 鼠笼式电动机自耦降压启动手动控制电路 自耦降压启动是利用自耦变压器降低电动机端电压的启动方法,自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头(例如:65%)接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入运转状态。 1、合上空气开关QF接通电源. 2、按下启动按钮SB2,交流接触器KM3线圈回路通电,主触头闭合,自耦变压器接成星形。 KM1线圈通电其主触头闭合,由自耦变压器的65%抽头端将电源接入电动机,电动机在低电压下启动。 3、KM1常开辅助触点闭合接通中间继电器KA的线圈回路,KA通电并自锁KA的常开触点闭合为KM2线圈回路通电做准备。 4、当电动机转速接近额定转速时,松开按钮SB2,按下按钮SB3,KM1、KM3线圈断电将自耦变压器切除,KM2线圈得电并自锁,将电源直接接入电动机,电动机在全压下运行。 5、电动机运行中的过载保护由热继电器FR完成. 6、互锁环节; 接触器互锁: KM2常闭触点接入KM3、KM1线圈回路 KM1常闭触点接入KM2线圈回路 按纽互锁:按纽SB2常开触点接入KM3、KM1线圈回路 按纽SB2常闭触点接入KM2线圈回路 按纽SB3常开触点接入KM2线圈回路 按纽SB3常闭触点接入KM3、KM1线圈回路 鼠笼式电动机自耦降压启动手动控制电路接线示意图

自耦变压器工作原理

自耦变压器的工作原理 1自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. 2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈```一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压``,自耦变压器是自己影响自己`` 3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用. 由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的 目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器. 普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这 种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副 绕组,只有一个线圈也https://www.360docs.net/doc/e812813153.html,能达到变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘 以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器称为自耦变压器,又叫单圈变压器. 自耦变压器中的电压,电流和匝数的关系和变压器,既:U1/U2=W1/W2=I2/I1=K 自耦变压器最大特点是,副绕组是原绕组的一部分(如图1的自耦降压变压器),或原绕组是副绕组的一部分(如图2的自耦升压变压器).

LLC串联谐振全桥DC-DC变换器的研究硕士学位毕业论文

分类号学号2003611310063 学校代码10487 密级 硕士学位论文 LLC串联谐振全桥DC/DC 变换器的研究

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Research on LLC Series Resonant Full-Bridge DC/DC Converter Candidate :Gong Li Major :Power Electronics and Electric Drive Supervisor:Professor Li Xiaofan Huazhong University of Science and Technology Wuhan 430074, P.R.China April, 2006

独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在_____年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

实验一 RLC串联谐振电路的研究

2 1实验一 RLC 串联谐振电路的研究 一、实验目的 1、学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线; 2、加深理解电路发生谐振的条件、特点、掌握电路品质因数(电路Q 值)的物理意义及 其测定方法。 二、实验设备和器材 函数信号发生器1只 交流毫伏表1只(0~600V) 电路原理实验箱1只 三、实验原理与说明 1.在图1.1所示的R 、L 、C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的 感抗、容抗随之而变,电路中的电流也随f 而变。取电阻电路电流I 作为响应,当输入电压U i 维持不变时,在不同信号频率的激励下,测出电阻R 两端的电压U 0之值,则I=U 0/R 。然后以f 为横坐标,以I 为纵坐标,绘出光滑的曲线,此即为幅频特性,亦称电流谐振曲线,如图1.2所示。 2. 在 处(X L =X C )即幅频特性曲线尖峰所在的频率点,该频率称为 谐振频率,此时电路呈纯阻性,电路阻抗的模为最小,在输入电压U i 为定值时,电路中的电流达I 达到最大值,且与输入电压U i 同相位,从理论上讲,此时,U i =U R =U 0, U L =U C =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式 测定,U C 与U L 分别为谐振时电容器C 和电感线圈L 上的电压;另一方法是通过测量谐 振曲线的通频带宽度 再根据 求出Q 值,式中f 0为谐振频率,f 1和f 2是失谐时,幅度下降到最大值的 倍时的上、 下频率点。 Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好,在恒压源供电时,电路的品 质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 四、实验内容 1.按图1.3接线,取C=0.1μF ,R=200Ω,调节信号源输出电压为V P-P = 2.83V ,有效值约 U i =1V 正弦信号,并在整个实验过程中保持不变。(本实验的电感L 约30mH) 2.找出电路的谐振频率f 0,其方法是,将交流毫伏表接在R (200Ω)两端,令信号源的 频率由小逐渐变大(注意要维持信号源的输出幅度不变),当U 0的读数为最大时,读得频率表上的频率值即为电路的谐振频率f 0,并测量U 0、U C 、U L 之值(注意及时更换毫伏表的量限),记入表格中。 3. 在谐振点两侧,先测出下限频率f 1和上限频率f 2及相对应的U R 值,然后按频率递增 或递减500H Z 或1KH Z ,依次各取8个测量点,逐点测出U R ,U L ,U C 之值,记入数据表格。 LC f f π21 0==O C O L U U U U Q ==1 2f f f -=?1 2f f f Q o -=

自耦变压器原理

自耦变压器原理 随着工业的不断发展,除了普通双绕组电力变压器外,相应地出现了适用于各种用途的特殊变压器,虽然种类和规格很多,但是其基本原理与普通双绕组变压器相同或相似,不再作一一讨论。本文主要介绍较常用的自耦变压器的工作原理。 自耦变压器概述 自耦的耦是电磁耦合的意思,普通的变压器是通过原副边线圈电磁耦合来传递能量,原副边没有直接电的联系,自耦变压器原副边有直接电的联系,它的低压线圈就是高压线圈的一部分。 通信线路的防护设备中也会使用自耦变压器等保护设备。 自耦变压器是指它的绕组是,初级和次级在同一条绕组上的变压器。根据结构还可细分为可调压式和固定式。 自耦变压器是根据电磁感应现象中的自感现象制成的,它主要作用调节电压高低。 自感电动势是由于通过线圈本身的电流产生变化,使得穿过线圈的磁通发生变化而引起线圈两端产生的电动势。因为感应电动势的高低与线圈的匝数成正比例,所以整个线圈中的局部绕组产生的电动势一定低于全部绕组产生的电动势。如果把局部绕组和全部绕组分别作为初级和次级,就构成了自耦变压器。同样,改变两部分绕组的匝数比也就改变了变压比。 自耦变压器结构简单,成本低。制成的自耦调压器、自耦降压补偿器等被广泛使用。但是由于自耦变压器的初、次级在电路上没有实现隔离,安全性能不高。所以在要求使用安全电压的场所,被禁止使用自耦变压器。 一、自耦变压器工作原理 1.结构特点及用途 前面叙述的变压器,其一、二次绕组是分开绕制的,它们虽装在同一铁心上,但相互之间是绝缘的,即一、二次绕组之间只有磁的耦合,而没有电的直接联系。这种变压器称为双绕组变压器。如果把一、二次绕组合二为一,使二次绕组成为一次绕组的一部分,这种只有一个绕组的变压器称为自耦变压器,如图所示。可见自耦变压器的一、二次绕组之间除了有磁的耦合外,还有电的直接联系。由下面的分析可知,自耦变压器可节省铜和铁的消耗量,从而减小变压器的体积、重量,降低制造成本,且有利于大型变压器的运输和安装。在高压输电系统中,自耦变压器主要用来连接两个电压等级相近的电力网,作联络变压器之用。在实验室常用具有滑动触点的自耦调压器获得可任意调节的交流电压。此外,

lc串联谐振变换器

https://www.360docs.net/doc/e812813153.html, lc串联谐振变换器 谐振变换器是依靠改变开关网络的工作频率实现对输出量的控制的,因此它是一种变 频控制的开关调节系统。谐振变换器的开关动作被设定在零电流或零电压时刻发生,大大 减小了开关损耗;正弦谐振波还能降低高频谐波噪声;由于电路是利用LC谐振,电路中 的寄生电感和电容能够得到应用。基于这些优点,谐振变换器得到了广泛的应用。小信号 建模是分析和控制变换器的有力工具。 谐振变换器建模方法有扩展描述函数法、DQ等效法、注入?吸收电流法等。扩展描述函数法也是一种适用于谐振类变换器建模方法,根据描述函数理论非线性环节的稳态输出 可看成一个与输入信号同频的正弦函数,只是幅值与相位不同。把输出信号和输入信号的 复数比定义为非线性环节的描述函数,但是其前提是将输入端开关动作等效成一个统一的 函数。DQ等效法将电路中的矢量,从静止的直角坐标系变换到与电路中矢量相同角速度 旋转的DQ坐标系中。扩展描述函数法和DQ等效法都是以基波等效法为基础所建的模型,适用于电流连续模式,并不适用于电流不连续模式。注入?吸收电流法是一种电流连续模式和电流不连续模式下都可用的建模方法。本文采用注入?吸收电流法对工作于电流断续模式下的串联谐振变换器的建模展开研究,并在此基础上设计了满足要求的补偿器。 传递函数推导 根据电感电流的连续与否,变换器工作模式分为两种:连续导电模式(CCM)和不连续导电模式(DCM)。当开关频率大于 1 2 的谐振频率时,串联谐振变换器是工作在电流连续模式下的;当开关频率小于1 2 的谐振频率时,串联谐振变换器是工作在电 流断续模式下的,这样开关工作在零电流(ZCS)条件下,可以降低开关损耗,提高电源 的效率。断续工作模式的半个开关周期包含a,b,c三种工作状态。假设负载电容值远远大于谐振电容的电容,因此在一个谐振周期内,负载电容的电压上升非常小,在分析过程 中将其看成一个恒压源。根据以上分析;a,b工作模式的等效电路如图2所示。c表示谐振电流为零时的工作模式(其状态电路图省去)。 仿真实验结果

最新自耦减压启动接线图及原理图说明汇编

电机自耦降压启动原理及接线图 时间:2014-04-02来源:电工之家作者:编辑部 电机自耦降压的启动原理:电机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动,从而实现电机的降压启动。 自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头一般用65%抽头,接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入全压运转状态。 电机自耦降压启动接线图,适用于任何接法的三相异步电动机,可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y 或Δ接法都可以使用,自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。但电机自耦变压器降压启动所需设备体积大,投资较贵。 电机自耦降压启动接线图如下: 如上述电机自耦降压启动接线图对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。 在电机自耦降压启动时应注意:

1、由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。 2、带电动机试验;经空载试验无误后,恢复与电动机的接线。再带电动机试验中应注意启动与运行的接换过程,注意电动机的声音及电流的变化,电动机起动是否困难有无异常情况,如有异常情况应立即停车处理。 3、空载试验;拆下热继电器FR与电动机端子的联接线,接通电源,按下SB2起动KM1与KM2和动作吸合,KM3与KA不动作。时间继电器的整定时间到,KM1和KM2释放,KA和KM3动作吸合切换正常,反复试验几次检查线路的可靠性。 4、再次启动;自耦降压起动电路不能频繁操作,如果启动不成功的话,第二次起动应间隔4分钟以上,入在60秒连续两次起动后,应停电4小时再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘

LLC串联谐振全桥变换器的研究分析

分 类 号 学 号2003611310063 学码校代 10487 密 级 硕学论士位文 LLC 联谐桥串振全DC/DC 变换研器的究 学请位申人: 宫 力 学专业科: 电电与电传动力子力 导教师指: 晓李帆 教 授 辩答日期: 2006年4月28日

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Research on LLC Series Resonant Full-Bridge DC/DC Converter Candidate : Gong Li Major :Power Electronics and Electric Drive Supervisor:Professor Li Xiaofan Huazhong University of Science and Technology Wuhan 430074, P.R.China

April, 2006

独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在_____年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

实验报告 R、L、C串联谐振电路的研究

实验报告 祝金华 PB15050984 实验题目:R 、L 、C 串联谐振电路的研究 实验目的: 1. 学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线。 2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)的物理意义及其测定方法。 实验原理 1. 在图1所示的R 、L 、C 串联电路中,当正弦交流信号源U i 的频率 f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。 取电阻R 上的电压U O 作为响应,当输入电压U i 的幅值维持不变时, 在不同频率的信号激励下,测出U O 之值,然后以f 为横坐标,以U O 为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。 2. 在f =fo = LC 21处,即幅频特性曲线尖峰所在的频率点称为谐振频率。此时X L =Xc ,电路呈纯阻性,电路阻抗的模为最小。在输入电压U i 为定值时,电路中的电流达到最大值,且与输入电压U i 同相位。从理论上讲,此时 U i =U R =U O ,U L =U c =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式Q = o C U U 测定,U c 为谐振时电容器C 上的电压(电感上的电压无法测量,故不考虑Q= o L U U 测定) 。另一方法是通过测量谐振曲线的通频带宽度△f =f2-f1,再根据Q U m ax 02 U max 0U 0 102 L C R o i 图 1

= 1 2f f f O -求出Q 值。式中f o 为谐振频率,f 2和f 1是失谐时, 亦即输出电压的幅度下降到最 大值的2/1 (=0.707)倍时的上、下频率点。Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。 在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 预习思考题 1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。 L=30mH fo =LC π21=1/(2×π6 31001.01030--???)=9188.81Hz 2. 改变电路的哪些参数可以使电路发生谐振,电路中R 的数值是否影响谐振频率值? 改变频率f,电感L ,电容C 可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。 3. 如何判别电路是否发生谐振?测试谐振点的方案有哪些? 判断:电容与电感的电压相等时,电路此时发生谐振;U i 与U 0相位相同时此时发生谐振;U i 与U 0大小相等时电路发生谐振。 测量:理论计算,f=1/(2π√LC ); 仪表测量此时电流频率。 4. 电路发生串联谐振时,为什么输入电压不能太大, 如果信号源给出3V 的电压,电路谐振时,用交流毫伏表测U L 和U C ,应该选择用多大的量限? 输入电压过大,L 、C 器件两端的电压远高于信号源电压;应该选用最大量程 。 4. 要提高R 、L 、C 串联电路的品质因数,电路参数应如何改变? 减小R,增大L ,同时等比例缩小C 。 5. 本实验在谐振时,对应的U L 与U C 是否相等?如有差异,原因何在? U L ,U C 大小相等,方向相反,因为在谐振点L,C 的阻抗相等,二者阻抗方向相反。 实验设备 低频函数信号发生器,交流毫伏表,双踪示波器,频率计,谐振电路实验电路板 实验内容 1. 利用HE-15实验箱上的“R 、L 、C 串联谐振电路”,按图3组成监视、测量电路。选C 1=0.01μF 。用交流毫伏表测电压, 用示波器监视信号源输出。令信号源输出电压U i =3V ,并

什么是自耦变压自耦变压器工作原理

什么是自耦变压自耦变压器工作原理

————————————————————————————————作者:————————————————————————————————日期:

什么是自耦变压器?自耦变压器工作原理 自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用。 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。

1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高。 ⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈。一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 ⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力

谐振电路研究

实验报告 课程名称:电路与电子实验指导老师:___王旃____成绩:__________________ 实验名称:交流电路阻抗的测量实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.掌握谐振频率及品质因数的测量方法; 2.掌握频率特性曲线的测量与作图技巧; 3.了解谐振电路的选频特性、通频带及其应用; 4.研究电感线圈以及信号源的非理性状态对谐振特性测量的影响和修正方法。 二、实验原理 1.RLC串联谐振:在RLC电路中等效阻抗Z=R+(wL-1/wC)j,因此存在一个谐振频率f0,使Z虚部为0,即wL=1/wC,此时电源为恒压源的电路路端电流最大,这就是谐振状态。 2.品质因数Q:在RLC串联电路中,Q=U C/U R=U L/U R,Q是谐振电路的一个重要参数。 3.选频特性:RLC电路在谐振时电流最大,随着电源频率f的变化,f与谐振频率f0差距越大,路端电流越小,这就是RLC电路的选频特性。 4.通频带:当路端电流I=I0/√2时,存在电源频率f1与f2,此时的2π(f2-f1)区间就被称为通频带,也可以用w /Q表示。 三、主要仪器设备 函数发生器、示波器、交流毫伏表、电工试验台、导线若干。 四、测得数据与绘制曲线 1.100Ω电阻、0.1uF电容、40mH电感串联RLC电 路测量 如图所示接好实验电路,使用函数发生器作为激励, 由于函数发生器的非理想性(有内阻),在调整函数发 生器频率时路端电压U0会发生变化,所以需要在路端 接上一个交流毫伏表,在调整频率的同时调整幅值使 路端电压不变。 由f0=ω 2π 重合时f0 调整函数发生器输出频率获得以下数据: 装订线

自耦变压器降压启动

学习任务**安装与调试三相电动机的自耦变压器降压启动控制电路 一、学习目标 1. 学会电动机的自耦变压器降压启动控制电路. 2. 理解一台电动机采用自耦变压器降压启动控制电路在工厂中的应用范围; 3. 学会设计一台电动机采自耦变压器降压启动控制电路; 4. 能根据设计方案绘制出电路原理图、电器布置图和电气接线图; 5. 能根据电路原理图安装其控制电路,做好电气元件的布置方案.做到安装的器件整齐、布线美观。 6. 认真填写学材上的相关资讯问答题。 二、建议课时 18课时 三、学习任务描述 根据控制要求设计电路原理图,控制要求: ①设计一台电动机采用自耦变压器降压启动线路; ②电路中设有短路、过载、失压等保护装置; ③根据设计的电路图配置相关电气元件。合理布置和安装电气元件,根据电气原理图进行布线、检查、调试。 学生接到本任务后,应根据任务要求,准备工具和仪器仪表,做好工作现场准备.严格遵守作业规范进行施工,线路安装完毕后进行调试,填写相关表格并交检测指导教师验收。按照现场管理规范淸理场地,归置物品。 四、工作流程与活动 1、工作准备 2、线路安装与调试 3、总结与评价

学习活动1 工作准备 一、学习目标 1、理解常用的降压启动电路在工厂中的应用范围 2、理解自耦变压器降压启动线路的工作原理 3、能根据控制要求设计出自耦变压器降压启动控制线路 4、能掌握相应电气元件的布置和布线方法 学习课时:4学时 二、阅读工作联系单 阅读工作任务联系单,根据实际情况,模拟工作场景,说出本次任务的工作内容、时间要求及交接工作的相关负责人等信息,并根据实际情况补充完整表1表中内容。 表1 工作任务联系单(设备科):编号: 三、相关理论知识 在工厂实际中,使用最多的降压启动是自耦变压器降压启动和Y-△降压启动两种,下面一起来分析自耦变压器降压启动控制电路的工作原理和设计方案。 想一想:自耦变压器的作用是什么?利用自耦变压器能否实现电动机降压启动?图1所示是自耦变压器降压启动原理图。启动时,先合上电源幵关QS1,再将开关QS2扳向“启动”位置,此时电动机的定子绕组与变压器的二次侧相接,电动机进行降压启动。待电动机转速上升到一定值时,迅速将开关QS2从“启动”位置扳倒“运行位置”位置,这时,电动机与自耦变压器脱离而直接与电源相接,

串联谐振电路实验的心得体会

串联谐振电路实验的心得体会 篇一:实验九串联谐振电路实验 实验九 串联谐振电路实验 一、实验目的 1.测量RLC串联电路的谐振曲线,通过实验进一步掌握串联谐振的条件和特点。 2.研究电路参数对谐振特性的影响。 二、原理 1.RLC串联电路在图9-1所示的,RLC串联电路中,若取电阻R两端的电压为输出电压,则该电路输出电压与输入电压之比为: U2R ??U1R?j(?L?1) ?C ?L tg?1 R 1 图9-1 图9-2

2.幅频特性 电路网络输出电压与输入电压的振幅比随ω变化的性质,称为该网络的幅频特性,如图9-2所示。 3.谐振条件二阶带通网络的幅频特性出现尖峰的频率f0称为中心频率或谐振频率。此时,电路的电抗为零,阻抗值最小,等于电路中的电阻,电路成为纯电阻性电路,串联电路中的电流达到最大值。 电流与输入电压同相位。我们把电路的这种工作状态称为串联谐振状态。电路达到谐振状态的条件是: 1 ?0L=或 ?0 ?0C4.通频带宽 改变角频率ω时,振幅比随之变化,当振幅比下降到最大值的1/角频率ω1、ω2叫做3分贝角频率,相应的频率两个f1和f2称为3分贝频率。两个角频率之 差称为该网络的通频带宽: R BW??2-?1= L RLC串联电路幅频特性可以用品质因数Q来描述: ??L1Q?0?0 BWR?0CR

三、实验仪器和器材 1.函数信号发生器 2.示波器 3.电阻 4.电感5.电容 6.实验电路板 7.短接线 8.导线 四、实验内容及步骤 1.连接实验电路 按图9-3所示连接电路。其中,电感L= 33mH,电容C=μF,电阻R分别取620Ω和Ω,图中r为电感线圈本身的电阻。 图9-3 2.测绘谐振曲线 测量结果填入表9-1中。 表9-1 R=620Ω的谐振特性 3.研究电路参数对谐振曲线的影响 将图9-3中电阻改为Ω,重复2中步骤,结果填入表9-2中。 表9-2 R=Ω的谐振特性 4.计算通频带宽BW和品质因数Q 将计算结果填入表9-3中。 表9-3 通频带宽BW和品质因数Q 五、思考题 1. 实验中怎么样判断电路已经处于谐振状态?

自耦变压器降压启动电路图

自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示 自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停 下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了 竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。

在U S 、R、L、C固定的条件下,有 I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量

自耦变压器工作原理

1自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. 2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈```一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压``,自耦变压器是自己影响自己`` 3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用. 由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器. 普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器称为自耦变压器,又叫单圈变压器. 自耦变压器中的电压,电流和匝数的关系和变压器,既:U1/U2=W1/W2=I2/I1=K 自耦变压器最大特点是,副绕组是原绕组的一部分(如图1的自耦降压变压器),或原绕组是副绕组的一部分(如图2的自耦升压变压器). 图1: 图2: 自藕变压器原,副绕组的电流方向和普通变压器一样是相反的. 在忽略变压器的激磁电流和损耗的下,可如下关系式 降压:I2=I1+I,I=I2-I1 升压:I2=I1-I,I=I1-I2 P1=U1I1,P2=U2I2 式中: I1是原绕组电流,I2是副绕组电流 U1是原绕组电压,U2是副绕组电压 P1是原绕组功率,P2是副绕组功率

RLC 串联谐振电路实验误差的分析及改进

RLC 串联谐振电路实验误差的分析及改进 一、摘要: 从RLC 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于Multisim仿真软件创建RLC 串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:RLC;串联;谐振电路; 三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研究串联谐振有重要的意义。 在含有电感L 、电容C 和电阻R 的串联谐振电路中,需要研究在不同频率正弦激励下响应随频率变化的情况,即频率特性。Multisim 仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定RLC串联谐振电路的频率特性曲线。

自耦变压器降压启动电路图

自耦变压器降压启动电路图【改进版】 自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示

自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM 和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM 和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,

有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。 三、改进后的接线方法 经过分析, 主要是控制电路中辅助触点使用不合理造成线路设计的不完善, 针对此线 路存在的缺点对原控制电路部分进行改进, 其接线方法见图2。 四、改进后的工作原理 接通电源后, 按下起动按钮SB2, 交流接触器1KM、2KM线圈得电吸合, 1KM和2KM 主触头闭合, 自耦变压器串入电动机降压起动; 同时, 时间继电器KT 线圈也得电吸合, KT 瞬时常开触点闭合自锁。经一定时间延时后, KT 延时常开触头闭合, KT 延时常闭触头断开, 1KM线圈断电, 1KM1 常闭闭合, 3KM 线圈通电,3KM1 常开触头闭合自锁, 3KM1 常闭触头断开联锁, 使2KM及KT 线圈断电复位, 电动。

实验七 串联谐振电路的研究

实验七 串联谐振电路的研究 一、实验目的 1.观察谐振现象,了解谐振电路特性,加深其理论知识的理解。 2.掌握通过实验取得0f 、Q 、f ?及谐振曲线的方法。 二、必备知识 1.由电感和电容元件串联组成的一端口网络如图7.1所示。该网络的等效阻抗 )1(C L j R Z ωω-+= . 是电源频率的函数。当该网络发生谐振时,其端口电压与电流同相位。即 01=-C L ω, 得到谐振角频率 LC 10=ω . 定义谐振时的感抗ωL 或容抗1/ωC 为特性 阻抗ρ,特性阻抗ρ与电阻R 的比值为品质因数Q ,即 R C L R L R Q ///0===ωρ 2.谐振时,电路的阻抗最小。当端口电 压U 一定时,电路的电流达到最大值(图7.2),该值的大小仅与电阻的阻值有关,与电感和电容的值无关;谐振时电感电压与电容电压有效值相等,相位相反。电抗电压为零,电阻电压等于总电压,电感或电容电压是总电压的Q 倍,即 S C L S R QU U U U U === 3.RLC 串联电路的电流是电源频率的函数,即

2 0020 2 002 2 2)(1) (1/)/1()()(ωωωωωωωωωωωω-+= -+= ++==Q I Q R U C L R U j Z U I . 在电路的L 、C 和信号源电压U S 不变的情况下,不同的R 值得到不同的Q 值。对应不同Q 值的电流幅频特性曲线如图7.3(a )所示。为了研究电路参数对谐振特性的影响,通常采用通用谐振曲线。对上式两边同除以I 0作归一化处理,得到通用频率特性 20020) (11 ωωωω-+= Q I I . 与此对应的曲线称为通用谐振曲线。该曲线的形状只与Q 值有关。Q 值相同的任何R 、L 、C 串联谐振电路只有一条曲线与之对应。图7.3.(b )绘出了对应不同 图7.3 R 、L 、C 串联谐振电路的特性曲线 通用谐振曲线的形状越尖锐,表明电路的选频性能越好。定义通用谐振曲线幅值下降至峰值的0.707倍时对应的频率为截止频率f C 。幅值大于峰值的0.707倍所对应的频率范围称为通带宽。理论推导可得: f f f f c c 012=-=? 由上式可知,通带宽与品质因数成反比。 三、实验仪器

相关文档
最新文档