初一数学一题多解

初一数学一题多解
初一数学一题多解

例题一、如图1,已知AB//CD ,试找出B ∠、BED ∠和D ∠的关系并证明。

我们找出他们的关系是:D B BED ∠+∠=∠。证明如下:

方法一:如图2,过点E 作EF//AB 。因为EF AB //,所以B BEF ∠=∠;因为CD AB //,

EF

AB //,所以

CD

EF //,所以D FED ∠=∠,所以

D B FED BEF BED ∠+∠=∠+∠=∠。

方法二:如图3,过点E 作EF//AB 。

因为EF AB //,所以 180=∠+∠B BEF ,即B B E F ∠-=∠ 180;因为CD AB //,

EF AB //,所以CD EF //,所以 180=∠+∠D FED ,即D FED ∠-=∠ 180;因为?

=∠+∠+∠360FED BED BEF ,

)180180(360)(360D B FED BEF BED ∠-+∠--=∠+∠-=∠?? D B ∠+∠=。

方法三:如图4,连接BD 。因为CD AB //,所以

180=∠+∠B DC ABD ,即

)

(180EDB EBD EDC ABE ∠+∠-=∠+∠ ;在ΔBED 中,

)(180EDB EBD BED ∠+∠-=∠ ,所以EDC ABE BED ∠+∠=∠。

方法四:如图5,过点E 做AB FG ⊥,垂足为点F ,交CD 于点G 。因为CD AB //,

所以 90180=∠-=∠EFB EGD ;在直角ΔEGD 中,D GED ∠-=∠

90,在直角ΔEFB

中,B F E B ∠-=∠ 90,所以

)9090(180)(180B D FEB GED BED ∠-+∠--=∠+∠-=∠ D B ∠+∠=。

方法五:如图6,延长BE 交CD 于点F 。因为CD AB //,所以B EFD ∠=∠;在ΔEFD 中,FED D EFD ∠-=∠+∠ 180,又因为FED BED ∠-=∠ 180,所以

D B D

E

F D B E D ∠+∠=∠+∠=∠。

例题二、证明: 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.

已知:如图1,在△ABC 中,AD=BD=CD .

求证:△ABC 是直角三角形. 证法1 如图1,利用两锐角互余. ∵AD=CD ,CD=BD , ∴∠1=∠A ,∠2=∠B 。

在△ABC 中,∵∠A+∠B+∠ACB=180°, ∴∠A+∠B+∠1+∠2=180°, ∴2(∠A+∠B )=180°, ∴∠A+∠B=90°,

∴∠ACB=90°,∴△ABC 是直角三角形。 证法2 如图2,利用等腰三角形的三线合一.

延长AC 到E 使CE=AC ,连接BE . ∵AD=BD ,

∴CD 是△ABE 的中位线.

∴BE 2

1

CD =。

∵AB 2

1

CD =

, ∴AB=BE .

∴BC ⊥AC ,∴△ABC 是直角三角形.

证法3 如图3,利用此三角形与某个直角三角形相似(或全等).

过点D 作DE ⊥BC 交BC 于点E .

∴CD=BD ,

∴BC 21

BE =,

2

1

AB BD BC BE ==, ∵∠B 是公共角, ∴△BDE ∽△BAC 。

∴∠ACB=∠DEB=90°,∴△ABC 是直角三角形。

证法4 如图4,利用如果一条直线垂直于两平行线中的一条,则也垂直于另一条.

取BC 中点E ,连接DE .

∵AD=BD ,∴DE 是△ABC 的中位线. ∴DE ∥AC . ∵CD=BD ,CE=BE , ∴DE ⊥BC .

∴AC ⊥BC ,∴△ABC 是直角三角形.

证法5 如图5,构造四边形,并证其为矩形.

延长CD 到E 使DE=CD ,连接AE 、BE . ∵AD=BD=CD .

∴AD=BD=CD=DE,且AB=CE . ∴四边形ABCD 是矩形.

∴∠ACB=90°,∴△ABC 是直角三角形. 证法6 如图6,利用勾股定理的逆定理.

设AC=b ,BC=a ,AB=c ,取BC 中点E ,连接DE . ∴DE 是△ABC 的中位线.

∴b 21

AC 21DE ==。

∵CD=BD ,∴DE ⊥BC 。

在Rt △DEB 中,∵222BD BE DE =+, ∴2

2

2

c 21a 21b 21??

?

??=??? ??+??? ??。 ∴222c b a =+,∴△ABC 是直角三角形。

证法7 如图7,利用两直线平行,再证同旁内角相等。

延长CD 到E 使DE=CD ,连接BE 。 ∵AD=BD ,∠1=∠2, ∴△ADC ≌△BDE (SAS ), ∴∠ACD=∠E ,AC=BE , ∴AC ∥BE ,

∴∠ACB+∠EBC=180°。 又∵AD=CD ,∴AB=CE 。 ∵BC 是公共边,

∴△ACB ≌△EBC (SSS )。 ∴∠ACB=∠EBC 。

∴∠ACB=90°,∴△ABC 是直角三角形。 证法8 如图8,利用直径所对的圆周角是直角。

以D 为圆心,DA 长为半径作圆。 ∵AD=BD=CD ,

∴点C 、B 在圆上,AB 是直径。 ∴∠ACB=90°。 ∴△ABC 是直角三角形。

例题三、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去9.25元,如果买2个鸡蛋、4个鸭蛋、3个鹌鹑蛋,则共用去3.20元,试问只买鸡蛋、鸭蛋、鹌鹑蛋各1个,共需多少钱?

这类题目的特点是所能列出的方程的个数少于未知数的个数,看似不可解,但由于所求的并不是每一个未知数的值,而是一个代数式的值。所以可解。这类题对学生来说是有一些难度的,但如果掌握了以下方法,既可以化繁为简,又可以收到一题多解,提高学生能力的效果。

下面让我们先来列出方程。

设鸡蛋、鸭蛋、鹌鹑蛋的单价分别为x 、y 、z 元,则根据题意,可得方程

?

?

?=++=++20.334225

.99513z y x z y x ,求z y x ++的值。 解法一:变元法:

把z 看成常数,解关于x 、y 的方程,可得???

????

-=-=2010112

1z y z x

然后代入所求式z y x ++中,得:05.120

101121=+-+-=

++z z

z z y x 答:只买鸡蛋、鸭蛋、鹌鹑蛋各1个,共需1.05元。

解法二:直接构造法:

因为题目中要求z y x ++的值,所以将原方程互助组变形直接构造出z y x ++。

?

??=--++=++++???

?=++=++20.32)(425

.948)(520.334225.99513z x z y x z x z y x z y x z y x ②?4+①得05.22)(21=++z y x

05.1=++∴z y x

答:略

解法三:间接构造法:

将原方程组中的①两边同乘以常数a ,②的两边同乘以常数b ,得

??

?=++=++b

bz by bx a

az ay ax 20.334225.99513 ①+②得b a z b a y b a x b a 20.325.9)39()45()213(+=+++++ ∵我们想要求的代数式是x+y+z , ∴令b a b a b a 3945213+=+=+

可得a=1,b=4,代入上式得 21x+21y+21z=9.25+12.80=22.05 ∴ x+y+z=1.05

例题四、三角形一题多解

如图:已知AB=AC ,E 是AC 延长线上一点,且有BF=CE ,连接FE 交BC 于D 。求证:FD=DE 。 证法一

证明:过E 点作EM ∥AB 交DC 延长线于M 点,则∠M=∠B ,又因为∠ACB=∠B

∠ACB=∠ECM=∠M ,所以CE=EM , 又EC=BF 从而EM=BF ,∠BFD=∠DEM 则△DBF ≌△DME ,故 FD=DE ;

证法二

证明:过E 点作EM ∥AB 交DC 延长线于M 点,则∠M=∠B ,又因为∠ACB=∠B

∠ACB=∠ECM=∠M ,所以CE=EM , 又EC=BF 从而EM=BF ,∠BFD=∠DEM

则△DBF ≌△DME ,故 FD=DE ; 证法二

证明:过F 点作FM ∥AE ,交BD 于点M , 则∠1=∠2 = ∠B 所以BF=FM , 又 ∠4=∠3 ∠5=∠E

所以△DMF ≌△DCE ,故 FD=DE 。

例题五、平行四边形一题多解

如图4,平行四边形 ABCD 中AD=2AB,E 、F 在直线AB 上,且AE=BF=AB,求证:DF ⊥CE.

证法一、易知ΔADF 、ΔBCE 为等腰三角形,故∠1=∠F, ∠2=∠E,又CD ∥AB,故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4

,而

1+∠2+∠

3+∠

4=1800

,故∠3+∠4=900

,表明∠COD=900

,所以DF ⊥CE 。

证法二、如图5,连接MN ,则CD=BF,且CD ∥BF ,故BFCD 为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM 且CN ∥DM ,得平行四边形CDMN ,易见CD=DM ,故CDMN 也是菱形,根据菱形的对角线互相垂直,结论成立。

证法三、如图6,连接BM

、AN, 可证ΔAFN 中,BN=BF=BA,则ΔAFN 为直角三角形,即DF ⊥AN,利用中位线定理可知AN ∥CE ,故DF ⊥CE 。

证法四、如图7,作DG ∥

CE 交AE 延长线于G ,则EG=CD=AB=AE,故AD=AG=AF,从而DF ⊥DG,而DGCE,故DF ⊥CE

例题六、如图所示,一个长为a ,宽为b 的矩形,两个阴影都是长为c 的矩形与平行四边形,则阴影部分面积是多少。

解法一

将大矩形进行平移将平行四边形 进行转换。 (a-c)(b-c)

解法二

重叠面积为c 的平方,大矩形面积为ab ,小矩形为ac ,平行四边形为bc ,阴影面积为ab-ac-bc+cc=(a-c )(b-c )

图2

初一数学解方程习题

初一数学解方程习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

0.5x-0.7=6.5-1.3x 1-2(2x+3)= -3(2x+1)2(x-2)-3(4x-1)=9(1-x) 11x+64-2x=100-9x 15-(8-5x)=7x+(4-3x) 3(x-7)-2[9-4(2-x)]=22 3/2[2/3(1/4x-1)-2]-x=2 2(x-2)+2=x+1 5x^2+3x+1=0 7x^2+x+12=0 2x^2+4x+4=0 8x^2+3x+1=0 5x^2+3x+2=0 2(x-2)-3(4x-1)=9(1-x) 11x+64-2x=100-9x 15-(8-5x)=7x+(4-3x) 3(x-7)-2[9-4(2-x)]=22 3/2[2/3(1/4x-1)-2]-x=2 2(x-2)+2=x+1 5x^2+3x+1=0 7x^2+x+12=0 2x^2+4x+4=0 8x^2+3x+1=0 5x^2+3x+2=0 45x^2+3x+100=0 89x^2+335x+1=0 x+1=3 2x+3=5 3x+5=8 4x+8=12 5x-6=9 2x-x=1 x+3=0 5x+3x=8 3x+1=2x x-7=6x+2 5x+1=9 9x+8=24 55x+54=-1 23+58x=99 29x-66=21 0.4(x-0.2)+1.5=0.7x-0.38 x=6 30x-10(10-x)=100

x=5 4(x+2)=5(x-2) x=18 120-4(x+5)=25 x=18.75 15x+863-65x=54 x=16.18 3(x-2)+1=x-(2x-1) x=3/2 11x+64-2x=100-9x x=2 x/3 -5 = (5-x)/2 2(x+1) /3=5(x+1) /6 -1 (1/5)x +1 =(2x+1)/4 (5-2)/2 - (4+x)/3 =1 x/3 -1 = (1-x)/2 (x-2)/2 - (3x-2)/4 =-1

初一下册数学解方程练习

… … ○ …… ……密 …………封…………线………○内…………不…………要…………答…………题△△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ 初一下册数学解方程练习 1、依据下列解方程的过程,请在前面的括号内填写变形步骤, 在后面的括号内填写变形依据. 解:原方程可变形为( _________ ) 去分母,得3(3x+5)=2(2x ﹣1).( _________ ) 去括号,得9x+15=4x ﹣2.( _________ ) ( _________ ),得9x ﹣4x=﹣15﹣2.( _________ ) 合并,得5x=﹣17.( _________ ) ( _________ ),得x=.( _________ ) 2、5(x ﹣5)+2x =﹣4 3、6(x ﹣5)=﹣24 4、5(x +8)﹣5=6(2x ﹣7) 5、 6、 7、=﹣1 8、﹣=1 9、1﹣3(8﹣x )=﹣2(15﹣2x ) 10、 11、

○… ………密…………封…………线………○内…………不…………要…………答…………题△△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ △△△△ 12、5(x +8)=6(2x ﹣7)+5 13、 14、4(2 x +3)=8(1﹣x )﹣5(x ﹣2) 15、 16、 17、 18、=﹣2 19、﹣2= 20、12(2﹣3x )=4x +4 21、﹣1=

七年级数学解方程汇总

七年级数学一元一次方程应用题归类 列方程解应用题的一般步骤(解题思路) (1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数. (3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程. (4)解——解方程:解所列的方程,求出未知数的值. (5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位) (一)和、差、倍、分问题——读题分析法 这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. 1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率…”来体现。 2、多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。 增长量=原有量×增长率现在量=原有量+增长量 例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元? 例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤? (二)等积变形问题 等积变形是以形状改变而体积不变为前提。 常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变, ②长方体的体积V=长×宽×高=abc 但体积不变.①圆柱体的体积公式V=底面积×高=S·h=2r h

初一数学列方程解应用题练习题

列方程解应用题训练 1.某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈利20% ,乙种成衣卖价也是 120元但亏损20% ,问该商店在本次销售中实际上是盈还是亏,盈或亏多少钱? 2.甲、乙两人分别在相距50km的地方同向出发,乙在甲的前面,甲每小时走16km,乙每小时走18km,如果乙先走1小时,问甲走多少时间后,两个人相距70km? 3.某中学组织七年级学生春游,如果租用45座的客车,则有15个人没有座位,如果租用同样数量的60座的客车,则除多出一辆外,其余车恰好坐满。已知租用45座的客车每日租金为每辆车250元,60座的车每日租金每辆300元,问租用哪种客车更合算?租几辆车? 4.某商店的冰箱先按原价提高40% ,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚了270元,试问冰箱的原标价是多少元?现售价是多少元? 5.某种商品的进价为100元,若要使利润率达20% ,则该商品的销售价格应为多少元?此时每件商品可获利润多少元? 6.某商品的进价是1000元,标价为1500元,商店要求以利润率不低于5% 的售价打折出售,售票员最低可以打几折出售此商品? 7.某车间有60名工人,生产某种由一个螺栓与两个螺母为一套的配套产品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺母,多少人生产螺栓,才能使每天生产出的螺栓与螺母恰好配套? 8.A、B两地相距60km,甲乙两人分别从A、B两地骑车出发,相向而行,甲比乙迟出发20min,每小时比乙多行3km ,在甲出发后1h40min ,两人相遇,问甲乙两人每小时各行多少km? 9.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务 已知甲每小时比乙多加工2个零件,求甲、乙两人每小时各加工多少个零件? 10.一件工作,甲单独完成需7.5小时, 乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?

最新人教版七年级下数学解方程练习题

精品文档 初一下册数学解方程练习题1.(每题5分,共10分)解方程组: (1)? ? ?=+=-1732623y x y x ; (2 2.解方程组 ??? ??=-+=++=++12 32721323z y x z y x z y x 3.解方程组: (1)3 3(1)022(3)2(1)10x y x y -?--=?? ?---=? (2)04239328a b c a b c a b c -+=?? ++=??-+=? 4.解方程(组) (1)32 21+=-- x x x (2)???-=+=+12332)13(2y x y x 5.?????? ?=++-=+--34231742 31y x y x 6.已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少? 7.二元一次方程组437(1)3x y kx k y +=?? +-=? 的解x ,y 的值相 等,求k . 8..当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)?有相同的解,求a 的值. 9.??? ??=---=+-=+-.44145 4y x z x z y z y x

10.若 4 2 x y = ? ? = ?是二元一次方程ax-by=8和ax+2by=-4 的公共解,求2a-b的值. 11.解下列方程: (1).(2) (3)(4) 12.(开放题)是否存在整数m,使关于x的方程2x+9=2 -(m-2)x在整数范围内有解,你能找到几个m的值? 你能求出相应的x的解吗? 13.方程组 25 28 x y x y += ? ? -= ?的解是否满足2x-y=8?满足2x -y=8的一对x,y的值是否是方程组 25 28 x y x y += ? ? -= ?的解? 14.甲乙两车间生产一种产品,原计划两车间共生产300 件产品,实际甲车间比原计划多生产10%,乙车间比原 计划多生产20%,结果共生产了340件产品,问原计划 甲、乙两车间各生产了多少件产品? 15.(本题满分14分) (1)解方程组 25 211 x y x y -=- ? ? += ? , (2)解方程组? ? ? = - = + )2 .( 6 3 3 )1(,8 4 4 y x y x 16. ?? ? ? ? = + + - = + - - . 6 ) (2 ) (3 1 5 2 y x y x y x y x ? ? ? ? ? = - + = + - = + 3 2 1 2 3 6 z-y x z y x z y x 精品文档

(完整版)初一数学一元一次方程练习题(含答案)

初一数学一元一次方程练习题(含答案) 一、选择题(每小题3分,共30分) 1.下列方程中,属于一元一次方程的是( ) A. B. C D. 2.已知ax=ay,下列等式中成立的是() A.x=y B.ax+1=ay-1 C.ax=-ay D.3-ax=3-ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价() A.40% B.20?5%D.15% 4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是() A.a米 B.(a+60)米 C.60a米 D.(60+2a)米 5.解方程时,把分母化为整数,得()。 A、B、C、D、 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是() A.10 B.52 C.54 D.56 千米1小时还有3一条山路,某人从山下往山顶走7.

才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为() A.x-1=5(1.5x) B.3x+1=50(1.5x) C.3x-1=(1.5x) D.180x+1=150(1.5x) 8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为( ) A.约700元 B.约773元 C.约736元 D.约865元 9.下午2点x分,钟面上的时针与分针成110度的角,则有() A. B. C. D. 10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为() A.15% B.17% C.22% D.80% 二、填空题(每小题3分,共计30分) 11.若x=-9是方程的解,则m= 。 12.若与是同类项,则m= ,n= 。 的代数y用含,y=得y的代数式表示x用含方程13. 式表示x得x=。 14.当x=________时,代数式与的值相等. 15.在400米的环形跑道上,男生每分钟跑320米,女生每

人教版初一数学一元一次方程练习题

人教版初一数学一元一次方 程练习题 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

一元一次方程试题 一、选择题(每小题3分,共30分) 1.下列方程中,属于一元一次方程的是( ) A.0127 =+y B.082=+y x C 103=z D.0232=-+x x 2.已知ax = ay ,下列等式中成立的是( ) = y + 1 = ay - 1 C. ax = - ay - ax = 3 - ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( ) % % C 25% % 4.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( ) A .a 米 B .(a +60)米 C .60a 米 D .(60+2a )米 5.解方程20.250.1x 0.10.030.02 x -+=时,把分母化为整数,得 ( )。 A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132 x x -+= D 、20.250.11032 x x -+= 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领, 这捆书的本数是( ) A .10 B .52 C .54 D .56 7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ) A .x -1=5 B .3x +1=50 C .3x -1= D .180x +1=150 8.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( ) A .约700元 B .约773元 C .约736元 D .约865元 二、填空题(每小题3分,共计30分)

初一数学方程计算测试题

一元一次方程和二元一次方程组测试题 一、计算题 1、 解下列一元一次方程 ① 2x-5=-2x+3 ②1-2(2x+3)= -3(2x+1) 解: 1-4x-6 =-6x-3 2x+2x=3+5 1-6+3 =-6x+4x 4x=8 2 =-2x x=2 x =-1 ③)1(9)14(3)2(2x x x -=--- ④ 2151 136 x x +--= ⑤ 32222-=-- -x x x ⑥ 2 631x x =+- 2、 解下列二元一次方程组 ①???=+=18233y x x y ②???=--=+8 941 32t s t s

③521x y x y +=??-=? ④13,23 3; 34 y z y z ?+=????-=?? ⑤25437x y x y +=??+=?,; ⑥743 2143 2x y y x ?+=????+=??,. 二、 填空题 1、1y =是方程()232m y y --=的解,则m = 2、2 1 x y =?? =-?是二元一次方程2x+by=-2的一个解,则b 的值等于 3、方程042=-+a x 的解是2-=x ,则a =______ 4、已知 ? ??==11 y x 是方程组 ? ? ?=-=+32 by x by ax 的解,则a 的值为_______,b=_______. 5、若一个二元一次方程的一个解为???-==1 2 y x ,则这个方程可以是: _______________(中要求写出一个) 6、如果2 1x y =-?? =? 是方程ax +(a -1)y=0的一组解,则a=___________;

初一解方程习题集

初一解方程珍藏题 解方程 1、4(x-1)+2-2=2(4-x)-6 2、1-2(2x-5)=3(3-x) 3、(x-1)/3+1=(x+1)/2 4、4x-3(20-x)=6x-7(9-x) 5、5x-2=-7x+8 6、11x-3=2x+3 7、16=y/2+4 8、(4-3x)/7+(5x-3)/14=-(2x+3)/28+(5x-1)/11 9、mx-2=3x+n(m!=3) 10、3x-5=7x-11 11、2x+(5-3x)=15-(7-5x) 12、3/4x+2=3-1/4x 13、3/4-x=5/6-2/3x 14、2(x-2)-3(4x-1)=9(1-x) 15、2(x-3)-3(x-5)=7(x-1) 16、x-3/2[2/3(3/4-1)-2]=-2 17、x/3-1=x/2-2 18、x=(x+3)/2-(2-3x)/3 19、(2x-1)/3=1-(5x+2)/2 20、(2x-1)/3-(10x+1)/6=(2x+1)/4-1 21、3/2(x+1)-(x+1)/6=1 22、1/3(4y+5y)-1/2(3y-2)=2 23、-2(x-1)-4(x-2)=1 24、5(2x+1)-3(22x+11)=4(6x+3) 25、(x-1)/2-(2x-3)/6=(6-x)/3 26、2x-7+8x=10x-3-4x 27、1/3[x-1/2(x-1)]=2/3(x-1/2) 28、1/2[x/3-1/2(3/2x-1)]=x/12 29、1/3[2(2x+5)-3]+3/2(2x+5)=12 30、x/0.7-(0.17-0.2x)/0.03=1 31、(x+2)/4-(2x-3)/6=1 32、(2x-1)/5-(2x+1)/18=(1-x)/6-(1-6x)/15 33、1/2[x-1/2(x-1)]=2/3(x-1) 34、1/9{1/7[1/5((x+4)/3+2)+6]+8} 35、(0.1x-0.2)/0.02-(x-1)/0.5=3 36、-2(x-5)=8-x/2 37、(x-3)/2-(4x+1)/5=1 38、(x-3)/0.5-(x+4)/0.2=1.6 39、x-(7-8x)=3(x-2) 40、x-(x-1)/2=2-(x+2)/3

初一数学解方程题大集合

三.解下列方程. 1. x+8 59+x =0 2. 3 2+y -314-y =2-652+y 3. 4 1(1-23x)-31(2-4 x )=2 4. 3 2 [23(41x-2 1 )-3]-2=x 5. 2 .05.13-x -03.01 .02.0-x = 6. 4x - 3(20-x)=6x -7(9-x) 7.)12(4 3)]1(3 1[2 1+=--x x x 8.43(1)323322 x x ?? ---=???? 9. 2 23355 4--+= +-+x x x x 10.1-2(2x+3)=-3(2x+1) 11. 3 12-y -1= y 12.2 3y - +y =8 67-y 13. 4 .06.0-x +x = 3 .011.0+x 14.7x +6=8-3x 15,4x -3(20-x)=6x -7(9-x) 16,5 y - 21-y =1-52+y 17,2.188.1x --233.1x -=3 .04 .05-x 18, 32 1 264+-= -x x

19, 13 3221=+++x x 20,413-x - 67 5-x = 1 21,2x -13 -5x -1 6 =1 22, x x 5)2(34=-- 23, 12 2312++=-x x 24,246231x x x -= +-- 25,3)20(34=--x x 26, 16 323 1 2-= ---x x x 27,6x -7=4x-5 28, 132321=-++x x 29, 3 27132+-=-)()(y y 30, 6 3 542133-- =+-x x x 31, 34 15 3 x x 32, 2x-31= 6 1 2x +-1 33,7 2 (3x +7)=2- 34, 312+x -61 5-x =1 35,80% ·x =(x +22)·75% 36,12 44323x ?? +-=- ??? 37,2323132x x +-=- 38, )2(3)87(-=--x x x 39, )4(3223-=-x x 40, 3 2 221+- =--x x x 41,)35(2)57(15x x x -+=-- 42, 18 1 5612=+--x x 43,()183 131=? ? ? ?? ?--y y 44, 102 .003.018.05.0=-+x x

初一下数学解方程组练习题

初一下数学解方程组练习题

9.?? ? ??=---=+-=+-.441454y x z x z y z y x 10.若42x y =?? =? 是二元一次方程ax -by=8和ax+2by=-4 的公共解,求2a -b 的值. 11.解下列方程: (1). (2) (3) (4)?? ? ??=-+=+-=+321236z -y x z y x z y x 12.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗? 13.方程组25 28x y x y +=??-=? 的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组25 28 x y x y +=?? -=?的解? 14.甲乙两车间生产一种产品,原计划两车间共生产300件产品,实际甲车间比原计划多生产10%,乙车间比原计划多生产20%,结果共生产了340件产品,问原计划甲、乙两车间各生产了多少件产品? 15.(本题满分14分) (1)解方程组25211x y x y -=-??+=? , (2) 解方程组 ? ??=-=+)2.(633) 1(,844y x y x 16.??? ??=++-=+--. 6)(2)(315 2y x y x y x y x

答案第1页,总3页 参考答案 1.(1)???==34y x ;(2)?? ? ??==411 3y x . 【解析】 试题分析:(1)应用加减消元法消去未知数y ,得到关于未知数x 的方程,解得x 的值,然后再求出y 的值,得到方程组的解; (2)首先把方程②进行变形,重新组成方程组,应用代入消元法求解. 试题解析:(1)解:3262317x y x y -=??+=? ① ②, ①×3+②×2得,13x=52, 解得x=4, 把x=4代入①得,12-2y=6, 解得y=3, 所以方程组的解为4 3x y =??=?; (2)解:4143314312x y x y +=?? ?---=?? ① ②, 由②整理得,3x-4y=-2③, 由①得x=14-4y ④, 把④代入③得,3(14-4y )-4y= -2, 解得y= 114 , 把y= 11 4 代入④,解得x=3, 所以原方程组的解为3114 x y =?? ?=??. 考点:二元一次方程组的解法. 2.原方程组的解231x y z =?? =??=? 【解析】 试题分析:3213.........(1)27............(2)2312.........(3)x y z x y z x y z ++=?? ++=??+-=? (1)(3)+得5525x y +=得 5.......................(4)x y += (1)2?得6422 6....(5)x y z ++= (5)(2)-得5319..........(6)x y += (4)3?得3315............(7)x y += (6)(7)2x -= 3y = 1z = ∴原方程组的解2 31x y z =?? =??=? 考点:三元一次方程组 点评:本题难度较低,主要考查学生对三元一次方程组知识点的掌握。为中考常见题型,要求学生掌握解题技巧。 3.(1)9 2x y =??=? ; (2)3 25 a b c =??=-??=-? 【解析】 试题分析: 考点:二元一次方程组的解法,及三元一次方程组的解法。 点评:考查二元(三元)一次方程组的解法,可先整理化简,由加减,或代入消元法求之,本题属于基础题,难度不大,但解答时易出错,需注意。 4.去分母,得:6x-3(x-1)=2(x+2) ………………2分 去括号,得:6x-3x+3=2x+4 ………………4分 整理,得:x=1 ………………6分 原方程组变形,得 ? ? ?=++=+)2(213) 1(32)13(2y x y x ………………2分 (2)把(2) 代入(1)得:4y=2+3y 解得:y=2………………4分

七年级数学列方程解应用题的常用公式梳理

关于一元一次方程所涉及的各种问题的公式 一元一次方程应用题 1.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案. 2.和差倍分问题 增长量=原有量×增长率现在量=原有量+增长量 3.等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式V=底面积×高=S?h=r2h ②长方体的体积V=长×宽×高=abc 4.数字问题 一般可设个位数字为a,十位数字为b,百位数字为c. 十位数可表示为10b+a,百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程. 5.市场经济问题 (1)商品利润=商品售价-商品成本价(2)商品利润率=×100% (3)商品销售额=商品销售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售. 6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 7.工程问题:工作量=工作效率×工作时间 完成某项任务的各工作量的和=总工作量=1 8.储蓄问题 利润=本金×利润率利息=本金×利率×期数

七年级上册有理数计算与解方程测试题

七年级上册计算题测试 班级: 姓名: 分数: 1.有理数的混合运算. (1)3-8 (2)-4+7 (3)-6-9 (4)8-12 (5)-15+7 (6)0-2 (7)-5-9+3 (8)10-17+8 (9)-3-4+19-11 (10)-8+12-16-23 (11)-4.2+5.7-8.4+10 (12)6.1-3.7-4.9+1.8 (13)12-(-18)+(-7)-15 (14)-40-28-(-19)+(-24)-(-32) (15)(+12)-(-18)+(-7)-(+15) (16)(-40)-(+28)-(-19)+(-24) (17)(+4.7)-(-8.9)-(+7.5)+(-6) (18)(—2.2)+3.8 (19))31()21(54)32(21-+-++-+ (20)?? ? ??-+??? ??-3121 (21)3173312741++??? ??-+ (22)3 14+(—56 1) (22)(—56 1)+0 (23)3 14+(—56 1) (24)(+25 1 )+(—2.2) (25)(—15 2)+(+0.8) (26)(—6)+8+(—4)+12 (27)0.36+(—7.4)+0.3+(—0.6)+0.64 (28)9+(—7)+10+(—3)+(—9) (29)1 21112 242123727? ?????-++---+ ? ? ??????? (30)12 5)5.2()2.7()8(? -?-?- (31)(-6)×5×7 2)6 7(? - (32)(-4)×7×(-1)×(-0.25) (33)1618025100?-??-().() (34)()()()-?-???-172340125 (35)()()-??-?51281511223 (36)6.190)1.8(8.7-??-?- (37))251(4)5(25.0- ??-?-- (38)34 .07 5)13(3 17 234.03 213?- -?+ ? -? - (39))8 1 4 112 1()8(+-?- (40))48()6 14336 112 1(-?-+-- (41)( )79563471836 -+-?

七年级数学解二元一次方程组练习题

解二元一次方程组专题训练一、基础过关 1.用加、减法解方程组 436, 43 2. x y x y += ? ? -= ? ,若先求x的值,应先将两个方程组相_______;若先求y的值, 应先将两个方程组相________. 2.解方程组 231, 367. x y x y += ? ? -= ? 用加减法消去y,需要() A.①×2-② B.①×3-②×2 C.①×2+② D.①×3+②×2 3.已知两数之和是36,两数之差是12,则这两数之积是() A.266 B.288 C.-288 D.-124 4.已知x、y满足方程组 259, 2717 x y x y -+= ? ? -+= ? ,则x:y的值是() A.11:9 B.12:7 C.11:8 D.-11:8 5.已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y的值分别为() A. 2, 2 x y = ? ? =- ? B. 2, 2 x y =- ? ? = ? C. 1 , 2 1 2 x y ? = ?? ? ?=- ?? D. 1 , 2 1 2 x y ? =- ?? ? ?= ?? 6.已知a+2b=3-m且2a+b=-m+4,则a-b的值为() A.1 B.-1 C.0 D.m-1 7.若2 3 x5m+2n+2y3与- 3 4 x6y3m-2n-1的和是单项式,则m=_______,n=________. 8.用加减法解下列方程组: (1) 3216, 31; m n m n += ? ? -= ? (2) 234, 443; x y x y += ? ? -= ? (3) 523, 611; x y x y -= ? ? += ? (4) 35 7, 23 423 2. 35 x y x y ++ ? += ?? ? -- ?+= ?? 二、综合创新 9.已知关于x、y的方程组 352, 23 x y m x y m +=+ ? ? += ? 的解满足x+y=-10,求代数m2-2m+1的值. 10.(1)今有牛三头、羊二只共1900元,牛一头、羊五只共850元,?问每头牛和每只羊各多少元? (2)将若干只鸡放入若干个鸡笼中,若每个鸡笼放4只,则有一只鸡无笼可放;?若每个鸡笼放5 只,则有一个笼无鸡可放,那么有鸡多少只?有鸡笼多少个? 11.在解方程组 2, 78 ax by cx y += ? ? -= ? 时,哥哥正确地解得 3, 2. x y = ? ? =- ? ,弟弟因把c写错而解得 2, 2. x y =- ? ? = ? ,求 a+b+c的值. 12.(1)解方程组 1 1, 23 3210. x y x y + ? -= ? ? ?+= ? (2)已知等式(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立,?求A、B的值. 三、培优训练 13.(探究题)解方程组 200520062004, 200420052003. x y x y -= ? ? -= ?

初一数学解方程习题

0.5x-0.7=6.5-1.3x 1-2(2x+3)= -3(2x+1)2(x-2)-3(4x-1)=9(1-x) 11x+64-2x=100-9x 15-(8-5x)=7x+(4-3x) 3(x-7)-2[9-4(2-x)]=22 3/2[2/3(1/4x-1)-2]-x=2 2(x-2)+2=x+1 5x^2+3x+1=0 7x^2+x+12=0 2x^2+4x+4=0 8x^2+3x+1=0 5x^2+3x+2=0 2(x-2)-3(4x-1)=9(1-x) 11x+64-2x=100-9x 15-(8-5x)=7x+(4-3x) 3(x-7)-2[9-4(2-x)]=22 3/2[2/3(1/4x-1)-2]-x=2 2(x-2)+2=x+1 5x^2+3x+1=0 7x^2+x+12=0 2x^2+4x+4=0 8x^2+3x+1=0 5x^2+3x+2=0 45x^2+3x+100=0 89x^2+335x+1=0 x+1=3 2x+3=5 3x+5=8 4x+8=12 5x-6=9 2x-x=1 x+3=0 5x+3x=8 3x+1=2x x-7=6x+2 5x+1=9 9x+8=24 55x+54=-1 23+58x=99 29x-66=21 0.4(x-0.2)+1.5=0.7x-0.38 x=6 30x-10(10-x)=100

x=5 4(x+2)=5(x-2) x=18 120-4(x+5)=25 x=18.75 15x+863-65x=54 x=16.18 3(x-2)+1=x-(2x-1) x=3/2 11x+64-2x=100-9x x=2 x/3 -5 = (5-x)/2 2(x+1) /3=5(x+1) /6 -1 (1/5)x +1 =(2x+1)/4 (5-2)/2 - (4+x)/3 =1 x/3 -1 = (1-x)/2 (x-2)/2 - (3x-2)/4 =-1

(完整word版)初一数学上册用方程解决问题习题集

---------比例问题与日历问题 1、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的多3吨,求甲、乙、丙三种货物各多少吨? 2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3︰2,种西红柿和芹菜的面积比是5︰7,三种蔬菜各种的面积是多少公顷? 3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。问他们应各投资多少万元? 4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克? 5、小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日? 6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数。 7日历上同一竖列上3日,日期之和为75,第一个日期是几号?

---------调配问题 1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车? 2、某班女生人数比男生的还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的,那问男、女生各多少人? 3、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套? 4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原计划做几题?几小时完成? 5、小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克? 6、甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等? 7、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨?

(word完整版)七年级解方程计算题专项练习

解方程: (1)215x x -+= (2)1 4342 x x -=+ (3)23 41255x x -=+ (4)2 3.5 4.51x x -=- (5)76226x x --=-; (6)4352x x --=--; (7)453x x =+; (8)3735y y +=-- (1)2(x-1)+4=0 (2)4-(3-x )=-2

(3)(x+1)-2(x-1)=1-3x (4)2(x-2)-6(x-1)=3(1-x)(5)4(x-1)-10(1-2x)=-3(2x+1) ( 6) 2(x+3)-5(1-x)=3(x-1) (7) 3(x+1)-2(x+2)=2x+3 (8)2(x-1)-(x-3)= 2(1.5x-2.5) (9)3(x-7)-2[9-4(2-x)]=22 (10)3x-2[3(x-1)-2(x+2)]=3(18-x)

(11) x x 3221221413223=-?? ? ???+??? ??+ (12) x x 23231423 =??????-??? ??- (1) 2x =3x-1 15 12 (2)=-+x x 12136x x x -+-=- 12 136 x x x -+-=- (5) 124362x x x -+--= (6)112 [(1)](1)223 x x x --=-

(7) 35.012.02=+--x x (8)x x -=+3 8 (9)43(1)323322x x ?? ---=???? (10)2x -13 =x+22 +1 (11)3142125x x -+=- (12) 31257243y y +-=- 一架飞机飞行在两个城市之间,顺风需2小时,逆风需3小时,已知风速为20千米/时,求两个城市之间的距离

人教版七年级下数学解方程练习题

初一下册数学解方程练习题 1.(每题5分,共10分)解方程组: (1)? ? ?=+=-17326 23y x y x ; (2 2.解方程组 ??? ??=-+=++=++12 32721323z y x z y x z y x 3.解方程组: (1 (2)04239328a b c a b c a b c -+=?? ++=??-+=? 4.解方程(组) (12)?? ?-=+=+12332)13(2y x y x 5 6.已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少? 7.二元一次方程组437(1)3x y kx k y +=?? +-=? 的解x ,y 的值相 等,求k . 8..当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程) 有相同的解,求a 的值. 9.??? ??=---=+-=+-.441454y x z x z y z y x

10.若 4 2 x y = ? ? = ?是二元一次方程ax-by=8和ax+2by=-4 的公共解,求2a-b的值.11.解下列方程: (1 ).(2) (3)(4) 12.(开放题)是否存在整数m,使关于x的方程2x+9=2 -(m-2)x在整数围有解,你能找到几个m的值?你 能求出相应的x的解吗? 13.方程组 25 28 x y x y += ? ? -= ?的解是否满足2x-y=8?满足2x -y=8的一对x,y的值是否是方程组 25 28 x y x y += ? ? -= ?的解? 14.甲乙两车间生产一种产品,原计划两车间共生产300 件产品,实际甲车间比原计划多生产10%,乙车间比原 计划多生产20%,结果共生产了340件产品,问原计划 甲、乙两车间各生产了多少件产品? 15.(本题满分14分) (1)解方程组 25 211 x y x y -=- ? ? += ? , (2)解方程组? ? ? = - = + )2 .( 6 3 3 )1(,8 4 4 y x y x 16 ? ? ? ? ? = - + = + - = + 3 2 1 2 3 6 z-y x z y x z y x

初一数学解方程测试题电子教案

初一数学解方程测试 题

七年级数学下册测试 一·选择题 1.方程193 10=-x 的解是( ) A.0=x B. 1=x C.2=x D.3=x 2.解为???-==3 0y x 的方程组是( ) A.???=+=-12332y x y x B.???-=+=-6233y x y x C.?? ???=-=+131732y x y x D.???=+=-135y x y x 3.1=x 时方程013=+-m x 的解,则m 的值是( ) A. -1 B. 4 C. 2 D. -2 4.既是方程32=- y x 的解,又是方程1043=+y x 的解是( ) A.???==21y x B.???==34y x C.???==12y x D.???-=-=5 4y x 5.方程6=+y x 的非负整数解有( ) A.5对 B.6对 C.7对 D.8对 6.若05323=+-n x 是一元一次方程,则n=( ) A. 1 B.2 C.-1 D.-2 7.如果单项式y x n m 2+与n m y x 244-是同类项,则m ,n 的值为( ) A.25,1=-=n m B.2 3,1==n m C.1,2==n m D.1,2-=-=n m 8.用加减法解方程组()???-=+=+) 2(927145y x y x 时,)2(2)1(-?得 A.13-=x B.132=-x C.117-=x D.173=x 9.一件羽绒服降价10%后售价是270元,原价的60%是其成本,则它的成本是( )

A.300元 B.290元 C.280元 D.180元 10.某班分组活动,若每组6人,则余下5人;若每组8人,则有少数4人。设总人数为x 人,组数为y ,则可列方程( ) 2、已知方程组? ??=-=+9262y x y x ,求y x +与y x -的值。 3、已知???==12y x 是二元一次方程组???=-=+1 8my nx yn mx 的解,求n m -2的算术平方根。 4、若关于x 、y 的方程组???=-=+k y x k y x 72的解满足242-=-y x ,求k 的值。 5、解关于x 、y 的方程组???-=-=+239cy x by ax 时,甲正确地解出???==4 2y x ,乙因为把c 抄错了,识解为? ??-==14y x ,求a 、b 、c 的值。 6、已知关于x 、y 的二元一次方程组? ??+=-+=+122362m y x m y x 的解互为相反数,求m 的值。

相关文档
最新文档