高二数学教案第八章圆锥曲线方程教材分析

高二数学教案第八章圆锥曲线方程教材分析
高二数学教案第八章圆锥曲线方程教材分析

第八章圆锥曲线方程教材分析

本章是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线。这一章主要学习椭圆、双曲线、抛物线的定义、方程、简单几何性质以及它们的简单应用全章共分6个小节,教学时间约为18课时,各小节的教学时间分配如下:

8.1椭圆及其标准方程 3课时

8.2椭圆的简单几何性质 4课时

8.3双曲线及其标准方程 2课时

8.4双曲线的简单几何性质 3课时

8.5抛物线及其标准方程 2课时

8.6抛物线的简单几何性质 2课时

小结与复习 2课时

一、内容与要求

(一)本章的教学内容

圆锥曲线这一章研究的对象是图形,包括三种曲线:椭圆、双曲线、抛物线,使用的方法是代数方法,它的基础是第七章学过的曲线和方程的概念

我们知道,曲线可以看成是符合某种条件的点的轨迹,在解析几何里用坐标法研究曲线的一般程序是:建立适当的坐标系;求出曲线的方程;利用方程讨论曲线的几何性质;说明这些性质在实际中的应在第七草里学生已经初步学习了这

种方法,不过,“圆锥曲线”这一章中,这种研究曲线的方法和过程以及它的优

所以,“圆锥曲线”一直是解析几何的重点内容,特别是在对学生掌握坐标法的训练方面有着不可替代的作用

本章研究的椭圆、双曲线、抛物线的方程,主要是它们在直角坐标系中的标准方程,所谓标准方程就是曲线在标准位置时的方程,即曲线的中心或顶点在坐标原点,对称轴在坐标轴上时的方程,通过对这种方程的讨论得到的曲线的性质,可以利用平移图形推广到曲线的其他位置上去,所以,曲线的标准方程及它们在标准位置上的性质是本章的重点

(二)教学要求

本章的教学要求归纳起来有以下几点:

1.掌握椭圆、双曲线、抛物线的定义、标准方程和几何性质;

2.能够根据条件利用工具画圆锥曲线的图形,并了解圆锥曲线的初步应用;

3.进一步掌握坐标方法;

4.结合本章内容的教学,使学生进一步领会运动变化、对立统一的观点解析几何是用代数的方法解决几何问题,体现了形数结合的思想,因而这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式和三角函数式的变形,这对学生能力的

坐标方法是要求学生掌握的,但是,作为普通高中的必修课的教学要求不能过高,只能以绝大多数学生所能达到的程度为标准

二、本章的主要特点

(一)突出重点

1.突出重点内容

本章所研究的三种圆锥曲线,都是重

因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种曲线没有平均使用时间和力量,而是把

通过求椭圆的标准方程,使学生掌握列这一类轨迹方程的一般规律,化简的常用办法这样,在求双曲线、抛物线方程的时候,学生就可以独立

在讨论椭圆的几何性质时,教材以椭圆为例详细地说明了在解析几何中讨论曲线几何性质的一般程序,以及怎样利用方程研究曲线的范围、对称性,怎样确定曲线上的点的位置等,这样,学生在学习双曲线和抛物线时,就可以练习使用这些方法,从而在掌握解析几何基本方法上得到锻炼和提高

在讨论曲线的几何性质时,不求全,

以便学生集中精力掌握圆锥曲线的最基本的性质

2.突出坐标方法

要重视数学思想方法的教学,结合教学内容,把反映出来的数学思想方法的教

学,作为高中数学教学的一项重要任务来根据圆锥曲线这部分内容的特点,在这一章里把训练学生掌握坐标法作为这一章数学方法教学的重点例如教材在第8.6节中选择了一个求正三角形边长的例题,解这个题目时,首先要证明正三角形的对称轴就是抛物线的对称轴,这是用方程证明图形性质的问题,并且是比较典型的

(二)注意内容的整体性和训练的阶段性

高中数学教材是一个整体,各部分知识和技能之间是有机联系着的,特别是教材采用了“混编”的形式,将代数、立体几何、解析几何合成统一的高中数学,这

就更需要加强各章之间的联系,互相配合,发挥整体的效益

(三)注意调动学生学习的主动性

教材是为教学服务的,归根结底是为学生服务的学生是学习的主人,只有他

目前,高中学生被动学习的现象比较突出,在调动学生学习的主动性方面,注意交代知识的来龙去脉,教给学生解决问题的思路例如,在讲椭圆的几何性质时,由于这是第一次出现,所以教材增加了一些说明性的文字,首先说明解析几何里讨论曲线性质时,通常要讨论哪些性质,然后说明用方程讨论这些性质时的一般方法,这就使学生知道为什么学习,怎样去

学习,学习就会变得主动又如,学生学习中遇到的另一个问题是不会分析问题,遇到问题不知从什么地方入手,只好被动地听讲教材注意提高例题的质量,在一些例题中给出了分析或小结(例题解后的注),通过对一些典型例题的分析,使学生学会分析解题思路,找出问题的关键,减少解题的盲目性;通过小结,指出解决问题的一般规律,提高学生解决问题的能力,提高学习效率

三、教学中应注意的问题

(一)注意准确地把握教学要求

准确地把握教学要求包括两个方面,第一是把握好大纲的精神,第二是学生的实际根据大纲的精神,圆锥曲线部分是

属于控制教学要求的内容,但目前由于考试的影响,这一部分教学的要求比较高,

如何控制教学要求是个难点高中的教学时间有限,作为全体学生都必须掌握的必修课程,应以最基础的知识和最基本的技能、能力为主,要使学

很强的难题

从学生的学习规律来说,训练不能一次完成,要循序渐进,打好基础才能有较大的发展余地,急于求成是不可取的;学生的基础、兴趣、志向都是不同的,要根据学生的实际提出恰当的教学要求,这样学生才有学习的积极性,才能使学生达到预定的教学要求

(二)注意形数结合的教学

解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在这一章的教学过程中,要时刻注意这种数学思想的教学,并注意以下几点:1.注意训练学生将几何图形的特征,用数或式表达出来,反过来,要使他们能根据点的坐标或曲线的方程,确定点的位置或曲线的性质,使学生能比较顺利地将形的问题转化为数或式的问题,将数或式的问题转化为形的问题。

2.注意在解决问题的过程中,充分利用图形。学生在解解折几何的题目时,往往在得到曲线的方程以后就把图形抛

到一边去了,不再利用图形,忽视了图形直观对启发思路的作用。例如,巳知过抛物线焦点的直线与抛物线交于两点,求这

解这个题目如果单纯用代数方法,可以完全不用图形;可是借助图

在解决解析几何的问题中,充分利用图形,有时不仅简单,而且能开阔思路

3.为了使学生在学习解析几何的过程中,以及今后的实际工作中能顺利地画出圆锥曲线的草图,教材结合圆锥曲线几何性质的教学,突出了圆锥曲线标准方程中e p b a,,,的几何意义,根据它们的几何意义来画草图就比较方便,教学时,希望能充分利用这一点

(三)注意与初中数学的衔接

本章的教学离不开根式的化简和解二元二次方程组,由于义务教育初中数学中对这两部分内容降低了要求,所以学生

解决这个问题有两个思路,一是在这一章的前面集中补讲这些内容,二是在用到这些知识的时候边用边讲例如,在列出椭圆的方程以后,出现了含两个根式的无理方程,这种方程初中代数中出现过,只是这里根号下的式子复杂些教学时适当放慢些速度,将化简

又如,在利用待定系数法求椭圆的标准方

程中的b a,时,得到以22,b

a为未知数的方程组,并且未知数在分母上,这种方程组学

生在初中没有见过,但是初中学过用换元法解方程组,若设2

21,1b y a x ==,就可以把它化为初中学过的二元一次方程组,这样问题便能够解决,教材结合具体例题的教学过程,比较详细地说明了这类方程组的解法,边用边学 这个问题解决以后,求两条曲线的交点的问题,包括求椭圆与双曲线的交点的问题就都可以解决了

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

最新如何用电饭煲做蛋糕(图解)上课讲义

如何用电饭煲做蛋糕(图解) 步骤或方法: 准备原料:鸡蛋三个,面粉满满三瓷勺,牛奶,白糖,淀粉一小勺,泡打粉一小勺(可用可不用,用了可以使蛋糕发的更好),两个大点的容器,一定要擦干。把面粉、淀粉、泡打粉均匀的掺在一起备用。 1、首先把鸡蛋蛋清和蛋黄分离在两个容器里 2、打蛋黄,加两勺白糖 3、加入大约两勺牛奶 4、加一半调配好面粉,然后拌均匀,注意不要转圈搅拌,要用勺子上下翻拌,颗粒可以用勺子压碎,拌到细腻的面糊后,再加入牛奶和剩下的面粉 5、面糊一定不能太稀,黏稠一些,拌好的就是这样子

6、然后打蛋清,打蛋清的器具一定要干净没有水,不然不容易打发,先往蛋清里加一勺白糖,用打蛋器不停的打,如果没有打蛋器,可以用三根筷子代替 7、当蛋清打到这个程度,再加入一勺白糖,如果不喜欢吃太甜可以少放一些,继续打,很辛苦的,但是打蛋清是蛋糕最后发起来的重要因素,很关键 8、蛋清打到这个程度就差不多了,打的时候感觉硬硬的转不动打蛋器的感觉,很细腻,容器倒置蛋清不会掉下来,整个过程大概需要15分钟左右。 9、把打好的蛋清分两次拌进刚才的面糊里,注意拌的时候还是不要转圈的搅拌,要用勺子上下的翻动,直至将面糊和蛋白掺均匀,再倒入另一半蛋白掺均匀 10、下面的关键,预热电饭煲,将电饭煲底和周围抹上薄薄的一层色拉油,避免蛋糕出锅时黏住电饭煲壁,按下煮饭键,让他自动弹起来,就可以倒入面糊了

11、倒入面糊,左右晃动一下,使面糊均匀的铺在电 饭煲里 12、按下电饭煲煮饭键,大约两分钟会自动弹起保温,不用管他,让他焖20分钟左右,再按下煮饭键,大概一两分钟又会弹起,再焖15-20分钟,就可以出锅了,如果你做的量比较多,可以再重复按下弹起焖10分钟左右。13、这样香喷喷的蛋糕就好了,凉几分钟把锅倒扣在盘子里,可以慢慢享用啦 蛋糕反面 蛋糕的正面 2019全国高考 - 圆锥曲线部分汇编

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线培优讲义

圆锥曲线培优讲义 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一 原点三角形面积公式 1. 已知椭圆 的离心率为,且过点 .若点M (x 0,y 0)在椭圆C 上,则点称为点M 的一个“椭点”. (1)求椭圆C 的标准方程; (2)若直线l :y=kx +m 与椭圆C 相交于A ,B 两点,且A ,B 两点的“椭点”分别为P ,Q ,以PQ 为直径的圆经过坐标原点,试求△AOB 的面积. 2. 己知椭圆 x 2+2y 2=1,过原点的两条直线 l 1 和 l 2 分别与椭圆交于点 A ,B 和 C ,D .记 △AOC 的面积为 S . (1)设 A (x 1,y 1),C (x 2,y 2).用 A ,C 的坐标表示点 C 到直线 l 1 的距 离,并证明 S =1 2∣x 1y 2?x 2y 1∣; (2)设 l 1:y =kx ,C (√33, √3 3),S =1 3,求 k 的值. (3)设 l 1 与 l 2 的斜率之积为 m ,求 m 的值,使得无论 l 1 与 l 2 如何变 动,面积 S 保持不变. 3. 已知椭圆()0,01:22 22 >>=+b b y x C αα的左、右两焦点分别为()()0,1,0,121F F -, 椭圆上有一点A 与两焦点的连线构成的21F AF ?中,满足 .12 7,12 1221π π = ∠= ∠F AF F AF (1)求椭圆C 的方程; (2)设点D C B ,,是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称,设直线OC OB CD BC ,,,的斜率分别为4321,,,k k k k ,且4321k k k k ?=?,求 22OC OB +的值. 4. 在平面直角坐标系xoy 内,动点(,)M x y 与两定点(2,0),(2,0)-,连线的斜率 之积为1 4 -

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

高中数学抛物线解题方法总结归纳

圆锥曲线抛物线 知识点归纳 1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线 的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK ==。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 特点:焦点在一次项的轴上,开口与“±2p ”方向同向 4抛物线px y 22=的图像和性质: ①焦点坐标是:?? ? ??02, p ,②准线方程是:2p x -=。 ③焦半径公式: (称为焦半径)是:02 p PF x =+, ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-3 4x 或x 2=2 9y , (2)焦点在直线x -2y -4=0 y 2=16x 或x 2=-8y ,

(3)抛物线 的焦点坐标为 ; (4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ; 或 或 . (5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当 MF MA +最小时,M 点坐标是 )4,2( 例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法 法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、, 则由抛物线定义得1212||||||||||22p p AB AF FB AC BD x x x x p =+=+=+++=++, 又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24, 1, y x y x ?=?=-?得2610x x -+=, 则126x x +=,所以||8AB =. 例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2 p x =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M , 则11||||||||||AA BB AF BF AB +=+=, 又111||||2||AA BB MM +=, ∴11 ||||2 MM AB =,即1||MM 为以AB 为直径的圆 的半径,且准线1l MM ⊥, ∴命题成立. (法二)设抛物线方程为22y px =,则焦点(,0)2 p F , 准线2 p x =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的 中点00(,)M x y ,则1212||22 p p AB x x x x p =+++=++, ∴以通过抛物线焦点的弦为直径的圆的半径1211 ||()22 r AB x x p ==++. M 1M

高二数学02-03曲线和方程练习

高二数学曲线和方程练习 【同步达纲练习】 A 级 一、选择题 1.曲线f(x,y)=0关于直线x-y-2=0时称曲线的方程为( ) A.f(y+2,x)=0 B.f(x-2,y)=0 C.f(y+2,x-2)=0 D.f(y-2,x+2)=0 2.若点M 到x 轴的距离和它到直线y=8的距离相等,则点M 的轨迹方程是( ) A.x=-4 B.x=4 C.y=-4 D.y=4 3.动点P 到x 轴,y 轴的距离之比等于非零常数k ,则动点P 的轨迹方程是( ) A.y= k x (x ≠0) B.y=kx(x ≠0) C.y=-k x (x ≠0) D.y=±kx(x ≠0) 4.方程4x 2-y 2+4x+2y=0表示的曲线是( ) A.一个点 B.两条互相平行的直线 C.两条互相垂直的直线 D.两条相交但不垂直的直线 5.已知点A(0,-1),点B 是抛物线y=2x 2+1上的一个动点,则线段AB 的中点的轨迹是 ( ) A.抛物线y=2x 2 B.抛物线y=4x 2 C.抛物线y=6x 2 D.抛物线y=8x 2 二、填空题 6.已知A(-1,0),B(2,4),且△ABC 的面积是10,则点C 的轨迹方程是 . 7.Rt △ABC 的斜边AB 的长度等于定值C ,顶点A 、B 在x 轴,y 轴上滑动,则斜边AB 的中点M 的轨迹方程为 8.到两平行线3x+2y-1=0和6x+4y-3=0的距离相等的点的轨迹方程为 . 三、解答题 9.已知直线l:4x + 3 y =1,M 是直线l 上的一个动点,过点M 作x 轴,y 轴的垂线,垂足分别为A 、B 求把有向线段AB 分成的比λ=2的动点P 的轨迹方程. 10.经过点P(3,2)的一条动直线分别交x 轴、y 轴于点A 、B ,M 是线段AB 的中点,连结OM 并延长至点N ,使|ON |=2|OM |,求点N 的轨迹方程. AA 级 一、选择题 1.下列各点中,在曲线x 2-xy+2y+1=0上的点是( ) A.(2,-2) B.(4,-3) C.(3,10) D.(-2,5) 2.已知坐标满足方程f(x,y)=0的点都在曲线C 上,则( ) A.曲线C 上的点的坐标都适合方程f(x,y)=0

高考数学之圆锥曲线常见习题及解析(经典版)

高考数学 圆锥曲线常见习题及解析 (经典版)

椭圆 一、选择题: 1. 已知椭圆方程22143x y +=,双曲线22 221(0,0)x y a b a b -=>>的焦点是椭圆的顶点, 顶点是椭圆的焦点,则双曲线的离心率为 A.2 B.3 C. 2 D. 3 2.双曲线22 221(0,0)x y a b a b -=>> 的左、右焦点分别为F 1,F 2,渐近线分别为12,l l ,点P 在第 一象限内且在1l 上,若2l ⊥PF 1,2l //PF 2,则双曲线的离心率是 ( ) A .5 B .2 C .3 D .2 【答案】B 【解析】双曲线的左焦点1(,0)F c -,右焦点2(,0)F c ,渐近线1:b l y x a = ,2:b l y x a =-,因为点P 在第一象限内且在1l 上,所以设000(,),0P x y x >,因为2l ⊥PF 1,2l //PF 2,所以12PF PF ⊥,即121 2 OP F F c ==, 即22200x y c +=,又00b y x a =,代入得222 00()b x x c a +=,解得00,x a y b ==,即(,)P a b 。所以 1PF b k a c = +,2l 的斜率为b a -,因为2l ⊥PF1,所以()1b b a c a ?-=-+,即2222()b a a c a ac c a =+=+=-,所以2220c ac a --=,所以220e e --=,解得2e =,所以双曲线 的离心率2e =,所以选B. 3.已知双曲线()0,012222>>=-b a b y a x 的一条渐近线的斜率为2,且右焦点与抛物线x y 342 =的焦 点重合,则该双曲线的离心率等于 A .2 B .3 C .2 D .2 3

圆锥曲线综合高考实战篇圆锥曲线实用讲义

前言 编者编写本书的初衷是以学生为中心,实用性优先,没有花里胡哨的冗杂 结论。本书筛选了2010-2018年的各地高考圆锥曲线大题并适当归类讲解,删去了思维跨度大,计算量极高的题,总计一百余题。考虑到高中生学习繁忙,编者尽可能的将本书压缩到了一百余页,并结合丰富的举例,偏向于去教学生怎么思考,往哪个方向思考,怎么去分析思路,并予以启发。 不建议基础知识不牢且计算功底弱的学生看这本书,否则效果适得其反。如果连一些基本算理都搞不清的话,则是开卷无益。 本书前半部分的讲解足以解决后半部分的习题,所以后半部分则以题目为主,部分内容借鉴了网上公开的免费视频与免费文档,对其分享的思路表示非常感谢!另外,编者对于圆锥曲线的第二第三定义及其衍生的结论并没有去细致讲解,请同学们依据课本自行完善。 由于本书核心部分来自孙斌老师。我做二次处理而成,加入了答案和少量自己的见解。如有疏漏与错误,还请包涵与指正。QQ:21113823 湖北省广水实高李大丹 目录 第一章题目信息转化为坐标表达/2 1.1距离公式与弦长公式/3 1.2题目核心条件转化为坐标/9 1.3转化为坐标后,怎么处理/16第二章获得点的坐标解决问题/25 2.1通过表示点的坐标解决问题/25 2.2怎么获取点的坐标/26 2.3设点与设直线结合起来/41 第三章定点定值/49 3.1什么样的直线过定点/49 3.2怎么解决直线过定点/50 3.3圆过定点与定值举例/58 第四章优化计算/60 4.1反设直线/60 4.2简化运算的技巧/63第五章面积与最值/66 5.1三角形的面积表达/66 5.2求最值之变量化一/77 5.3求最值之均值不等式/79 5.4求最值之借助导数/83第六章切线/86 第七章轨迹方程/98 第八章借助几何分析解决问题/108第九章探索类问题/136 第十章对称问题/143 第十一章弦中点与点差法/149

人教新课标版数学高二 选修2-1练习 2.1.2曲线与方程求曲线的方程

课时跟踪检测(六)曲线与方程求曲线的方程 层级一学业水平达标 1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)() A.在直线l上,但不在曲线C上 B.在直线l上,也在曲线C上 C.不在直线l上,也不在曲线C上 D.不在直线l上,但在曲线C上 解析:选B将点M(2,1)的坐标代入方程知M∈l,M∈C. 2.方程xy2-x2y=2x所表示的曲线() A.关于x轴对称B.关于y轴对称 C.关于原点对称D.关于x-y=0对称 解析:选C同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称. 3.方程x+|y-1|=0表示的曲线是() 解析:选B方程x+|y-1|=0可化为|y-1|=-x≥0,则x≤0,因此选B. 4.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足|MN|·|MP|+MN·NP =0,则动点P(x,y)的轨迹方程为() A.y2=8x B.y2=-8x C.y2=4x D.y2=-4x 解析:选B设点P的坐标为(x,y),则MN=(4,0),MP=(x+2,y),NP=(x-2,y), ∴|MN|=4,|MP|=(x+2)2+y2,MN·NP=4(x-2). 根据已知条件得4 (x+2)2+y2=4(2-x). 整理得y2=-8x.∴点P的轨迹方程为y2=-8x.

5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ) A .4x -3y -16=0或4x -3y +16=0 B .4x -3y -16=0或4x -3y +24=0 C .4x -3y +16=0或4x -3y +24=0 D .4x -3y +16=0或4x -3y -24=0 解析:选B 由两点式,得直线AB 的方程是 y -0 4-0=x +12+1 ,即4x -3y +4=0, 线段AB 的长度|AB |=(2+1)2+42=5. 设C 的坐标为(x ,y ), 则1 2×5×|4x -3y +4|5 =10, 即4x -3y -16=0或4x -3y +24=0. 6.方程x 2+2y 2-4x +8y +12=0表示的图形为________. 解析:对方程左边配方得(x -2)2+2(y +2)2=0. ∵(x -2)2≥0,2(y +2)2≥0, ∴????? (x -2)2=0,2(y +2)2 =0,解得????? x =2,y =-2. 从而方程表示的图形是一个点(2,-2). 答案:一个点(2,-2) 7.已知两点M (-2,0),N (2,0),点P 满足PM ·PN =12,则点P 的轨迹方程为________________. 解析:设P (x ,y ),则PM =(-2-x ,-y ),PN =(2-x ,-y ). 于是PM · PN =(-2-x )(2-x )+y 2=12, 化简得x 2+y 2=16,此即为所求点P 的轨迹方程. 答案:x 2+y 2=16 8.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________________. 解析:设M (x ,y ),B (x 0,y 0),则y 0=2x 20 +1.

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

高二数学教案 曲线与方程

曲线和方程 教学目标 1.使学生了解曲线的点集与方程的解集之间的关系,从而掌握“曲线的方程”与“方程的曲线”这两个概念. 2.使学生掌握证明已知曲线C的方程是f(x,y)=0的方法和步骤. 3.通过曲线和方程概念的知识形成过程,培养学生合情推理能力、数学交流能力、探索能力,确立“数形结合”的思想方法,并进一步提高逻辑思维能力. 教学重点与难点 对“曲线的方程”、“方程的曲线”定个中两个关系的理解. 教学过程 师:解析几何重要内容之一是利用代数方法来研究几何中曲线的问题.即通过建立坐标系,利用平面内点和有序实数对之间一一对应关系,建立曲线的方程,并通过对方程的讨论来研究曲线的几何性质.为此,在第二章“圆锥曲线”的第一节,先建立曲线和方程的关系. 这里,先看上堂课后留的两个思考题.(板书) 例1 (1)画出两坐标轴所成的角在第一、三象限的平分线l,并写出其方程. (2)画出函数y=2x2(-1≤x≤2)的图象C. (选择二位学生自制的计算机软盘或投影片,请二位学生各自操作,展示在投影仪上.取较好的解答定格,如图2-1.)

师:这二位同学解答很好.请大家对照直线l及方程,对照抛物线的一倍分C及方程,谈谈符合某种条件的点的集合L和C分别与其方程是怎样地联系起来的?(鼓励学生观察、联想,进行数学交流.学生讨论后选其两个回答,再口述一遍.) 生甲:如果M(x0,y0)是l上的任意一点,它到两个坐标轴的距离一定相等,因此x0=y0,那么它的坐标(x0,y0)是方程x-y=0的解;反过来,如果(x0,y0)是方程x-y=0的解,即x0,y0,那么以这个解为坐标的点到两坐标轴的距离相等,它一定在这条平分线l上.为此把直线l与方程x-y=0密切地联系了起来. 生乙:如果点M(x0,y0)是C上的点,那么(x0,y0)一定是y=2x2的解;反过来,如果(x0,y0)是方程y=2x2的解,那么以它为坐标的点一定在C上. 师:学生甲的回答清楚地说明了直线l完整地表示方程x-y=0,而方程x-y=0完整地表示了直线l.但学生乙的回答是否完满,请同学们思考,发表见解,并用最短的语言写在投影片上.(老师巡视后选一张投影展示定格.) 学生乙的回答忽略了-1≤x≤2,从而点集C与方程y=2x2的解的集合G无法建立一一对应关系. 师:请这位同学进一步阐明自己的见解. 生:就本题而言,如(3,18)∈G,但P(3,18)∈C.方程漏掉了制约条件-1≤x≤2.为此正确的理解是:如果点M(x0,y0)是C上的点,那么(x0,y0)一定是y=2x2(-1≤x≤2)的解;反过来,如果(x0,y0)是方程y=2x2(-1≤x≤2)的解,那么以它的坐标为点一定在C上. 师:这样的见解才确切地反映了点集C与方程y=2x2(-1≤x≤2)的解集G是一一对应的.从而,抛物线的一部分C完整地表示了方程y=2x2(-1≤x≤2),而方程 y=2x2(-1≤x≤2)完整地表示了C.现在我们来考虑以下这个问题:点集C还是抛物线

圆锥曲线经典小题教学文案

圆锥曲线经典小题 一、选择题 1.已知双曲线)0,0(1:2222>>=-b a b y a x C 的离心率为,25则C 的渐近线方程为( ) A .x y 41±= B .x y 31±= C .x y 2 1±= D .x y ±= 2.已知,40π θ<<则双曲线1cos sin :22221=-θθy x C 与1sin cos :22 222=-θθx y C ( ) A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等 3.椭圆14 22 =+y x 的两个焦点为,,21F F 过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则=||2PF ( ) A .23 B .3 C .2 7 D .4 4.已知双曲线1422 2=-b y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) A .5 B .24 C .3 D .5 5.设1F 和2F 为双曲线)0,0(122 22>>=-b a b y a x 的两个焦点,若)2,0(,,21b P F F 是正三角形的三个顶点,则双曲线的离心率为( ) A .23 B .2 C .2 5 D .3 6.已知双曲线12 2 2=-y x 的焦点为,,21F F 点M 在双曲线上,且,021=?MF MF 则点M 到x 轴的距离为( ) A .3 4 B .3 5 C .332 D .3 7.设双曲线的左焦点为F ,虚轴的一个端点为B ,右顶点为A ,如果直线FB 与BA 垂直,那么此双曲线的离心率为( ) A .2 B .3 C . 213+ D .215+ 8.已知双曲线,122=-y x 点21,F F 为其两个焦点,点P 为双曲线上一点,若,21PF PF ⊥ 则||1PF ||2PF +的值为( )

高中数学竞赛讲义-直线和圆、圆锥曲线(练习题)

§18直线和圆,圆锥曲线 课后练习 1.已知点A 为双曲线122=-y x 的左顶点,点B 和点C 在双曲线的右支上,ABC ?是等边三角形,则ABC ?的面积是 (A ) 33 (B )2 33 (C )33 (D )36 2.平面上整点(纵、横坐标都是整数的点)到直线5 4 35+=x y 的距离中的最小值是 (A )17034 (B )8534 (C )201 (D )30 1 3.若实数x, y 满足(x + 5)2+(y – 12)2=142,则x 2+y 2的最小值为 (A) 2 (B) 1 (C) 3 (D) 2 4.直线13 4=+y x 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有 (A) 1个 (B) 2个 (C) 3个 (D) 4个 5.设a ,b ∈R ,ab ≠0,那么直线ax -y +b =0和曲线bx 2+ay 2=ab 的图形是 A B 6.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60o 的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于 A . 3 16 B . 3 8 C . 3 3 16 D .38 7.方程 13 cos 2cos 3sin 2sin 2 2=-+-y x 表示的曲线是 A. 焦点在x 轴上的椭圆 B. 焦点在x 轴上的双曲线 C. 焦点在y 轴上的椭圆 D. 焦点在y 轴上的双曲线 8.在椭圆)0(122 22>>=+b a b y a x 中,记左焦点为F ,右顶点为A ,短轴上方的端点为B 。若 该椭圆的离心率是 2 1 5-,则ABF ∠= 。 9.设F 1,F 2是椭圆14 92 2=+y x 的两个焦点,P 是椭圆上的点,且|PF 1| : |PF 2|=2 : 1,则三 角形?PF 1F 2的面积等于______________.

高二数学 求曲线的方程

课题:求曲线的方程 教学目标:(1)能叙述求曲线方程的一般步骤,并能根据所给条件,选择适当的坐标系,求出曲线的方程。 (2)在问题解决过程中,培养学生发散性思维和转化、归 纳、数形结合等数学思想方法,提高分析、解决问题能力。 (3)在问题解决过程中,培养学生积极探索和团结协作的 科学精神。 教学重点:求曲线方程的基本方法和步骤。 教学难点:由已知条件求曲线的方程。 教学方法:启发式。 教学手段:运用多媒体技术和实物投影仪。 教学过程: 举出实例(放录象剪辑): (1)鸟类迁徙 (2)鱼群洄游 (3)行星运动 (4)卫星发射 (5)导弹攻击 (6)台风移动 思考:(1)这些现象有何共同之处? (2)是否有必要研究这些现象?(揭示研究物体运动轨迹的 意义。) 揭示课题:求曲线的方程 引例:在南沙群岛中,甲岛与乙岛相距8海里,一艘军舰在海面上巡逻。巡逻过程中,从军舰上看甲、乙两岛,保持视角为直角。你能否为军舰巡逻的路线写一个方程? 分析:如果把甲、乙两岛和军舰看成三个点的话,甲、乙两岛是两个定点,而军舰则是一个动点。动点的运动具有一定的规律。 猜测: 军舰巡逻的路线是什么轨迹? (电脑演示军舰巡逻的动画效果。) 问题:如何利用动点运动的规律求出其运动轨迹方程?(引而不发) 例1.设A、B两点的坐标是(-1,-1)、(3,7),求线段AB的垂直平分线的方程。 (先请学生利用所学知识求直线方程。) 思考:(1)如果把这条垂直平分线看成是动点运动的轨迹,那么,这条垂直平分线上任意一点应该满足怎样的几何条件?

(2)几何条件能否转化为代数方程? 用什么方法进行转 化? (3)用新方法求得的直线方程,是否符合要求?为什么? (提示:方程与曲线构成对应关系,必须满足什么条件?) (学生回答时,教师边规范语言表达边板书。) 解题反思:你能否归纳一下求曲线方程的一般步骤? (1)设点----用(x,y)表示曲线上的任意一点M的坐标; (2)寻找条件----写出适合条件P的点M的集合P={ M |p(M)}; (3)列出方程----用坐标表示条件p(M),列出方程f(x,y)=0; (4)化简----化方程f(x,y)=0为最简形式; (5)证明----证明以化简后的方程的解为坐标的点都是曲线上的点。 例2.已知点C到直线L的距离为4,若动点P到点C和直线L 的距离相等,求动点P的轨迹方程。 思考:(1)与例1相比,有什么显著的不同点? (2) 你准备如何建立坐标系? 为什么? (3) 比较所求轨迹方程是否有区别? 从中得到什么体会? (根据思考题,在独立思考、相互交流讨论的基础上,教师 适时点拨,学生自主解决。) 解题反思: (1) 没有确定的坐标系时,要求方程首先必须建立坐标 系; (2) 坐标系选取得适当,可以使运算简单,所得到的方程 也较简单; (3) 同一条曲线,在不同的坐标系中一般会有不同的方 程。 根据例2的求解过程,请学生对求曲线方程的一般步骤进行充实: (1)改为:“建系设点----建立适当的直角坐标系, 用(x,y)表示 曲线上的任意一点M的坐标;” 阅读教材:第52—53页。

圆锥曲线的综合经典例题(有答案)

经典例题精析 类型一:求曲线的标准方程 1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横 坐标为的椭圆标准方程. 思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量). 解析: 方法一:因为有焦点为, 所以设椭圆方程为,, 由,消去得, 所以 解得 故椭圆标准方程为 方法二:设椭圆方程,,, 因为弦AB中点,所以, 由得,(点差法) 所以 又

故椭圆标准方程为. 举一反三: 【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直, 且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程. 【答案】依题意设椭圆标准方程为(), 并有,解之得,, ∴椭圆标准方程为 2.根据下列条件,求双曲线的标准方程. (1)与双曲线有共同的渐近线,且过点; (2)与双曲线有公共焦点,且过点 解析: (1)解法一:设双曲线的方程为 由题意,得,解得, 所以双曲线的方程为 解法二:设所求双曲线方程为(),

将点代入得, 所以双曲线方程为即 (2)解法一:设双曲线方程为-=1 由题意易求 又双曲线过点,∴ 又∵,∴, 故所求双曲线的方程为. 解法二:设双曲线方程为, 将点代入得, 所以双曲线方程为. 总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程. 然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程. (1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及 准线)之间的 关系,并注意方程思想的应用. (2)若已知双曲线的渐近线方程,可设双曲线方程为 (). 举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程. (1)一渐近线方程为,且双曲线过点.

高考一轮复习必备圆锥曲线讲义

Ⅰ复习提问 一、直线l 及圆锥曲线C 的位置关系的判断 判断直线l 及圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到关于一个变量的一元二次方程,即联立0 (,)0 Ax By C F x y ++=?? =?消去y 后得20ax bx c ++= (1)当0a =时,即得到一个一元一次方程,则l 及C 相交,有且只有一个交点,此时,若C 为双曲线,则直线l 及双曲线的渐近线平行;若C 为抛物线,则直线l 抛物线的对称轴平行。 (2)当0a ≠时,0?>,直线l 及曲线C 有两个不同的交点;0?=,直线l 及曲线C 相切,即有唯一公共点(切点);0?<,直线l 及曲线C 相离。 二、圆锥曲线的弦长公式 相交弦AB 的弦长 1212AB AB AB x y y ? ?=???=???=-==-??? 三、中点弦所在直线的斜率 (1)若椭圆方程为22 221(0)x y a b a b +=>>时,以P 00(x ,y )为中点的弦所在直线斜率 202(0)b k y a =-≠0 0x y ,即22op b k k a =-;若椭圆方程为22221(0)y x a b a b +=>>时,相应结论为 202(0)a k y b =-≠0 x y ,即22op a k k b =-;

(2)P 00(x ,y )是双曲线22221x y a b -=内部一点,以P 为中点的弦所在直线斜率202(0)b k y a =≠0 x y , 即22op b k k a =; 若双曲线方程为22221y x a b -=时,相应结论为202(0)a k y b =≠0 x y ,即22op a k k b =; (3))P 00(x ,y )是抛物线22y px =内部一点,以P 为中点的弦所在直线斜率0(0)p k y =≠0 y ; 若方程为22x py =时,相应结论为k p = x 。 Ⅱ 题型及方法 一、直线及圆锥曲线的位置关系 (1)直线及圆锥曲线有两个不同的公共点的判断:通法为直线代入曲线判断0?>;另一方法就是数形结合,如直线及双曲线有两个不同的公共点,可通过判定直线的斜率及双曲线渐近线的斜率大小得到。 (2)直线及圆锥曲线只有一个公共点则直线及双曲线的一条渐近线平行,或直线及抛物线的对称轴平行,或直线及圆锥曲线相切。 例1.已知两点5(1,)4M ,5(4,)4N --, 给出下列曲线方程:①4210x y +-=②22 +y =3x ③2212x y += ④2 212 x y -=在曲线上存在点P ,满足PM PN =的所有曲线方程是 (填序号)。 练1:对于抛物线C :24y x =,我们称满足2004y x <的点M (00,x y )在抛物线的内部,若点M (00,x y )在抛物线的内部,则直线l :002()y y x x =+及抛物线C 的位置关系是 。

相关文档
最新文档