化工工艺学教案

化工工艺学教案
化工工艺学教案

化工工艺学教案(无机部分)

学院、系:化学与制药工程学院

任课教师:赵风云

授课专业:化学工程与工艺

课程学分:

课程总学时:64

课程周学时: 4

日2 月9 年2008

合成氨教学进程

纸用案教学大技科北河.

河北科技大学教案用纸

第一章绪论

上次课复习:了解:两段转化的工艺目的。第三卷》姜圣阶----- 第一《合成氨工学料.氨的性质和烃类蒸汽转化法制取原料气的原理及其特点,技大同上参考资料.能量回收同上参考资料.教学要求:变换原理同上参考资料.

煤化工工艺学教案

《煤化工工艺学》教案 中文名称:煤化工工艺学 英文名称:Chemical Technology of coal 授课专业:化学工艺 学时:32 一、课程的性质和目的: 煤化工工艺学是煤化工专业学生的专业课,是为了适应现代化工行业的发展需要,培养具有化工设计基本思想和产品开发能力的专门人才,为毕业生尽快适应就业后工作要求、今后进一步的学习而设立的。可供从事煤化工利用专业设计、生产、科研的技术人员及有关专业师生参考。 通过对煤低温干馏、炼焦、炼焦化学产品回收和精制、煤的气化、煤的间接液化、煤的直接液化、煤的碳素制品和煤化工生产的污染和防治等的生产原理、生产方法、工艺计算、操作条件及主要设备等的介绍,使学生具备煤化工工艺学的坚实基础,对煤化学工业的原料选择、工艺路线的选择、典型单元操作及化工工艺的实现等有深刻的理解,具备对工艺过程进行分析、改进、开发新产品等能力,以掌握煤化工工艺的开发思想和思路为重点,增强其独立思考的能力、分析问题、解决问题的能力,为学生就业和进一步的发展奠定良好基础。 二、课程的教学容、各章容及相应学时数 本课程由下列7章组成: 1章绪论1学时 2章煤的低温干馏5学时 3章炼焦8学时 4章炼焦化学产品的回收与精制6学时 5章煤的气化6学时 6章煤间接液化4学时 7章煤直接液化2学时 根据本课程的特点,组成为下列容: 1绪论

§1.1 煤炭资源 §1.2 煤化工发展简史 §1.3 煤化工的畴 §1.4 本书简介 了解煤化工工业发展历史、煤化工工业在国民经济中的地位,煤化工发展趋势。 掌握化学加工工业的基本概况、特点,掌握石油、煤、天然气等能源概况。 重点:煤化工的畴。 引言:煤化学工业是以煤为原料经过化学加工实现煤综合利用的工业,简称煤化工。煤化工包括炼焦化学工业、煤气工业、煤制人造石油工业、煤制化学品工业以及其他煤加工制品工业等。、 煤化工行业发展现状:1.煤炭逐步由燃料为主向燃料和原料并举过渡;2.近些年来,基于煤炭气化的新型煤化工得到了快速发展;3."十一五"期间,在煤炭液化、煤制烯烃、煤制乙二醇、煤制天然气等方面的示工程取得了阶段性成果。 煤化工发展趋势。1.产业结构调整与升级:从长远看,钢铁行业受出口疲软、房地产下行影响,库存增加,利润和开工率下降,焦炭和兰炭行业的需求和利润空间受到影响;合成氨\尿素、甲醇等产业产能过剩,因此,传统煤化工行业面临落后产能淘汰、技术升级换代。2.环境保护要求煤化工走清洁生产:更加严格的排放标准;落后技术的淘汰如常压固定床气化技术;水资源消耗的减量化:空冷技术、中水回用;粉尘治理、有机废水处理和脱硫脱硝技术的应用。3.能源效率提高:煤炭分级利用:焦油--固体燃料--化工产品;煤炭多联产:电力、热力、化工产品;工程设计的进一步优化;节能技术的应用。4.煤化工对石油化工替代性增强:煤气化的平台技术继续多样化与成熟化;煤化工产品技术多样化如芳烃、乙醇等;已有技术的继续进步:煤焦油的分离、加氢;乙二醇技术成熟;煤制烯烃、煤制油、煤制天然气等产业快速发展。 §1.1 煤炭资源 煤是地球上能得到的最丰富的化石燃料。按探明储量世界煤炭资源的储量、密度,北半球高于南半球,特别是高度集中在亚洲、北美洲和欧洲的中纬度地带,合占世界煤炭资源的96%,按硬煤经济可采储量计,以中国(占11%)、美国(占23.1%)和俄罗斯最为丰富,次为印度、南非、澳大利亚、波兰、乌克兰、德国等9国共占90%。中国1991年末煤炭探明储量为9667亿吨,其中、和分别占27%、21%和16%。

化工工艺学知识点

化工工艺学知识点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章粗原料气制取一、固体燃料气化法 名词解释:煤气化:使煤与气化剂作用,进行各种化学反应,把煤炭转变为燃料 用煤气或合成用煤气。 加氮空气;水蒸汽和空气同时加入,空气的加入增加了气体中N的含 量,用来调节原料气中氢氮比,制得合格煤气 标准煤:含碳量为84%的煤(每千克标准煤的热值为7000千卡)1.煤气化有几种工业方法各有什么特点 蓄热法:将空气和水蒸气分别送入煤层,也称间歇式制气法 富氧空气气化法:用富氧空气或纯氧代替空气进行煤气化 外热法: 利用其他廉价高温热源来为煤气化提供热能,尚未达到工业化阶段 2.气化炉有哪些床层类型,描述各自的特点工业用煤气化炉有几种类型 固定床:气体从颗粒间的缝隙中穿过,颗粒保持静止 流化床:增大气速,颗粒开始全部悬浮于气流中,而且床层的高度随气速的增大而升高 气流床:气流速度增大至某一极限值时,悬浮于气流中的颗粒被气流带出 间歇式气化炉、鲁奇炉、温克勒炉、K-T炉、德士古炉 3.煤的气化剂有哪些用不同气化剂进行煤气化,气体产物各是什么 空气和水蒸气

空气煤气(N2、CO)、水煤气(H2、CO)、混合煤气、半水煤气 4.固定床煤气化炉燃料层如何分区各区进行什么过程 干燥区:使新入煤炉中的水分蒸发 干馏区:煤开始热解,逸出以烃类为主的挥发分,而燃料本身开始碳化 气化区:煤气化的主要反应在气化区进行 灰渣区:灰渣于该区域出炉 5.固定床气化炉燃料最下层是什麽区其有何作用 灰渣区可预热从底部进入的气化剂并保持不因过热而变形 6.间歇式制半水煤气的工作循环是什么为什么循环时间如何分配 工业上将自上一次开始送入空气至下一次再送入空气为止,称为一个循环。每个循环有五个阶段,吹风阶段、蒸汽一次上吹、蒸汽下吹、蒸汽二次上吹、空气吹净7.什麽是加氮空气其作用为何使用中应注意什麽事项 水蒸汽和空气同时加入,空气的加入增加了气体中N的含量。 用来调节原料气中氢氮比,制得合格煤气 使炉温下降慢调节合成氨气体成分,严格控制氮含量,以免引起事故 8.德士古炉废热如何回收? 直接激冷法、间接冷却法、间接冷却和直接淬冷 9.画出间歇式煤气化、德士古炉及谢尔废热锅炉连续气化工艺制备合成氨流程,为什么后两者流程有差别? P70P72 二、一氧化碳变换

化工工艺学期末考试总结(1)

《化工工艺学》 一、填空题 1. 空间速度的大小影响甲醇合成反应的选择性和转化率。 2. 由一氧化碳和氢气等气体组成的混合物称为合成气。 3. 芳烃系列化工产品的生产就是以苯、甲苯和 二甲苯为主要原料生产它们的衍生物。 4. 石油烃热裂解的操作条件宜采用高温、短停留时间、低烃分压。 5. 脱除酸性气体的方法有碱洗法和乙醇胺水溶液吸附法。 6. 天然气转化催化剂,其原始活性组分是,需经还原生成才具有活性。 7. 按照对目的产品的不同要求,工业催化重整装置分为生产芳烃为主的化工型,以生产高辛烷值汽油为主的燃料型和包括副产氢气的利用与化工燃料两种产品兼顾的综合型三种。 8. 高含量的烷烃,低含量的烯烃和芳烃是理想的裂解原料。 9. 氨合成工艺包括原料气制备、原料气净化、原料气压缩和合成。

10.原油的常减压蒸馏过程只是物理过程,并不发生化学变化,所以得到的轻质燃料无论是数量和质量都不能满足要求。 11. 变换工段原则流程构成应包括:加入蒸汽和热量回收系统。 12. 传统蒸汽转化法制得的粗原料气应满足:残余甲烷含量小于0.5% 、(H2)2在 2.8~3.1 。 13. 以空气为气化剂与碳反应生成的气体称为空气煤气。 14. 低温甲醇洗涤法脱碳过程中,甲醇富液的再生有闪蒸再生、_ 汽提再生 _、_热再生_三种。 15.石油烃热裂解的操作条件宜采用高温、短停留时间和低烃分压。 16. 有机化工原料来源主要有天然气、石油、煤、农副产品。 18. 乙烯直接氧化过程的主副反应都是强烈的放热反应,且副反应(深度氧化) 防热量是主反应的十几倍。 19. 第二换热网络是指以_ _为介质将变换、精炼和氨合成三个工序联系起来,以更合理充分利用变换和氨合成反应热,达到节能降耗的目的。 20. 天然气转化制气,一段转化炉中猪尾管的作用是

2019化工工艺学知识点

精心整理 第二章粗原料气制取 一、固体燃料气化法 名词解释:煤气化:使煤与气化剂作用,进行各种化学反应,把煤炭转变为燃料 用煤气或合成用煤气。 加氮空气;水蒸汽和空气同时加入,空气的加入增加了气体中N的含 量,用来调节原料气中氢氮比,制得合格煤气 标准煤:含碳量为84%的煤(每千克标准煤的热值为7000千卡) 1 外热法: 2 而升高 3 空气和水蒸气 空气煤气(N2、CO)、水煤气( 4 干燥区: 气化区: 5.固定床气化炉燃料最下层是什麽区?其有何作用? 灰渣区可预热从底部进入的气化剂并保持不因过热而变形 6.间歇式制半水煤气的工作循环是什么?为什么?循环时间如何分配? 工业上将自上一次开始送入空气至下一次再送入空气为止,称为一个循环。每个循环有五个阶段,吹风阶段、蒸汽一次上吹、蒸汽下吹、蒸汽二次上吹、空气吹净7.什麽是加氮空气?其作用为何?使用中应注意什麽事项? 水蒸汽和空气同时加入,空气的加入增加了气体中N的含量。 用来调节原料气中氢氮比,制得合格煤气 使炉温下降慢调节合成氨气体成分,严格控制氮含量,以免引起事故

精心整理 8.德士古炉废热如何回收? 直接激冷法、间接冷却法、间接冷却和直接淬冷 9.画出间歇式煤气化、德士古炉及谢尔废热锅炉连续气化工艺制备合成氨流程,为什么后两者流程有差别? P70P72 二、一氧化碳变换 1、名词解释:高温变换:CO在320~350℃变换,使CO含量低于3%。使用Fe-Cr 催化剂,使大 部分CO转化为CO2H2O 低温变换:CO在230~280℃变换,使CO含量低于0.3%,使用Cu-Zn 催化剂 耐硫变换:宽温变换在 2、 以Fe2O3 3、 小的铜结晶- 温度下催化CO 稳定剂 4 5.为什麽要严格控制还原条件,氢气含量按程序逐步提高? 6 为了尽可能接近最佳温度线进行反应,可采用分段冷却。段数越多,越接近最佳反应温度线 7.为什么低温变换温度要高于露点温度?有什么危害? 当气体降温进入低变系统时,就有可能达到该条件下的露点温度而析出液滴。液滴凝聚于催化剂的表面,造成催化剂的破裂粉碎引起床层阻力增加,以及生成铜氨络合物而使催化剂活性减低。所以低变催化剂的操作温度不但受本身活性温度的限制,而且还必须高于气体的露点温度 8.以煤为原料制气,为什么高温变换要分段进行?而低温变换不必分段进行? 以煤气化制得的合成氨原料气,CO含量较高,需采用多段中温变换。用铜氨液最终清除CO,该法允许变换气CO含量较高,故不设低温变换。低温变换过程温升很小,催化剂不必分段

煤化工工艺学 答案

答案 石嘴山联合学院(2014-2015)第一学年期终考试 《煤化工工艺学》考试试题(A)卷 一、填空题(每小题2分,共计40分) 1、煤气、焦油、粗苯、焦炭 2、气体、液体、固体燃料、化学品 3、外热式、内热式 4、传导传热对流传热辐射传热 5、长焰煤 6、裂解反应缩聚反应缩聚反应 7. 分解、缩聚、固化 二、判断题(每小题3分,共计27分) 1、× 2、× 3、√ 4、√ 5、√ 6、√ 7、√ 8、× 9、√ 三、简答题(共计33分) 1、以气、肥煤为基础煤种,适当的配入焦煤,使黏结成分、瘦化成分比例适当,并尽量多配高挥发分弱黏结煤 2、 (1)气体反应物向固体(碳)表面转移或者扩散 (2)气体反应物被吸附在固体(碳)的表面上 (3)被吸附的气体反应物在固体(碳)表面起反应而形成中间配合物 (4)中间配合物的分解或与气相中达到固体(碳)表面的气体分子发生反应(5)反应产物从固体(碳)表面解吸并扩散到气体主体 3、煤炭气化是一个热化学的过程,是指煤在特定的设备内,在一定温度及压力下使煤中的有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为以CO、H2、CH4等可燃气体为主要成分的生产过程 宁夏第一工业学校(2014-2015)第一学年期终考试 《煤化工工艺学》考试试题(B)卷 一、填空题(每小题2分,共计40分) 1、传导传热对流传热辐射传热 2、土法炼焦倒焰式废热式蓄热式 3、隔绝空气1000℃焦炭化学产品煤气 4、炼焦化学工业煤气工业煤制人造石油工业煤制化学品工业 5、非均相反应均相反应 6、裂解反应缩聚反应 二、判断题(每小题3分,共计27分) 1、√ 2、√ 3、× 4、√ 5、× 6、√ 7、√ 8、√ 9、√ 三、简答题(共计33分) 1、以气、肥煤为基础煤种,适当的配入焦煤,使黏结成分、瘦化成分比例适当,并尽量多配高挥发分弱黏结煤 2、

乙苯脱氢制苯乙烯

乙苯脱氢制苯乙烯实验指导书 一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 3、掌握乙苯脱氢制苯乙烯的转化率、选择性、收率与反应温度的关系;找出最适宜的反应温度区域。 4、了解气相色谱分析方法。 二、实验的综合知识点 完成本实验的测试和数据处理与分析需要综合应用以下知识: (1)《化工热力学》关于反应工艺参数对平衡常数的影响,工艺参数与平衡组成间的关系。 (2)《化学反应工程》关于反应转化率、收率、选择性等概念及其计算、绝热式固定床催化反应器的特点。 (3)《化工工艺学》关于加氢、脱氢反应的一般规律,乙苯脱氢制苯乙烯的基本原理、反应条件选择、工艺流程和反应器等。 (4)《催化剂工程导论》关于工业催化剂的失活原因及再生方法。 (5)《仪器分析》关于气相色谱分析的测试方法。 三、实验原理 1、本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响本反应的因素 (1)温度的影响 乙苯脱氢反应为吸热反应,?H o >0,从平衡常数与温度的关系式20ln RT H T K p p ?= ???? ????可知,

提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式Kp=Kn= γ? ? ? ? ? ? ? ∑i n P 总可知,当?γ> 0时,降低总压P总可使Kn增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。 (3)空速的影响 乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,故需采用较高的空速,以提高选择性。适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 3、催化剂 本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 四、预习与思考 1、乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的,工业上又是如何来实现的? 2、对本反应而言是体积增大还是减小?加压有利还是减压有利,工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压? 3、在本实验中你认为有哪几种液体产物生成?有哪几种气体产物生成?如何分析? 4、进行反应物料衡算,需要—些什么数据?如何搜集并进行处理? 五、实验装置及流程 乙苯脱氢制苯乙烯实验装置及流程见图1。 六、实验步骤及方法 1、反应条件控制 汽化温度300℃,脱氢反应温度540~600℃,水﹕乙苯=1.5﹕1(体积比),相当于乙苯加料0.5mL/min,蒸馏水0.75 mL/min (50毫升催化剂)。 2、操作步骤 (1)了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。 (2)接通电源,使汽化器、反应器分别逐步升温至预定的温度,同时打开冷却水。 (3)分别校正蒸馏水和乙苯的流量(0.75mL/min和0.5mL/min) (4)当汽化器温度达到300℃后,反应器温度达400℃左右开始加入已校正好流量的蒸馏水。当反应温度升至500℃左右,加入已校正好流量的乙苯,继续升温至540℃使之稳定半小时。 (5)反应开始每隔10~20分钟取一次数据,每个温度至少取两个数据,粗产品从分离器中放入量筒内。然后用分液漏斗分去水层,称出烃层液重量。 (6)取少量烃层液样品,用气相色谱分析其组成,并计算出各组分的百分含量。 (7)反应结束后,停止加乙苯。反应温度维持在500℃左右,继续通水蒸气,进行催化剂的清焦再生,约半小时后停止通水,并降温。

§ 3.2 煤的成焦过程

课题名称:§ 3.2 煤的成焦过程 课题时限:2学时 授课类型:单一课的传授 教学目的:了解焦炉煤料中热流动态,炭化室内成焦特征; 掌握煤成焦的过程,煤的粘结性和半焦收缩对产品焦炭的影响,里 行气和外行气的析出途径的差别。 教学方法:讲授、提问、讨论、 教学内容:1.成焦过程 2.煤的黏结和半焦收缩 3.焦炉煤料中热流动态 4.炭化室内成焦特征 5.气体析出途径 教学重点:煤成焦的过程,煤的粘结性和半焦收缩对产品焦炭的影响,里行气和外行气的区别 教学难点:煤成焦的过程,煤的粘结性对产品焦炭的影响,里行气和外行气的区别 教学资源:媒体素材、课件、 教学过程:教学计划、备课、上课(1、激趣导入;2、新授;3、小结)、作业处置、 参考资料:《煤化工基础》李玉林化学工业出版社 2006北京 《煤化工工艺学》陈启文化学工业出版社 2008北京 《煤化学产品工艺学》肖瑞华冶金工业出版社 2006北京 思考题:简述煤的成焦过程? 作业题:什么是里行气和外行气? 小结:1.成焦过程

干燥预热阶段、胶质体形成阶段、半焦形成阶段和焦炭形成阶段2.煤的黏结和半焦收缩 粘结性和结焦性的关系,如何提高粘结性,半焦收缩对焦炭的影响 3.焦炉煤料中热流动态 4.炭化室内成焦特征 成焦阶段原料的变化、裂纹、半焦收缩和焦缝 5.气体析出途径 里行气和外行气 教学内容详细资料如下:

§ 3.2 煤的成焦过程 1.成焦过程 2.煤的黏结和半焦收缩 ⑴.粘结性: ①粘结性: 干馏时黏结本身与惰性物的能力,指炼焦时形成熔融焦炭的能力(经过胶 质体生成块状半焦的能力)。 ~120℃ 煤的水分脱出 200℃ 释放空隙中的气体(CH 4、CO 2、CO 、N 2) 350℃ 煤热解、软化膨胀形成胶质体、 480℃ 胶质体分解、收缩、固化形成半焦 650℃ 半焦分解、开始向焦炭转化 950℃焦炭成熟 <350℃:煤干燥预热阶段 350~480℃:胶质体形成阶段 480 ~ 650℃:半焦形成阶段 650 ~ 950℃:焦炭形成阶段

化学工艺学知识点总结

化学工艺学 第一章绪论 1、化学工业:运用化学工艺、化学工程及设备,通过各种化工单元操作,高效、节能、经济、环保和安全地将原料生产成化工产品的特定生产部门。 2、化学工艺即化工生产技术,是指将各种原料主要经过化学反应转变为产品的方法和过程,包括实现这种转变的全部化学的和物理的措施。 3、化学工艺学是根据化学、物理和其他科学的成就,研究综合利用各种原料生产化学产品的方法原理、操作条件、流程和设备,以创立技术先进、经济上合理、生产上安全的化工生产工艺的学科。 4、21世纪,化学工业的发展趋势? 答:(1)产品结构精细化和功能化;(2)生产装置微型化和柔性化;(3)生产过程绿色化和高科技化;(4)市场经营国际化、信息化。 5、绿色化工就是用先进的化工技术和方法减少或消除对人类健康、社区安全、生态环境有害的各种物质的一种技术手段。 6、化学工业的基础原料指可以用来加工生产化工基本原料或产品的在自然界天然存在的资源。 7、化工产品一般是指由原料经化学反应、化工单元操作等加工方法生产出来的新物料(品)。 8.煤化工:以煤为原料,经过化学加工转化为气体、液体和固体燃料及化学品的工业。 9.煤的干馏:是指在隔绝空气条件下将煤加热,使其分解生成焦炭、煤焦油、粗苯和焦炉气的过程。 10.一次加工方法主要包括一次加工和二次加工,一次加工方法主要包括常压蒸馏和减压蒸馏。 11.蒸馏是一种利用液体混合物中各组分挥发度的差别(沸点不同)进行分离的方法,是一种没有化学反应的传质、传热物理过程,主要设备是蒸馏塔。 12.常用的二次加工方法主要有催化重整、催化裂化、催化加氢裂化和烃类热裂解四种。 13.催化重整:是在铂催化剂作用下加热汽油馏分(石脑油),使其中的烃类分子

化工工艺学 第三章 机械分离

第三章机械分离 本章学习指导 1.本章学习目的 通过本章学习能够利用流体力学原理实现非均相物系分离(包括沉降分离和过滤分离),掌握过程的基本原理、过程和设备的计算及分离设备的选型。 建立固体流态化的基本概念。 2.本章重点掌握的内容 (1)沉降分离(包括重力沉降和离心沉降)的原理、过程计算和旋风分离器的选型。 (2)过滤操作的原理、过滤基本方程式推导的思路,恒压过滤的计算、过滤常数的测定。 (3)用数学模型法规划实验的研究方法。 本章应掌握的内容 (1)颗粒及颗粒床层特性 (2)悬浮液的沉降分离设备 本章一般了解的内容 (1)离心机的类型与应用场合 (2)固体流态化现象(包括气力输送) 3.本章学习中应注意的问题 本章从理论上讨论颗粒与流体间相对运动问题,其中包括颗粒相对于流体的运动(沉降和流态化)、流体通过颗粒床层的流动(过滤),并借此实现非均相物系分离、固体流态化技术及固体颗粒的气力输送等工业过程。学习过程中要能够将流体力学的基本原理用于处理绕流和流体通过颗粒床层流动等复杂工程问题,即注意学习对复杂的工程问题进行简化处理的思路和方法。 4.本章教学的学时数分配 知识点3-1 授课学时数1 自学学时数2 知识点3-2 授课学时数3 自学学时数6 知识点3-3 授课学时数3 自学学时数6 知识点3-4 授课学时数1 自学学时数2 参考书籍 (1)柴诚敬,张国亮.化工流体流动与传热.北京:化学工业出版社,2000 (2)陈维枢主编.传递过程与单元操作.上册.浙江:浙江大学出版社,1993 (3)陈敏恒等,化工原理(上册).北京:化学工业出版社,1999 (4)机械工程手册编辑委员会.机械工程手册(第二版),通用设备卷.北京:机械工业出版社,1997 (5)大连理工大学化工原理教研室.化工原理,上册.辽宁:大连理工大学出版社,1993 (6)时钧等.化学工程手册,上卷.2版.北京:化学工业出版社,1996 (7)McCabe W. L. and Smith. J. C. Unit Operations of Chemical Engineering. 5th. ed. New York: McGraw Hill,1993 (8)Foust A. S. and Wenzel. L.

应用化学专业本科培养方案

应用化学专业本科培养方案 一、专业代码及专业名称 专业代码:070302 专业名称:应用化学(Applied Chemistry) 二、培养目标 培养具有良好的科学文化素养,能够较系统扎实地掌握化学化工基本理论、基本知识和基本技能,富有创新意识和实践能力,能在研究机构、高等院校及化工、医药等企事业单位从事生产、开发、科研、教学及管理工作的应用型技术人才。 三、培养要求 本专业学生在学习公共基础理论课和人文知识的基础上,主要学习化学、化学工程与技术等方面的基本理论、基本知识和基本技能,受到较系统的科学思维和应用研究的基本训练,初步具有综合运用化学及相关学科的基本理论和技术方法进行应用研究、技术开发和科技管理的能力。 本专业的毕业生应获得以下几个方面的知识、能力和素质: 1.具有高度的社会责任感、良好的科学文化素养和创新意识; 2.掌握数学、物理、信息科学等方面的基本理论和基本知识; 3.掌握化学基础知识、基本理论和基本技能,了解化学与化工的发展动态、应用前景和行业需求; 4.了解关于化工相关产业、知识产权、安全与环境等方面的政策与法规; 5.具有较强的学习、交流、协调能力和团队合作精神,适用科学和社会的发展; 6.具有对终身学习的正确认识和学习能力。 四、学制与授予学位 学制:四年 授予学位:工学学士 五、主干学科 化学、化学工程与技术 六、专业核心课程 无机化学、分析化学、仪器分析及实验、有机化学、物理化学、化工原理、结构化学、高等有机化学、有机合成、天然产物化学、精细化工工艺学、精细化学品分离与分析。 七、主要专业实验 无机化学实验、分析化学实验、有机化学实验、物理化学实验、精细化工实验、化工

化工工艺学期末考试总结

化工工艺学期末考试总结 1. 二氧化硫接触氧化制三氧化硫。 (1)化学反应:SO2 + 1/2O2 SO3 (2)催化剂:活性组分:V2O5。载体:硅胶、硅藻土及其混合物。助催化剂:K2O、K2SO4、TiO2、MoO3等。(3)反应压力:常压。(4)反应温度:400~600℃ 2. 氧气氧化法乙烯环氧化制环氧乙烷。 (1)化学反应:C2H4 + 1/2O2 C2H4O (2)催化剂:活性组分:Ag。载体:碳化硅,α—Al2O3和含有少量SiO2的 α—Al2O3,助催化剂:碳酸钾、碳酸钡和稀土元素化合物。 (3)反应压力:1.0~3.0 MPa。(4)反应温度:204~270℃ 3. 氢氮气合成氨 (1)化学反应:N2 + 3H2 2NH3 (2)催化剂:α—Fe-Al2O3-MgO-K2O-CaO-SiO2 (1)反应压力:15MPa。(4)反应温度:390~520℃。 4.丙烯氨氧化制丙烯腈。 (1)化学反应:CH2=CHCH3 + NH3 + 3/2O2 CH2=CHCN + 3H2O (2)催化剂:①钼酸铋系:P-Mo-Bi-Fe-Co-Ni-K-O/Si2O;②锑系:Sb-Fe-O。 (3)反应压力:常压。(4)反应温度:最佳温度:440℃。 5.乙苯脱氢制苯乙烯 (1)化学反应:C2H5 CH=CH2 + H2 (2)催化剂:Fe2O3-Cr2O3-K2O (3)反应压力:常压。 (4)反应温度:600~630℃ 6..写出合成气制甲醇的主反应及主要副反应方程式。 答:主反应:CO +2H2CH3OH 当有二氧化碳存在时,二氧化碳按下列反应生成甲醇: CO2 + H2 CO + H2O CO + 2H2CH3OH 两步反应的总反应式为:CO2 + 3H2CH3OH+ H2O 副反应:(1)平行副反应 CO + 3H2CH4 + H2O 2CO + 2H2CO2 + CH4 4CO + 8H2C4H9OH+3 H2O 2CO + 4H2CH3OCH3+ H2O 当有金属铁、钴、镍等存在时,还可以发生生碳反应。 (2)连串副反应 2CH3OH CH3OCH3 + H2O CH3OH + nCO +2nH2CnH2n+1CH2OH + nH2O CH3OH + nCO +2(n-1)H2CnH2n+1COOH + (n-1)H2O 1. 什么叫烃类热裂解过程的一次反应和二次反应? 答:一次反应:由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应 二次反应:主要指由一次反应生成的低级烯烃进一步反应生成多种产物,直至最后生成焦或炭的反应。 2. 什么叫烃类的热裂解? 答:烃类热裂解法是将石油系烃类原料(天然气、炼厂气、轻油、柴油、重油等)经高温作用,使烃类分子发生碳链断裂或脱氢反应,生成分子量较小的烯烃、烷烃和其他分子量不同

化学工程与工艺专业煤化工

化学工程与工艺专业(煤化工) (专业代码:081101) 一、培养目标 培养德、智、体、美全面发展,适应国家化学工业及其相关领域经济建设需要和国际人才市场需求,以面向煤化学工业为特色,具备扎实的化工专业基础知识和工程实践能力,具有强烈的社会责任感、良好的道德修养、心理素质、创新精神、团队精神、国际视野和管理能力的高级工程技术人才。 二、业务要求 本专业以煤化工为特色,主要学习化学工程学与化学工艺学等方面的基本理论和基本知识,受到化学与化工实验技能、工程实践、计算机应用、科学研究与工程设计方法的基本训练,掌握一门外国语,能够从事化工生产控制与管理、化工产品研究与开发、化工装置设计与放大等方面工作的工作。 毕业生应达到如下要求: 1.具有人文社会科学素养、社会责任感和工程职业道德; 2.具有从事工程工作所需的相关数学、自然科学以及经济和管理知识; 3.掌握工程基础知识和化学工程与工艺专业的基本理论知识,具有系统的工程实践学习经历;了解化学工程与工艺专业的前沿发展现状和趋势; 4.具备设计和实施工程实验的能力,并能够对实验结果进行分析; 5.掌握基本的创新方法,具有追求创新的态度和意识;具有综合运用理论和技术手段设计系统和过程的能力,设计过程中能够综合考虑经济、环境、法律、安全、健康、伦理等制约因素; 6.掌握文献检索、资料查询及运用现代信息技术获取相关信息的基本方法; 7.了解与化学工程与工艺专业相关的职业和行业的生产、设计、研究与开发、环境保护和可持续发展等方面的方针、政策和法津、法规,能正确认识工程对于客观世界和社会的影响; 8.具有一定的组织管理能力、表达能力和人际交往能力以及在团队中发挥作用的能力; 9.对终身学习有正确认识,具有不断学习和适应发展的能力; 10.具有国际视野和跨文化的交流、竞争与合作能力。 三、主干学科和学位课程 主干学科:化学工程与技术。 学位课程:高等数学、基础外语、大学物理、中国化马克思主义、化工原理、化工热力学,化学反应工程、分离工程、化工传递过程基础、化工过程控制、煤化学、煤化工工艺

工艺学重点

1 石油化工工艺学重点 1. 按一般化工产品生产过程和作用划分,化工工艺流程可概括为哪几个过程? 按一般化工产品生产过程的划分和它们在流程中所担负的作用可概括为以下几个过程: (1)生产准备过程——原料工序 包括反应所需的主要原料、氧化剂、氮化剂、溶剂、水等各种辅助原料的贮存、净化、干燥以及配制等等。 为了使原料符合进行化学反应所要求的状态和规格,根据具体情况,不同的原料需要经过净化、提浓、混合、乳 化或粉碎(对固体原料)等多种不同的预处理。 (2)催化剂准备过程——催化剂工序 包括反应使用的催化剂和各种助剂的制备、溶解、贮存、配制等。 (3)反应过程——反应工序 是化学反应进行的场所,全流程的核心。经过预处理的原料,在一定的温度、压力等条件下进行反应,以达 到所要求的反应转化率和收率。反应类型是多样的,可以是氧化、还原、复分解、磺化、异构化、聚合、焙烧等。 通过化学反应,获得目的产物或其混合物。以反应过程为主,还要附设必要的加热、冷却、反应产物输送以及反 应控制等。 (4)分离过程——分离工序 将反应生成的产物从反应系统分离出来,进行精制、提纯、得到目的产品。并将未反应的原料、溶剂以及随 反应物带出的催化剂、副反应产物等分离出来,尽可能实现原料、溶剂等物料的循环使用。分离精制的方法很多, 常用的有冷凝、吸收、吸附、冷冻、蒸馏、精馏、萃取、膜分离、结晶、过滤和干燥等,对于不同生产过程可以 有针对性的采用相应的分离精制方法。 (5)回收过程——回收工序 对反应过程生成的一些副产物,或不循环的一些少量的未反应原料、溶剂,以及催化剂等物料均应有必要的 精制处理以回收使用,因此要设置一系列分离、提纯操作,如精馏、吸收等。 (6)后加工过程——后处理工序 将分离过程获得的目的产物按成品质量要求的规格、形状进行必要的加工制作,以及贮存和包装出厂。 (7)辅助过程 除了上述六个主要生产过程外,在流程中还有为回收能量而设的过程(如废热利用),为稳定生产而设的过程 (如缓冲、稳压、中间贮存),为治理三废而设的过程(如废气焚烧)以及产品贮运过程等。这些虽属于辅助过程, 但也不可忽视。 化工过程通常包括多步反应转化过程,因此除了起始原料和最终产品外,尚有多种中间产物生成,原料和产 品也可能是多个;因此化工过程通常由上述步骤交替组成,以化学反应为中心,将反应与分离有机地组织起来。 4.催化剂的基本特征有哪些?催化剂的评价指标有哪些? 催化剂有以下三个基本特征: (1)催化剂是参与了反应的,但反应终了时,催化剂本身未发生化学性质和数量的变化。因此催化剂在生产过程 中可以在较长时间内使用。 (2)催化剂只能缩短达到化学平衡的时间(即加速作用),但不能改变平衡。即当反应体系的始末状态相同时, 无论有无催化剂存在,该反应的自由能变化、热效应、平衡常数和平衡转化率均相同。因此催化剂不能使热力学 上不可能进行的反应发生;催化剂是以同样的倍率提高正、逆反应速率的,能加速正反应速率的催化剂,必然也

有机化学说课

《有机化学》说课稿 各位专家、评委大家好,我是采矿系教师刘海霞。我为大家说《有机化学》这门课,以下我分别从八个方面对这门课进行阐述:一、课程设置;二、教学团队;三、课程目标;四、课程内容;五、教学方法和手段;六、教学过程;七、教材;八、课程建设目标。 一、课程设置 《有机化学》是应用化工技术专业重要的专业基础课,是理论和生产实际密切结合的应用性很强的课程。它的先修课是无机化学,这门课要为学生学习煤化学专业基础课和化工工艺学、煤化工工艺学等专业课,以及从事化工生产和管理工作建立比较牢固的有机化学基础,培养学生分析问题和解决问题的能力。 我们这个团队有4个人组成,其中3人具有硕士学位,一人具有学士学位。教师结构合理,团队年轻有活力。 三、课程目标 素质目标 根据“以就业为导向,以教学为中心的”的教育理念,注重培养学生的工程实践能力、技术应用能力和社会适应能力。 能力目标 培养学生具有初步对化学反应的整体轮廓,一定的分析与推理能力,为学习有关后继课程和从事专业技术工作的打下坚实的基础。 知识目标 掌握有机化合物的命名、性质、反应的基本规律、重要的有机反应和有机化学研究方法。理解本课程的一些基本概念,比如:烯烃顺反异构命名中的次序规则;

σ键、П键的成键特点及特性,不对称烯烃的加成规律等。重点培养学生分析问题和解决问题的能力。 四、课程内容 1.有机化学课程重点:有机化学概述、有机化合物、立体异构三大模块。 2.难点: 烷烃的自由基取代反应机理 烯烃顺反异构体的Z/E命名法、共轭二烯烃的双烯合成 芳香烃定位规律的理论解释等 3.解决难点的办法: 教学中要根据有机化学不同于其它学科的特点和学生的实际情况,选择适用的教学方法和教学手段,比如利用课件,利用实验讨论交流等,突出重点,突破难点,从多角度启发学生的思维,提高学生探究学习和自主学习的能力。 (二)实践教学内容 实验教学由认知实践、理论与实践结合模块组成。

《化工工艺学》期末复习题初步整理

《化工工艺学》复习题初步整理 1 绪论 1.掌握以下概念 化学工业:又称化学加工工业,泛指生产过程中化学方法占主要地位的制造业。化学工艺学:即化工生产技术,系指将原料物质主要经过化学反应转变为产品的方法和过程,包括实现这种转变的全部化学的和物理的措施。 化学工程学:化学工程学主要研究:化学工业和其它过程工业生产中所进行的化学过程和物理过程的共同规律,它的一个重要任务就是研究有关工程因素对过程和装置的效应,特别是放大中的效应。 2.现代化学工业特点。 1.原料、生产方法和产品的多样性与复杂性; 2.向大型化、综合化发展,精细化率也在不断提高; 3.是多学科合作、生产技术密集型的生产部门; 4.重视能量合理利用,以及采用节能工艺和方法; 5.资金密集,投资回收速度快,利润高; 6. 化工生产中易燃、易爆、有毒仍然是现代化工企业首要解决的问题。 3.化学工业发展方向。 1.面向市场竞争激烈的形势,积极开发高新技术,缩短新技术、新工艺工业化的周期,加快产品更新和升级的速度; 2.最充分、最彻底地利用原料; 3.大力发展绿色化工; 4.化工过程要高效、节能和智能化; 5.实施废弃物的再生利用工程。 4.化学工业的原料资源

自然资源:矿物、生物、空气和水。 矿物资源:金属矿、非金属矿、化石燃料矿 生物资源:农、林、牧、副、鱼的植物体和动物体 另外:再生资源(废物利用) 化学工业主要产品 无机化工产品:酸、碱、盐 基本有机化工产品:乙烯、丙烯、丁二烯、苯、甲苯、二甲苯、乙炔、萘、合 成气等。 高分子化工产品:塑料、合成橡胶、合成纤维、橡胶制品、涂料和胶粘剂等。精细化工产品:涂料、表面活性剂、粘合剂、催化剂、食品添加剂等。 生物化工产品:甘油、柠檬酸、乳酸、葡萄糖酸、各种氧基酸、酶制剂、核酸、生物农药、饲料蛋白抗生素、维生素、甾体激素、疫苗等。 2 化学工艺的共性知识 1.为什么说石油、天然气和煤是现代化学工业的重要原料资源 答:⑴基本有机化工、高分子化工、精细化工及氮肥工业等产品大约有90℅来源于石油和天然气,有机化工产品的上游原料之一:三烯主要由石油 制取; ⑵天然气的热值高、污染少、是一种清洁能源,同时又是石油化工的重要 原料资源;⑶从煤中可以得到多种芳香族化合物,是精细有机合成的主要原料,煤的综合利用可为能源化工和冶金提供有价值的原料。 他们的综合利用途径有哪些 ⑴石油:①一次加工:常压蒸馏、减压蒸馏 ②二次加工:催化重整、催化裂化、催化加氢裂化、烃类热裂解、烷 基化、异构化、焦化等。 ⑵天然气:①天然气制氢气和合成氨;

有机工艺学——常用指标

基本有机化工工艺学 第一章 化工生产中的常用指标与催化剂(1) 【考纲要求】掌握化工生产中的常用指标(转化率、产率、收率、消耗定额、空间速度、接触时间)的概念及其计算 【基本知识点】 1.转化率 (1)定义:转化率是( )。转化率越大,说明参加反应的原料量越( ),转化程度越( )。由于进行反应器的原料一般不会全部参加反应,所以转化率的数值( )1(填大于、小于或等于)。 (2)符号:( ) (3)表达式:( ) 工业生产中有单程转化率和总转化率之分。 A.单程转化率 a.定义:表示反应物一次通过反应器,参加反应的反应物量与输入反应反应器的反应总量的百分比。 b.公式:单程转化率=进入反应器的反应物量 参加反应的反应物量×100% = 进入反应器的反应物量量-反应后剩余的反应物进入反应器的反应物量×100% c.习题巩固:以乙烷为裂解原料生产乙烯,在一定的生产条件下,通入裂解炉的乙烷量为7000kg/h ,反应后,尾气中含乙烷2450kg/h ,求乙烷的转化率。 B.总转化率 a.定义:表示输入到过程参加反应的反应物量与输入到过程的反应物的总量的百分数。 对于有循环和旁路的生产过程,常用总转化率。

b.公式:总转化率=量 进入到过程的反应物总物量过程中参加反应的反应×100% c.习题巩固:用乙烷作原料裂解生产乙烯,通入裂解炉的新鲜原料乙烷为5000 kg/h ,裂解气分离后,没有反应的乙烷2000kg/h 又返回了裂解炉进行反应,最终分析裂解气中含乙烷1500 kg/h ,求乙烷的总转化率。 2.产率(或选择性) A.理论产量 (1)定义:理论产量是指( )。 (2)计算公式: 对于反应aA+bB====pP+qQ mp 理(A 反)=? B.产率 (1)定义:产率( )。 即参加反应的原料有一部分被副反应消耗掉了,而没有生成目的产物。产率越高,说明参加反应的原料生成的目的产物越多( )。 (2)符号:( ) (3)公式:产率=参加反应的原料量 原料量生成目的产物所消耗的×100% (4)习题:用乙烷作裂解原料生产乙烯,在一定的生产条件下,通入裂解炉的乙烷量 为7000kg/h ,反应后,尾气中含乙烷2450kg/h ,得到乙烯量为3332 kg/h ,求乙烯的产 率。

化工工艺学知识点优选稿

化工工艺学知识点 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

第二章粗原料气制取 一、固体燃料气化法 名词解释:煤气化:使煤与气化剂作用,进行各种化学反应,把煤炭转变为 燃料用煤气或合成用煤气。 加氮空气;水蒸汽和空气同时加入,空气的加入增加了气体中N 的含量,用来调节原料气中氢氮比,制得合格煤气标准煤:含碳量为84%的煤(每千克标准煤的热值为7000千卡)1.煤气化有几种工业方法各有什么特点 蓄热法:将空气和水蒸气分别送入煤层,也称间歇式制气法 富氧空气气化法:用富氧空气或纯氧代替空气进行煤气化 外热法: 利用其他廉价高温热源来为煤气化提供热能,尚未达到工业化阶段2.气化炉有哪些床层类型,描述各自的特点工业用煤气化炉有几种类型固定床:气体从颗粒间的缝隙中穿过,颗粒保持静止 流化床:增大气速,颗粒开始全部悬浮于气流中,而且床层的高度随气速的增大而升高 气流床:气流速度增大至某一极限值时,悬浮于气流中的颗粒被气流带出间歇式气化炉、鲁奇炉、温克勒炉、K-T炉、德士古炉 3.煤的气化剂有哪些用不同气化剂进行煤气化,气体产物各是什么空气和水蒸气 空气煤气(N2、CO)、水煤气(H2、CO)、混合煤气、半水煤气 4.固定床煤气化炉燃料层如何分区各区进行什么过程

干燥区:使新入煤炉中的水分蒸发 干馏区:煤开始热解,逸出以烃类为主的挥发分,而燃料本身开始碳化 气化区:煤气化的主要反应在气化区进行 灰渣区:灰渣于该区域出炉 5.固定床气化炉燃料最下层是什麽区其有何作用 灰渣区可预热从底部进入的气化剂并保持不因过热而变形 6.间歇式制半水煤气的工作循环是什么为什么循环时间如何分配工业上将自上一次开始送入空气至下一次再送入空气为止,称为一个循环。 每个循环有五个阶段,吹风阶段、蒸汽一次上吹、蒸汽下吹、蒸汽二次上吹、空气吹净 7.什麽是加氮空气其作用为何使用中应注意什麽事项 水蒸汽和空气同时加入,空气的加入增加了气体中N的含量。 用来调节原料气中氢氮比,制得合格煤气 使炉温下降慢调节合成氨气体成分,严格控制氮含量,以免引起事故 8.德士古炉废热如何回收? 直接激冷法、间接冷却法、间接冷却和直接淬冷 9.画出间歇式煤气化、德士古炉及谢尔废热锅炉连续气化工艺制备合成氨流程,为什么后两者流程有差别? P70P72 二、一氧化碳变换

化工工艺学简答题

1在工厂实际生产中,影响反应平衡和速率、关系到生产过程效率的重要因素有哪些? 答:温度、压力、反应时间、原料纯度及配比和惰性介质浓度。 2工业使用的催化剂有哪些性能指标?催化剂的基本特征是什么?答:活性、选择性和寿命;⑴催化剂是参与了反应的,但反应终了时,催化剂本身未发生化学性质和数量的变化⑵催化剂只能缩短到达化学平衡的时间(即加速作用),但不能改变平衡⑶催化剂具有明显的选择性,特定的催化剂只能催化特定的反应。 3化工过程中经常用流程图来描述所生产的化工工程,工艺流程图中包括哪些内容? 答:带控制点的工艺流程图包括全部工艺设备、物料管路、阀件、主要管路、辅助管路和管径,以及工艺和自控仪表的图例、符号等。4、烃类热裂解过程中存在许多二次反应,请问:什么是二次反应?为什么要抑制二次反应? 答:一次反应:原料烃在裂解过程中首先发生的原料烃的裂解反应。二次反应:一次反应产物继续发生的后继反应。 二次反应的发生,不仅多消耗了原料,降低了主产物的产率,而且结焦生炭会恶化传热,堵塞设备,对裂解操作和稳定生产都带来极不利的影响,应设法抑制其进行。 5、什么叫停留时间,停留时间对裂解产物分布有何影响? 答:物料从反应开始到达某一转化率时在反应器内经历的时间叫停留时间。由于存在二次反应,故每一种原料在某一特定温度下裂解时,

都有一个得到最大乙烯收率的适宜停留时间。 6、烃类热裂解反应为什么要加入稀释剂?工业上常采用什么作为稀释剂?为什么? 答:添加稀释剂可降低烃分压,这样设备仍可在常压或正压操作,而烃分压则可降低。采用水蒸气做稀释剂。 ①裂解反应后通过急冷即可实现稀释剂与裂解气的分离,不会增加裂解气的分离负荷和困难;②水蒸气热容量大,使系统有较大热惯性,当操作供热不平稳时,可以起到稳定温度的作用,保护炉管防止过热; ③抑制裂解原料所含硫对镍铬合金炉管的腐蚀;④脱除积炭,炉管的铁和镍能催化烃类气体的生碳反应。 7、裂解气的精馏分离系统中,何种情况下采用中间冷凝器和中间再沸器?中间冷凝器和中间再沸器分别设在什么地方?并分析其利弊。答:对于顶温低于环境温度,而且顶底温差较大的精馏塔,在精馏段设置中间冷凝器,在提馏段设置中间再沸器, 中间冷凝塔优点:节省能耗塔顶可省去外来冷剂制冷的冷凝器降低乙烯的损失;缺点:若中间冷凝器负荷大时会导致板数增加,投资经费增加 中间再沸器优点:节省能量有助于回收冷量 缺点:一般塔板数会大于不设中间再沸器的板数 8、裂解气在进行深冷分离之前为什么需要进行净化处理?净化主要为了除去哪些杂质?用什么方法除掉这些杂质? 答:裂解气中含H2S,CO2,H2O,C2H2,CO等气体杂质,这些杂质的含量

相关文档
最新文档