膜分离技术目前的研究进展

膜分离技术目前的研究进展
膜分离技术目前的研究进展

生物分离工程期末论文

题目:膜分离技术目前的研究进展学院:化学工程学院

姓名:熊慧欣

班级:生物201301

学号:120133302064

指导老师:何璐

年月日:2015/12/7

目录

摘要 (1)

Abstract (2)

1膜分离技术概述 (4)

1.1膜分离技术 (5)

1.2特点 (6)

1.3膜的分类 (5)

1.4膜材料、分类及膜分离装置 (6)

2膜分离技术的分离原理和特点 (1)

2.1纳滤(NF) (2)

2.2超滤(UF) (3)

2.3微滤(MF) (2)

2.4反渗透(RO) (3)

2.5电渗析(ED) (2)

3膜分离技术的发展及研究进展 (4)

3.1国外分离技术的发展及研究进展 (5)

3.2国内分离技术的发展及研究进展 (6)

4膜分离技术的应用 (4)

4.1膜分离技术在医药医疗中的应用 (5)

4.1.1膜分离技术在中药生产中的研究和应用 (6)

4.1.2分离技术在西药及生物制剂中的研究和应用 (5)

4.1.3膜分离技术在人工肾上的应用 (6)

4.2膜技术在工业废水处理中的应用 (5)

4.2.1含油废水的处理 (6)

4.2.2造纸废水的处理 (5)

5展望 (4)

参考文献 (1)

膜分离技术目前的研究进展

熊慧欣

(辽宁科技大学化学工程学院生物工程201301 120133302064)

摘要:介绍了膜分离技术原理、膜技术设备组成、膜分离技术的发展,阐述了膜分离技术在工业中的应用,展望了膜分离技术的发展趋势。

关键词:膜分离技术;研究进展;应用

The development of membrane separation technology and its

present status of research progress

XIONG Hui-xin

(School of Chemical Engineering,University of Science and Technology

Liaoning ,Bioengineering201301,120133302064)

Abstract:The principles of membrane separation technology,equipment components of membrane technology,the development of membrane separation technology,and its application in industry were summarized in the review,the development trend of membrane separation technology in the future was prospected.

Key words:barrier separation technology;research progress;application

膜是具有选择性分离功能的材料。膜分离包括最简单的滤纸过滤到高选择性的生物膜分离。膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时实现选择性分离的技术! ,膜分离技术具有分离、浓缩、纯化和精制的功能。膜分离技术已广泛应用超纯水、资源回收、食品工业、植物深加工、苦咸水淡化、饮料工业、医药工业、农产品深加工、生物医药、中药制剂、食品工业废水处理、临床医学、印染废水、饮料工业、生物发酵等,已成为当今分离科学中最重要的手段之一[1-5]。本文介绍了膜分离技术的研究进展。

1膜分离技术概述

1.1膜分离技术

膜分离是指借助膜的选择渗透作用在外界能量或化学位差的推动下对混合物中溶质和溶剂进行分离、分级提纯和富集。该技术作为新的分离净化和浓缩技术与其他传统的分离方法相比常温下操作有高效、节能、工艺简便、投资少、污染小并且膜分离具有过程简单、经济适用、分离系数较大、没有污染能适合常温下连续操作、可直接放大、可专一配膜等优点人类对于膜的研究源于18世纪, 但是膜分离技术的工业应用是在上个世纪年代以后从六十年代的反渗透到九十年代的渗透汽化,膜分离技术发展迅速, 膜分离技术的应用领域不断扩大常用的膜分离技术有超滤(UF)、微滤(MF)、反渗透(RO)、纳滤(NF)、电渗析(ED)等现已涉及人们生产和生活的各个方面对水处理工业、化工生产、医药、食品生产和生物工程等领域的发展产生了巨大的作用[6]。

1.2特点

膜分离技术具有如下特点:1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便[7]。

1.3膜的分类

分离膜分为高分子膜、液体膜、生物膜。高分子膜分为带电膜( 阳离子膜和阴离子膜) 和非带电膜( 过滤膜、精密过滤膜、超滤膜、纳米滤膜、反渗透膜)。比较常用的有微滤膜、超滤膜、纳滤膜、反渗透膜、电渗析等。

1.4 膜材料、分类及膜分离装置[8]

膜材料分为有机和无机两大类。有机材料主要包括纤维素类、聚酰胺类、芳香杂环类、聚砜类、聚烯烃类、硅橡胶类、含氟高分子类等; 无机材料主要以金属、金属氧化物、陶瓷、多孔玻璃等为主。膜是分离过程的核心。由于膜的种类和功能繁多,分类方法有多种,比较通用的有4种方法,即按膜的性质分类、按膜的结构分类、按膜的用途分类以及按膜的作用机理分类。根据膜的形状,膜分离装置基本上可分为如下5类: 板式结构;管式结构; 卷式结构;中空纤维结构;旋叶式动态膜装置。

2膜分离技术的分离原理和特点

2.1纳滤(NF)

纳滤膜具有纳米级孔径,截留相对分子质量为200—1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。

纳滤[9-12](NF)是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等?对纳滤技术处理印染废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。Salzgitter Flachstahl电镀厂采用膜技术处理镀锌废水,回收其中的zn2+和H2SO4,其结果达到了设计要求。常江等在完成用新型纳滤膜处理模拟含Ni2+废水实验室研究的基础上,进行了电镀镍漂洗废水的纳滤膜处理及镍和水回收利用的工业试验,为大规模工业应用提供了参考数据。杨青等研究报道将DK型与NF90型纳滤膜组合可适用于治理高浓度、高盐分的吡啉农药废水污染。

2.2超滤(UF)

超滤膜,是一种孔径规格一致,额定孔径范围为(0.001-0.02)微米的微孔过滤膜。在膜的一侧施以适当压力,就能筛出小于孔径的溶质分子,以分离分子量大于500道尔顿(原子质量单位)、粒径大于10纳米的颗粒。超滤膜是最早开发的高分子分离膜之一,在60年代超滤装置就实现了工业化。

超滤 (UF)和微滤一样,也是利用筛分原理以压力差为推动力的膜分离过程。同微滤过程相比超滤过程受膜表面孔的化学性质的影响较大。在一定的压力[(100 ~1 000)看kPa]条件下溶剂或小分子量的物质透过孔径为(1 ~20)μm的对称微孔膜,而直径在(5 ~100)nm 之间的大分子物质或微细颗粒被截留,从而达到了净化的目的。超滤主要用于浓缩、分级、大分子溶液的净化等。在超滤方面今后应重点开发抗污染膜;比较廉价的,长寿命的膜组件;低能耗的膜组件;抗溶剂的膜及组件;适用于高温、高pH 值和抗氧化的膜。

2.3微滤(MF)

微滤(MF)是发展最早、制备技术最成熟的膜形式之一,孔径在0.05—101zm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。

微滤主要是根据筛分原理以压力差作为推动力的膜分离过程。在给定压力下[(50 ~100)kPa],溶剂、盐类及大分子物质均能透过孔径为(0.1~20)μm 的对称微孔膜,只有直径大于50nm 的微细颗粒和超大分子物质被截留,从而使溶液或水得到净化。微滤技术是目前所有膜技术中应用最广、经济价值最大的技术。主要用于悬浮物分离、制药行业的无菌过滤等。在微滤方面今后应着重研究开发廉价膜组件;耐高温抗溶剂的膜及组件;不污染,易清洗的长寿命膜。

2.4反渗透(RO)

反渗透(RO)过程主要是根据溶液的吸附扩散原理,以压力差为主要推动力的膜过程。在浓溶液一侧施加一外加压力[(1 000 ~10 000)kPa],当此压力大于溶液的渗透压时,就会迫使浓溶液中的溶剂反向透过孔径为0.1 ~1 nm 的非对称膜流向稀溶液一侧,这一过程叫反渗透。反渗透过程主要用于低分子量组分的浓缩、水溶液中溶解的盐类的脱除等。在这方面今后应优先发展抗氧化膜;耐细菌侵蚀的膜;透水性好的易清洗、消毒的膜。

反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。

2.5电渗析(ED)

电渗析〔ED〕是在外加直流电场的作用下,利用离子透过选择性离子交换膜而迁移使带电离子从水溶液和其他不带电组分中部分分离出来的一种电化学分离过程其原理如图所示在外加直流电场的作用下,以电位差为驱动力原水中的阳离子向阴极迁移淡化室中的阳离子透过阳膜进入浓缩室,但浓缩室中的阳离子受阻于阴膜而留下同时原水中阴离子向阳极迁移淡化室中的阴离子透过阴膜进入浓缩室但浓缩室中的阴离子受阻于阳膜而留下。电渗析技术具有以下特点电渗析技术由于具有能耗低、药剂耗量少、环境污染小、操作简便、使用寿命长、无污染等特点广泛地应用于海水、苦咸水脱盐。

3膜分离技术的发展及研究进展[14]

人类从对膜的认识到应用经历了200 多年,而对膜进行科学研究则是近几十年来的事情。

3.1国外分离技术的发展及研究进展

[15]

早在上世纪30 年代,硝酸纤维素微滤膜已商品化,近年来开发出聚四氟乙烯为材料的微滤膜新品种,它使用范围非常广,销售额居于各类膜的首位。从上世纪70 年代,超滤应用于工业领域,现在应用领域非常广泛。上世纪80 年代,新型含氟离子膜在氯碱工业应用成功。第三代低压反渗透复合膜,性能大幅提高,已在药液浓缩、化工废液、超纯水制造等领域得到广泛应用。1979 年Monsanto 公司成功研制出H2 /N2分离系统。渗透汽化于80 年代后期进入工业应用,主要用于醇类等恒沸物脱水,该过程节约能源,不使用挟带剂,使用起来比较经济。此外,用渗透汽化( PV) 分离有机混合物,近年也有中试规模研究的报道。

3.2国内分离技术的发展及研究进展

[16-17]

我国膜技术始于上世纪50 年代末,1966 年聚乙烯异相离子交换膜在上海化工厂正式投产。1967年用膜技术进行海水淡化工作。我国在70 年代对其它膜技术相继进行研究开发( 电渗析、反渗透、超滤、微滤膜) , 80 年代进入应用推广阶段。中国科学院大连化物所在1985 年首次研制成功中空纤维N2 /H2分离器,现已投入批量生产。我国在1984 年进行渗透汽化( PV) 研究,1998 年我国在燕山化工建立第一个千吨级苯脱水示范工程。中国科技部把渗透汽化透水膜、低压复合膜、无机陶瓷膜及天然气脱湿膜等列入“九五”重点科技攻关计划,分别由清华大学、南京化工大学及中科院大连化物所、杭州水处理中心承担,进行重点开发公关。1998 年10月国家发改委在大连投

资兴建国家膜工程中心,技术上以中国科学院大连化物所为依托。

4.膜分离技术的应用

4.1.膜分离技术在医药医疗中的应用

[18]

4.1.1膜分离技术在中药生产中的研究和

应用

中药是我国的民族瑰宝,它的化学成分非常复杂,通常含有无机盐、生物碱、氨基酸、糖类、有机酸、苷类、甾族和萜类化合物以及蛋白质、淀粉、纤维素等。中药生产的传统方法存在着诸多问题,例如工艺复杂、产品成本高、污染环境以及生产周期长等。膜分离技术具有许多独特的优点,在中药生产与中成药的加工中显示出了巨大的

潜力。

中药有效成分的相对分子量较小,主要是由具有多靶作用的天然化学药物复方组成,而非药用性或药用性比较差的成分主要是由相对分子量比较大胶体和纤维素等组

成H1。中药有效成分提取的方法主要有离子交换、溶剂萃取以及重结晶等。在提取过程中,这些传统的方法存在着有机溶剂可能破坏有效成分、杂质去除率和有效成分的提取率不高以及高温易引起热敏性有效成分失

效等问题。膜分离技术在分离过程中表现出了除杂效果好、操作过程简单、室温操作、无需外加其他物质、无污染等优点。黄酮是中药的主要有效成分之一,黄酮类化合物具有降低胆固醇、改善心血管血液循环的作用,含黄酮类的药物已越来越受到人们的青睐。徐志红等利用磺化聚醚砜平板超滤膜对黄酮进一步提取,从银杏黄酮质量分数为21.3%的原料中得到质量分数为39.2%的精制产品,使有效药物成分的浓度得到进一步的提高[19-20]。

4.1.2分离技术在西药及生物制剂中的研

究和应用

营爱玲[21]等淄3利用NTR7450纳滤膜对三.苯丙氨酸和L-天冬氨酸就行分离,试验表明,在pH=5。8时,NTR7450膜对L-苯丙氨酸和.L-天冬氨酸的截留率分别为0和90%,并根据试验结果进行模拟计算,结果说明调节pH值可以有效地分离L-苯丙氨酸和L-天冬氨酸。

4.1.3膜分离技术在人工肾上的应用

人工肾又叫血液透析机,指具有血液透析、过滤功能的膜。对肾功能衰竭或尿毒症患者的血液经3—6 h透析后,可使患者的血液净化基本上达到正常人的标准。在血液透析治疗过程中,主要依据弥散和超滤物理传输原理,把尿毒症患者体内的水分排除。超滤主要是通过膜两侧的静水压来完成的,它的主要作用是不但可以清除部分有毒物质,还可以清除潴留的水分。人工肾膜要求血液适应性好,不会发生溶血现象,有害物质透过率高,而血小板和血球等不能透过,能用γ射线或高压蒸汽消毒等。其几何形状有中空纤维和平板膜两种。组成透析器后,膜的总体性能用清除率或透析率来衡量。

4.2膜技术在工业废水处理中的应用

[22]

4.2.1含油废水的处理

含油废水面广量大,钢铁工业的压延、金属切削、研磨以及石油炼制及管道运输等都产生含油废水。处理含油废水的目的主要是除油同时去除COD及BOD。膜分离技术在含油废水处理中的研究与应用相当广泛,主要是采用不同材质的超滤膜和微滤膜来处理。

张裕嫒[23]用相转化法制备聚砜-AI2O3复合膜,将AI2O3微粒填充到聚砜中,并用该复合膜对华北油田北大站外排水砂滤后水样进行了超滤处理, 原水的油质量浓度为640 mg / L,处理后的油质量浓度小于0.5 mg / L, 完全符合回注水的要求。

4.2.2造纸废水处理

造纸废水一般含悬浮物(包括无机和有机的)较多,为避免废水污物堵塞薄膜, 减少清洗难度和频率,不宜直接用一段膜分离法,最好在膜分离前进行絮凝和常规过滤等预处理。目前对造纸废水的膜分离法的研究已取得实质性进展, 并已开始进入工业化

阶段。除抄纸废水(白水)用气浮法即可处理外,膜分离法几乎适用于处理所有的制浆造纸废水(如机械浆废水、硫酸盐浆漂白碱

性废水、涂布废水、亚硫酸盐废液等),特别对漂白废水的毒性、色度和悬浮物的去除有明显效果。

5展望

膜技术在环保领域的应用将成为国内外重点发展的前沿课题。因此对膜材料提出了更高的要求。尤其是要制造出适应于环保行业高强度、长寿命、抗污染、高通量的膜材料。膜分离术的研究也可谓与日俱进,可以预料在新世纪,随着法规标准的日益提高和膜技术的不断成熟、成本不断降低,膜技术将会出现一个技术上的进一步提高,应用上更加普及的高潮。

参考文献:

[1]岑琴, 周丽莉,礼彤.膜分离技术及其在中药领域中的应用[J]. 沈阳药科大学学报,2008(1).

[2]梅映东, 徐兰, 李波, 郑孝贤, 林永勉, 温建波, 郑卫.膜分离技术提取分离抗生素F K R 巧FKR1565 [J].中国抗生素杂志,2008(8).

[3]刘春亮, 李长根.膜分离技术及其在中药制备中的应用[J]. 安徽医药2007(10). [4]吴晓明.膜分离技术在中药生产中的应用概况[J]. 安徽医药,2009(6 ).

[5]白晶楠,藤娟.膜分离技术的研究进展[J].科技论坛,2014(17).

[6]徐兴雨.膜分离技术及其应用的研究进展[J].赤峰学院学报(自然科学版),2013(10).

[7]雷小佳.现代膜分离技术的研究进展[J].广州化工,2012(8).

[8]李林英,薛彩霞.膜分离技术的应用及研究进展[J].内蒙古石油化工,2013(2). [9]陈默,曹端林,李永祥,王建龙.新型膜分离技术的研究进展[J].SHANDONG CHEMICAL INDUSTRY,2011,40(5).

[10]余跃,冯晖,吴沪宁. 纳滤膜处理印染废水的研究[期刊论文]-化工时刊 2004(09). [11]常江,孙余凭. 新型纳滤膜回收含镍废水的工业研究[期刊论文]-电镀与涂饰2009(04).

[12]杨青,张林,生李月中. 纳滤膜在治理农药废水污染中的应用研究[期刊论文]-工业水处理 2009(03).

[13]孙福强, 崔英德, 刘永, 杨少华,陈循军.膜分离技术及其应用研究进展[J].化工科技, 2002, 10(4):58 ~ 63.

[14]王华,刘艳飞,彭东明,王福东,鲁曼霞.膜分离技术的研究进展及应用展望[J].应用化工,2013(3).

[15]王从厚,吴鸣. 国外膜工业发展概况[J].膜科学与技术, 2002,22( 1) : 65-72.[16]郭有智.中国膜工业发展战略研究[J].化工新型材料, 2002,30( 6) : 4-8.[17]黄加乐,董声雄.我国膜技术的应用现状与前景[J].福建化工, 2000( 3) : 3-6.[18]薛冠,胡小玲,陈晓佩,郑熙.膜分离技术在医药医疗中的研究和应用[J].化学工业与工程,2009(2).

[19]谢全灵,何旭敏,夏海平.膜分离技术在制药工业中的应用[J].-膜科学与技术2003(04).

[20]徐志红,肖泽仪,李磊.超滤深度提纯银杏黄铜[J].-精细化工 2004(02). [21]营爱玲,王建,王晓琳. 纳滤膜对氨基酸的分离研究[J].-北京科技大学学报2004(06)

[22]徐德志,相波,邵建颖,李义久.膜技术在工业废水处理中的应用研究进展[J].工业水处理,2006(4).

[23]张裕嫒,张裕卿. 用于含油废水处理的复合膜研制[J]. 中国给水排水,2000,16(4):58-60.

动态膜分离技术研究进展

文章编号:1007-8924(2007)04-0091-05专题综述 动态膜分离技术研究进展 李晓波,胡保安,顾 平 (天津大学环境科学与工程学院,天津300072) 摘 要:介绍动态膜分离技术的概念,着重讨论影响动态膜分离性能的相关因素以及动态膜 在污水处理中的应用效果,指出动态膜技术具有良好的应用前景,但目前仍处于试验阶段,尚需深入研究. 关键词:动态膜;污水处理;研究进展中图分类号:TQ028.8 文献标识码:A 膜分离技术是当今水处理领域研究的热点,国内外均做了大量的研究工作[1-5],然而,膜污染及膜组件昂贵的价格是阻碍膜技术广泛应用的主要原因.动态膜分离技术采用大孔径材料制作膜组件,降低了膜组件的造价;同时,已有研究表明,动态膜的渗透性能更佳、抗污染能力显著提高[6-8].因此,动态膜作为一项新型的特殊膜分离技术正越来越多地受到国内外水处理技术研究者的关注[9-13]. 1 动态膜分离技术 动态膜作为一种分离技术,包含动态膜的载体 及动态膜分离层本身.动态膜的载体指用来承载动态膜的大孔径材料,一般价格低廉、易得,常见的有不锈钢丝网、普通筛网、工业滤布、筛绢等多孔材料和一些高分子材料,如烧结聚氯乙烯管等.动态膜分离层是动态膜分离技术的主体,指依附于动态膜载体之上、执行分离功能的滤饼层或污泥层.它是通过错流过滤或死端过滤的方式将某种固体或胶体微粒沉淀在载体表面上形成的.用于形成动态膜的粒子种类较多,有粘土类矿物、粉状活性炭(PAC )、ZrO 2、MnO 2、聚乙烯醇(PVA )等,也可用被处理的废液中的某种物质作为成膜物质沉淀在载体上形成动态膜,如自生生物动态膜的成膜物质为污水中的活性污泥.目前国内外关于动态膜分离技术的研究主要 集中在影响动态膜分离性能的因素及操作参数的优化方面. 2 影响动态膜分离性能的因素 2.1 pH 的影响 p H 对ZrO 2动态膜和MnO 2动态膜的影响较为 明显,这是由于MnO 2动态膜和大多数ZrO 2动态膜都是通过化学反应来生成膜粒子的. ZrO 2粒子的形成有两种方法:一种是提高含Zr 4+溶液,如无水ZrCl 4的水溶液的p H 来形成[14], 另一种是将ZrOCl 2加入到硫酸溶液中而形成[15].Zr 的水合氧化物在不同p H 下的特性不同,其粒子大小也不同.p H 较低时所生成的粒子粒径较小,随着p H 升高,粒径也逐渐升高.由于小颗粒需要更长的时间堵塞载体的孔隙,所以形成动态膜所需的时间也更长.Altman 等[16]的研究表明,动态膜的形成时间从p H 为3.5时的120min 减少到p H 为6时的45min ;Rumyantsev 等[16]的研究结果则分别是100min 和小于45min.蛋白质的截留率与p H 的关系不是很明显,p H 为3.5、5和6时形成的动态膜的截留率大于p H 为4时的动态膜. MnO 2是KMnO 4的还原产物,其反应式为4KMnO 4+6HCOONa =4MnO 2↓+2K 2CO 3+ 3Na 2CO 3+3H 2O +CO 2↑ 收稿日期:2005-09-06;修改稿收到日期:2006-01-17 作者简介:李晓波(1970-),男,河南省人,博士生,主要从事水污染治理技术的研究. 第27卷 第4期膜 科 学 与 技 术 Vol.27 No.4 2007年8月MEMBRAN E SCIENCE AND TECHNOLO GY Aug.2007

膜过滤技术及其应用范围介绍

膜过滤技术及其应用范围介绍 北京陶普森膜应用工程技术有限公司孙永杰 过滤是分离液体中固体性颗粒的常用方法之一。我们熟悉的土壤就是一个天然过滤器,池塘、湖泊和河流中的地表水在通过不同类型的土壤之后,渗透聚积成相对洁净的地下水,土壤让水透过的时候截留了其它成分,如颗粒物和污染物等,而渗透到深处的地下水得到了净化。 过滤是实验室常用的物料分离技术。从筛网、滤纸到膜滤器等技术手段的延伸、发展,促进了产品提纯技术的提高,净化效果明显,分离精度大大提高。在能量消耗,过滤效果和操作简便方面,相比于传统的分离方法如蒸馏或结晶,膜过滤技术的表现优于其他分离过程。在许多分离领域,膜过滤克服了传统技术局限性,尤其对生化或药物的加工应用过程,膜技术的应用提高了产品品质和收率,因为其中的蛋白质和有效成分大多是热敏感的。因膜过滤为物理过滤方式,膜材质稳定性强,经验证的实验室过滤工艺,很容易被放大和改进,更易成功应用到实际的大规模生产中。 在生物和制药技术行业的许多领域,包括食品和饮料行业,生物技术和饮用水处理行业,都普遍使用过滤膜用于过滤。 过滤膜的工作原理:膜过滤器的原理类似于上面提到的地下水渗透过程,人工制备的膜相当于地表土层,待过滤的溶液中一部分的小分子物质可以通过薄膜的微孔,其渗透性取决于孔的大小。比滤膜孔更小的颗粒可透过滤膜,而比滤膜孔大的颗粒就被截留下来。

一般情况下,膜的孔径决定了应用,根据孔径的大小,将不同的过滤膜技术分为四类:微滤,超滤和纳滤以及反渗透。 1. 微滤膜技术 过滤膜的孔径一般在5μm和0.1μm之间。在微生物实验中经常被使用孔径为0.1μm至0.2μm的膜,可以分离出酵母菌和细菌,是一种温和快速的杀菌方法。在工业化生产上,这种滤膜技术通常为过滤器的滤芯,广泛应用在医药,食品和饮料工业生产线中。例如,生物制药厂用于生物反应器中微生物生长阶段之后的“收获”和细菌菌体的分离,废水处理或浑浊液的油水分离等。 2. 超滤膜技术 超滤技术常常用于大分子的浓缩和脱水,超滤膜过滤“孔径”在0.1μm和0.01μm之间。由于该技术主要用于分离或浓缩蛋白质分子,所以膜的过滤孔径被定义为“分子量切断”(MWCO)或“标称分子量切断”(NMWC),单位为道尔顿(质量单位,等于一氧原子的1/16)。MWCO值表示可被膜截留的球状分子的小分子量。为了安全起见,应总是选择MWCO值至少比要分离的大分子的分子量高20%。这种膜过滤技术的应用操作压力,通常在2-10巴之间。 3.纳滤技术 是纳米级过滤技术的简称,纳米级过滤的膜过滤器,其孔径小于0.005μm,可截留更小的有机分子和大部分盐类物质,以及重金属离子等。陶普森纳米级过滤需要更高的外部压力,过滤压力一般在10-80巴之间。

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

智能视频技术的现状及发展趋势探析

智能视频技术的现状及发展趋势探析 智能视频技术(IVT,Intelligent Video Technology),属于计算机视觉(CV,Com puter Vision)与人工智能(AI,Artificial Intelligent)领域研究的一个分支,融合了图像处理技术、计算机视觉技术、计算机图形学、人工智能、图像分析等多项技术,其发展目标在于在监视场景与事件描述之间建立一种映射关系。同大部分计算机系统一样,智能视频系统可以被分为构成智能视频监控的硬件,以及智能视频软件两个部分。 硬件设备主要包括:采集视频数据的摄像机、支撑摄像机以及整个系统运行的电力系统、用于存放拍摄到的视频数据的存储设备、承载智能视频分析软件的高性能计算机、能够高速传输视频以及分析结果等数据的网络接口。 智能视频软件是指通过硬件提供的输入信息,自动地提取并理解视频源的关键信息。智能视频软件具有其独特性,即专用性、多样性等。而不同的商业环境和用户对监控的功能需求大相径庭,对于不同的应用系统软件实现的算法也完全不同,甚至智能视频软件的实现平台也是可选的:既可以在X86的服务器上实施,也可以在基于DSP的嵌入式系统上实施。这一特点,也正是智能视频行业探讨的热点所在。 智能视频的发展现状 智能视频软件市场是一个成长非常快速的市场,根据IMS的市场研究分析,在未来3 年内有关视频技术的软件市场会成长到8亿美元的份额。注意,仅仅是在软件部分就有这么大的一个份额。 在视频智能分析软件的市场需求急剧增长的刺激下,国外提供视频智能分析软件产品的厂商已经有许多:Verint、Vidient、Westec、Interactive、Visual Defence、Nextiva、V istascape、NiceVision、ioimage、TASC、MATE、Ov、Dallmeier、Ivbox、Viseowave等,他们都能提供视频智能分析产品,大部分厂商提供的视频智能分析产品,都基于ObjectVid eo公司的图像分析技术,采用Object Video OnBoard平台来设计并创建自己品牌的OEM产品,这是大部分视频智能分析产品商以最小的投资成本及最快的时间来赢得市场的好办法。 在解决方案的提供上,国外也有许多成功的案例,比如旧金山国际机场采用了由Vidie nt公司提供的智能视频分析系统Smart Catch。Smart Catch与机场现有的闭路电视(CCTV)系统协同检测异常或可疑行为(如图1)。当智能视频分析软件识别出一个异常情况时,就立即将视频片段通过呼机、手提电脑、移动电话或其它通讯设备发送给响应者前来进行现场调查。 国内的众多企业也开始了对智能视频分析软件的尝试。比如上海世平伟业公司开发的I vbox智能视频分析系统,上海皓维推出的智能视频分析预警系统等等。

新型膜分离技术的研究进展

收稿日期:2011-04-18 作者简介:陈默(1986—),硕士研究生,从事含能化合物的合成研究;王建龙,教授,博士生导师,通讯联系人,主要从事含能化合物合成及炸药中间体的制备、 应用及开发。新型膜分离技术的研究进展 陈 默,曹端林,李永祥,王建龙 (中北大学化工与环境学院,山西太原030051) 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、 电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。关键词:膜分离;原理;应用;进展中图分类号:TQ028.8 文献标识码:A 文章编号:1008-021X (2011)05-0031-03 Research Progress of Membrane Technology CHEN Mo ,CAO Duan -lin ,LI Yong -xiang ,WANG Jian -long (College of Chemical Engineering and Environment ,North University of China ,Taiyuan 030051,China )Abstract :The membrane extraction technique is a new type extraction technique with high efficiency ,high speed and saving energy.Membrane separation technology is applied widely as a new kind of separation technology.The separation mechanism and characteristics of different kinds of membrane technologies were introduced ,including electrodialysis ,reverse osmosis ,nanofiltration ,ultrafiltration ,microfiltration ,gas separation ,pervaporation ,membrane reactor.Further more ,the application and current problems of different membrane technologies were extensively summarized.Finally ,application prospect of membrane separation technology was presented.Key words :membrane separation ;principle ;application ;progress 膜分离技术主要是采用天然或人工合成高分子 薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。1膜分离技术的分离原理和特点1.1 纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200 1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技 术, 是国内外研究的热点。余跃等[1] 对纳滤技术处理印染废水进行了去除COD 和脱色的研究。结果 表明, 纳滤技术可有效地去除印染废水中的色度和COD 。Salzgitter Flachstahl 电镀厂采用膜技术处理 镀锌废水, 回收其中的Zn 2+ 和H 2SO 4,其结果达到了设计要求[2]。常江等[3] 在完成用新型纳滤膜处 理模拟含Ni 2+ 废水实验室研究的基础上,进行了电 镀镍漂洗废水的纳滤膜处理及镍和水回收利用的工业试验,为大规模工业应用提供了参考数据。杨青等[4] 研究报道将DK 型与NF90型纳滤膜组合可适用于治理高浓度、高盐分的吡啉农药废水污染。1.2 超滤 超滤的截留相对分子质量在1000 100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。 徐超等 [5] 在中试中采用浸没式超滤膜代替传 统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果, 设备费用降低了。罗涛等[6] 采用混凝沉淀-超滤工艺对微污染原水进行试验,结果表明,组合

膜分离技术及其研究

摘要 膜分离技术是指在某种驱动力的作用下利用膜对混合物中各组分的选择透过性的差异实现物质分离的技术。膜分离技术的驱动力可以是膜两侧的压力差、电位差或浓度差。膜分离现象中的物质迁移现象是一种不可逆的传质过程。膜分离现象早在250多年以前就被发现但是膜分离技术的工业应用是在20世纪60 年代以后。 中国的膜分离技术的发展是从1958年对离子交换膜的研究开始的数十年来取得了长足的进步。目前中国研究所涉及的领域遍及膜科学与技术从材料的应用到产品的开发等方面。经过20年的努力中国在膜分离技术的研究开发方面已涌现出一批具有实用价值接近或达到国际先进水平的成果。但从总体上讲中国的膜分离技术和世界先进水平相比还有不小的差距还有待于进一步研究开发。

1 膜分离技术概述 1.1 膜分离技术 目前己经深入研究和开发的膜分离技术有微滤、超滤、纳滤、反渗透、电渗析、渗透汽化和气体分离、膜蒸馏、支撑液膜、膜萃取、膜生物反应器、控制释放膜、仿生膜以及生物膜等过程。表 1 列出了工业应用膜过程的分类及其基本特性。 微滤是最早使用的膜分离技术是在压力差作用下进行的筛孔分离、使不溶物浓缩的过程主要用于滤除0.05~10um的悬浊物质颗粒。主要应用于截留颗粒物、液体澄清以及除菌。 超滤是在压力差作用下进行的筛孔分离过程。 纳滤是从水溶液中分离除去中小分子物质的过程( 分子量为300~500)其原理是在超滤和反渗透间提供了一种选择性媒介在浓缩有机溶质的同时也可脱盐。 反渗透是以压力差为推动力的膜分离过程渗透与反渗透都是通过半透膜来完成。 电渗析是在直流电作用下以电位差为推动力实现溶液的精制、纯化或淡化。 液膜是依据溶解、扩散等原理通过液相薄膜将两个组成不同而又互溶的溶液

膜分离技术及其应用_童汉清

膜分离技术及其应用 童汉清 海金萍 (蚌埠高等专科学校食品系,蚌埠市233030) 摘 要 针对膜分离技术的一系列独特优点,介绍了工业中常用的各种分离膜的性能、材料及其各自的应用,并简述了世界上最新的膜分离技术及其发展方向。 关键词 膜分离技术 反渗透膜 超滤膜 微滤膜 0 前言 膜分离是用半透膜分离均相混合物中不同组分的一种方法。由于膜分离技术在生产中物料无相变过程,因而无需再沸器、冷凝器等设备,与蒸发、精馏等分离技术相比具有显著的节能、高效等特点,特别是对于食品工业,膜分离技术可以完好地保留食品原有色、香、味,而其营养成分又不会被高温破坏。因而膜技术在世界范围内引起人们极大关注,被誉为重大的新技术革命之一。 现代膜技术的开发还仅仅是近三十年的事情,虽然近年来有了较大的发展,但目前仍处于发展和完善的过程中。国内外膜分离技术已在许多不同行业得到应用,并取得了良好效果。 1 反渗透膜及其应用 1.1 反渗透膜的性能 反渗透膜的孔径在0.3~2nm之间,通常为非对称的微孔结构膜,压差作为操作推动力,工作压力可高达7.0~7.5M Pa,膜通量一般为0.5m3/(m2d)。 反渗透膜能截留住除水分子、氢离子、氢氧根离子以外的其它物质,因而主要用于水和其它物质的分离。 1.2 膜材料 最先开发并成功应用的反渗透膜材料是醋酸纤维素,70年代以来逐渐开发出一些新型反渗透膜材料,如芳香族聚酰胺、聚苯并咪唑、磺化聚苯撑氧、磺化聚磺酸盐、聚酰胺羧酸、聚乙烯亚胺、聚甲苯二异氰酸酯和等离子处理聚丙烯腈等。醋酸纤维素在强酸和弱碱条件下易发生水解且不耐高温,易受微生物和酶的作用,在正常使用时还会发生蠕变使透水速率降低。尽管存在这些缺点,但目前工业上最广泛使用的两种反渗透膜材料,还是首选醋酸纤维素,其次为聚酰胺。 1.3 反渗透膜的应用 1.3.1 海水淡化 反渗透膜分离技术被广泛应用于海水淡化。在全世界海水淡化装置中,约有30%用反渗透方式来实现。反渗透膜由极薄致密表层和多孔支撑层构成,具有高透水率及高脱盐率,可脱去海水中99%以上的盐离子。 1.3.2 果汁、果酒等产品的浓缩 膜浓缩是在常温下进行的。用反渗透膜对果汁、果酒进行浓缩,可保证维生素等营养成分不受破坏以及挥发质不损失,并可保留其原有的风味,这是其它浓缩技术难以做到的。另外,反渗透膜可以完全除去细菌和病毒,使产品不加任何防腐剂而延长储存期,食用更加卫生可靠。 19 《化工装备技术》第20卷第2期1999年

膜分离技术

膜分离技术 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半 透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔。 膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。 微滤(MF)通常孔径范围在0.1~1微米,大于1微米不能通过。 又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 超滤(UF),膜两侧需压力差,膜孔径在0.05um至1nm之间,通常截留分子量范围在1000~300000。 是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1nm 之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,

超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。 纳滤(NF),孔径为几纳米,截留分子量在80~1000的范围内。 是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80~1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广阔的应用前景。 对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60~90%,相应截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。 反渗透(RO),以膜两侧静压为推动力,反渗透仅让水透过膜,能截留所有的离子。 是利用反渗透膜只能透过溶剂(通常是水)而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程。反渗透是膜分离技术的一个重要组成部分,因具

国内外虚拟现实技术发展现状和发展趋势

浅析:国内外虚拟现实技术发展现状和发展趋势 国外虚拟现实技术及产品有Google Earth, Microsoft Map Live, Intel Shockwave3D, Cult3D, ViewPoint, Quest3D,Virtools,WEBMAX等…… 一. 国内外虚拟现实几种主流技术的介绍 VRML技术 虚拟现实技术与多媒体、网络技术并称为三大前景最好的计算机技术。自1962年,美国青年(Morton Heilig),发明了实感全景仿真机开始。虚拟现实技术越来越受到大众的关注。以三个I,即Immersion沉浸感,Interaction交互性,Imagination思维构想性,作为虚拟现实技术最本质的特点,并融合了其它先进技术。在国际互联网发展迅猛的今天,具有广泛的应用前景。重大的发展过程如下: VRML开始于20世纪90年代初期。1994年3月在日内瓦召开的第一届WWW大会上,首次正式提出了VRML这个名字。1994年10月在芝加哥召开的第二届WWW大会上公布了规范的VRML1.0标准。VRML1.0可以创建静态的3D景物,但没有声音和动画,你可以在它们之间移动,但不允许用户使用交互功能来浏览三维世界。它只有一个可以探索的静态世界。 1996年8月在新奥尔良召开的优秀3D图形技术会议-Siggraph'96上公布通过了规范的VRML2.0标准。它在VRML1.0的基础上进行了很大的补充和完善。它是以SGI公司的动态境界Moving Worlds提案为基础的。比VRML1.0增加了近30个节点,增强了静态世界,使3D场景更加逼真,并增加了交互性、动画功能、编程功能、原形定义功能。 1997年12月VRML作为国际标准正式发布,1998年1月正式获得国际标准化组织ISO 批准(国际标准号ISO/IEC14772-1:1997)。简称VRML97。VRML97只是在VRML2.0基础进行上进行了少量的修正。但它这意味着VRML已经成为虚拟现实行业的国际标准。 1999年底,VRML的又一种编码方案X3D草案发布。X3D整合正在发展的XML、JA V A、流技术等先进技术,包括了更强大、更高效的3D计算能力、渲染质量和传输速度。以及对数据流强有力的控制,多种多样的交互形式。 2000年6月世界web3D协会发布了VRML2000国际标准(草案),2000年9月又发布了VRML2000国际标准(草案修订版)。预计将在2002年,正式发表X3D标准。及相关3D浏览器。由此,虚拟现实技术进入了一个崭新的发展时代。 Wed3D协会其组织包括各种97家会员公司。主要公司如下:Sun、Sony、Hp、Oracle 、Philips 、3Dlabs 、ATI 、3Dfx 、Autodesk /Discreet、ELSA、Division、MultiGen、Elsa、NASA、Nvidia、France Telecom等等。 其中以Blaxxun和ParallelGraphics公司为代表,它们都有各自的VR浏览器插件。并各自开发基于VRML标准的扩展节点功能。使3D的效果,交互性能更加完美。支持MPEG,Mov、Avi等视频文件,Rm等流媒体文件,Wav、Midi、Mp3、Aiff等多种音频文件,Flash 动画文件,多种材质效果,支持Nurbs曲线,粒子效果,雾化效果。支持多人的交互环境,VR眼镜等硬件设备。在娱乐、电子商务等领域都有成功的应用。并各自为适应X3D的发展,以X3D为核心,有Blaxxun3D等相关产品。在虚拟场景,尤其是大场景的应用方面,以VRML标准为核心的技术具有独特的优势。相关网址如下:https://www.360docs.net/doc/e816268315.html, , https://www.360docs.net/doc/e816268315.html, 应用的画面:慕尼黑机场(电子商务)

生物化工及膜分离技术研究进展

动态与信息 专题报道 生物化工及膜分离技术研究进展 现代生物技术是新兴高技术领域中的重要技术之一,是21世纪高新技术的核心。它在生物学、分子生物学、细胞生物学和生物化学等基础上发展起来,是以重组DNA技术和细胞融合技术为基础,基因工程、细胞工程、酶工程和发酵工程四大先进技术所组成的新技术群。大力发展生物技术及其产业已成为世界各国经济发展的战略重点,目前最具代表性的应用领域是生物医药和农业。生物技术与化学工程相结合而形成的生物化工技术已成为生物技术的重要组成部分。生物化工技术为生物技术提供了多种高效率的反应器、新型分离介质、工艺控制技术和后处理技术,从而可以促进生物技术不断更新和提高;因而新兴的生物化工技术已经成为当今世界高技术竞争的重要焦点之一。生物化工产品的分离技术也被称为生物技术的下游加工术,是整个生物技术的重要组成部分,它的成功与否,是决定生物技术成果能否转变为具有实用价值和竞争力的产品的重要因素。生物化工产品的分离与化学物质的分离相比具有一定的特殊性,产品大多要求高纯度并具有一定的生物活性,因其易受化学、物理和生物等外界环境因素的破坏而发生变性,因而生化分离过程一般要求在快速、低温、洁净的条件下进行。总之,生物化工产品的分离技术具有一定特殊性。 1 生物化工分离过程的重要性及一般步骤生物化工分离过程是生物化学工程的重要组成部分,一般指的是从发酵液或酶反应液中分离生物产品,它是生物技术转化为生产力过程中不可或缺的重要环节。生物产品一般是从杂质含量远远高于产物的悬浮液中进行分离的,而且产品要求纯度较高,只有经过分离加工过程,才可以制得符合规定要求的产品,因此分离是生物化工工业化的必需手段。与此同时,进行生化分离过程十分困难,这是由于产物原料液的含量极低与产物的高纯度要求之间的差异造成的,而且分离的方法复杂,因此,开发新的分离工艺手段也是提高经济效益的手段。由于生物化工产品不同(如酶或代谢产物),所采用的分离方法也不同。但大多数生物化工分离过程常采用4个分离步骤:1)对发酵液或酶反应液预处理,进行固液分离。在这个步骤中过滤和离心是常用的基本单元操作。在过滤操作中有时为了减少过滤介质的阻力,采用了膜分离技术。但该过程对产物的含量改善作用很小。2)进一步分离。此步骤使产物的含量增加。常用的分离方法有吸附、萃取等,如合成ATP 时用颗粒活性炭作吸附剂。3)高度分离。在这个步骤中分离技术对产物具有一定的选择性,典型方法有层析、电泳等。4)精制,先进行结晶析出再干燥即可。合成ATP时,用离子交换树脂进行浓缩,最后用五氧化二磷干燥器进行减压干燥,可得ATP成品。生物化工过程中常用的分离方法如蒸馏、萃取、过滤、结晶、 元操作过程,而另一些则为新近发展的分离技术,如细胞膜破碎技术(包括球磨破碎和化学破碎等)、膜分离、色层分离等。在此着重介绍膜分离技术。 2 膜分离技术概述 膜分离技术被认为是20世纪末至21世纪中期最有发展前途,甚至会导致一次工业革命的高新技术之一,成为当今世界各国研究热点。膜分离作为一种新发展的高新分离技术,其应用领域不断扩大,广泛应用于化工、食品、水加工业、医药、环境保护、生物技术、能源工程等领域,并发挥了巨大的作用。我国对膜分离技术的研究是从20世纪60年代对离子交换膜的研究开始的。从60年代的反渗透技术到90年代的渗透汽化技术,我国的膜分离技术得到了迅速的发展。经过几十年的努力,目前我国在膜分离技术研究开发方面已成功地研制出一批具有实用价值、接近或达到国际先进水平的成果,如无机膜反应分离技术等。 3 膜分离技术的原理及优点 膜分离是指用半透膜作为障碍层,借助于膜的选择渗透作用,在能量、浓度或化学位差的作用下对混合物中的不同组分进行分离提纯。由于半透膜中滤膜孔径大小不同,可以允许某些组分透过膜层,而其它组分被保留在混合物中,以达到一定的分离效果。利用膜分离技术来进行分离具有如下优点:膜分离过程装置比较简单,同时操作方 032化 学 试 剂2008年3月

膜分离技术及其原理的介绍

膜分离技术及其原理的介绍

人们对膜进行科学研究是近几十年来的事。反渗透膜是膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业化应用的时代。其发展的历史大致为:20世纪30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化。此外,以膜为基础的其它新型分离过程,以及膜分离与其它分离过程结合的集成过程也日益得到重视和发展。 一、膜分离原理 膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。不同的膜过程使用不同的膜,推动力也不同。目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽化(PV)、乳化液膜(ELM)等。 二、膜分离技术 反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。这里主要以反渗透膜和超滤膜为代表介绍一下。 反渗透膜(RO)

反渗透膜使用的材料,最初是醋酸纤维素(CA),1966年开发出聚酰胺膜,后来又开发出各种各样的合成复合膜。CA膜耐氯性强,但抗菌性较差。合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。这两种材料耐热性较差,高温度大约是60℃左右,这使其在食品加工领域的应用中受到限制。 超滤膜(UF) 超滤膜也是使用CA做材料,后来各种合成高分子材料得以广泛应用。其材料多种多样,共同特点是具有耐热、耐酸碱、耐生物腐蚀等优点。 以上就是为大家介绍的全部内容,希望对大家有帮助。

流媒体技术的原理、应用及发展

摘要:Internet的迅猛发展和普及为流媒体业务发展提供了强大的市场动力,流媒体业务正日益普及,流媒体技术广泛应用于互联网信息服务的方方面面。首先介绍了流媒体技术的基础、基本原理以及流式传输的基本过程,接着重点介绍了流媒体技术在视频点播、远程教育、视频会议和Internet直播方面的应用,最后介绍了流媒体技术的发展现状和展望。 关键词:多媒体通信,多媒体业务,流媒体,流式传输,原理,应用,发展 随着现代网络技术的发展,网络开始带给人们形式多样的信息。从在网络上出现第一张图片到现在各种形式的网络视频、三维动画,人们的视听觉在网络上得到了很大的满足。但人们又面临着另外一种不可避免的尴尬:在网络上看到生动清晰的媒体演示的同时,不得不为等待传输文件而花费大量时间。为了解决这个矛盾,一种新的媒体技术应运而生,这就是流媒体技术。 流媒体是指在网络中使用流式传输技术的连续时基媒体,如音频、视频或多媒体文件。而流式传输技术就是把连续的声音和图像信息经过压缩处理后放到网站服务器上,让用户一边下载一边收听观看,而不需要等待整个文件下载到自己的机器后才可以观看的网络传输技术。 目前,在网络上传输音视频(A/V)等多媒体信息主要有下载和流式传输两种方案。一方面,由于音视频文件一般都较大,所以需要的存储容量也较大;同时由于受网络带宽的限制,下载这样的文件常常需要几分钟甚至几小时,所以采用下载方法的时延也就很大。而采用流式传输时,声音、图像或动画等时基媒体由音视频服务器向用户计算机连续、实时传送,用户只需经过几秒或数十秒的启动时延而不必等到整个文件全部下载完毕即可观看。当声音、图像等时基媒体在客户机上播放时,文件的剩余部分将在后台从服务器上继续下载。流式传输不仅使启动时延大大缩短,而且不需要太大的缓存容量。流式传输避免了用户必须等待整个文件全部下载完毕之后才能观看的缺点。一、流媒体技术基础 实现流式传输有两种方法:实时流式传输(Real-time streaming transport)和顺序流式传输(progressive streaming transport)。一般来说,如为实时广播,或使用流式传输媒体服务器,或应用实时流协议(RTSP)等,即为实时流式传输。如使用超文本传输协议(HTTP)服务器,文件即通过顺序流发送。采用哪种传输方法可以根据需要进行选择。当然,流式文件也支持在播放前完全下载到硬盘。 1.实时流式传输 实时流式传输总是实时传送,特别适合现场广播,也支持随机访问,用户可快进或后退以观看后面或前面的内容。但实时流式传输必须保证媒体信号带宽与网络连接匹配,以便传输的内容可被实时观看。这意味着在以调制解调器速度连接网络时图像质量较差。而且,如果因为网络拥塞或出现问题而导致出错和丢失的信息都被忽略掉,那么图像质量将很差。实时流式传输需要专用的流媒体服务器与传输协议。 2.顺序流式传输 顺序流式传输是顺序下载,在下载文件的同时用户可观看在线内容,在给定时刻,用户只能观看已下载的部分,而不能跳到还未下载的部分。由于标准的HTTP服务器可发送顺序流式传输的文件,也不需要其他特殊协议,所以顺序流式传输经常被称作HTTP流式传输。顺序流式传输比较适合高质量的短片段,如片头、片尾和广告,由于这种传输方式观看的部分是无损下载的,所以能够保证播放的最终质量。但这也意味着用户在观看前必须经历时延。顺序流式传输不适合长片段和有随机访问要求的情况,如讲座、演说与演示;也不支持现场广播,严格说来,它是一种点播技术。

新型膜分离技术的研究与发展(1)

膜分离技术的研究与发展 化学专业学生:刘洋 摘要:从现代化工和新技术发展的需求出发 ,论述了化工分离技术的重要性, 各新型分离技术的原理应用及发展现状, 并对当代化工新型分离技术的发展特点进行了探讨。 关键词: 新型分离技术 ; 膜分离 ; 集成过程; 应用 化工分离工程是高等学校化学工程及工艺专业的专业基础课和必修课,主要研究各种分离过程的原理与分离物系质量、热量、动量传递过程即设备内同时进行的物理变化和化学变化的基本规律,该门课程的开设不仅要求学生具备化工原理、物理化学、化工热力学等学科基础知识,同时,还要求学生掌握一定的数值计算方法,具有一定计算机能力[1-3]。文章就近年来在化工分离工程课程教学实践,结合对化工分离工程课程的相关认识,探索了课程教学改革。 世界万物都是由有序自发地走向无序,所有的纯物质都逐渐变成混合物。分离技术是研究生产过程中混合物的分离、产物的提纯或纯化的一门新型学科,正是这种需求,推动了人们对新型分离技术不懈的探索。新型分离技术目前受到材料开发、生产成本及其他学科发展的限制,工业化应用程度还不高,但它们已经在某些高新领域显示出良好的分离性能和强劲的发展势头。 1 膜分离技术的概念与原理 借助于具有分离性能的膜而实现分离的过程称为膜分离过程。由于膜分离过程一般没有相变,既节约能耗,又适用于热敏性物料的处理,因而在生物、食品、医药、化工、水处理过程中备受欢迎。膜分离是利用一张特殊制造的、具有选择透过性能的薄膜,在外力推动下对液相或者气相混合物内的不同成分进行分离、提纯、浓缩的先进加工技术。根据膜分离过程的不同特征可分为微滤( MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、渗透蒸发(PV)、渗析(D)、电渗析(ED)、电去离子技术(EDI)和气体分离(Gs)等过程。 膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透3种。膜分离技术以其节能效果显著、设备简单、操作方便、容易控制而受到广大用户的普遍欢迎。选择适当的膜分离过程,可替代鼓式真空过滤、板框压滤、离子交换、离心分离、溶媒抽提、静电除尘、袋式过滤、吸附/再生、絮凝/共聚、倾析/沉淀、蒸发、结晶等多种传统的分离与过滤方法。 2 国外分离技术的发展及研究进展[4] 早在上世纪 30 年代,硝酸纤维素微滤膜已商品化,近年来开发出聚四氟乙烯为材料的微滤膜新品种,它使用范围非常广,销售额居于各类膜的首位. 从上世纪 70 年代,超滤应用于工业领域,现在应用领域非常广泛.上世纪 80 年代,新型含氟离子膜在氯碱工业应用成功.第三代低压反渗透复合膜,性能大幅提高,已在药液浓缩、化工废液、超纯水制造等领域得到广泛应用.1979 年 Monsanto 公司成功研制出

膜分离技术的发展趋势

膜分离技术的发展趋势 膜分离过程作为一门新型的高效分离、浓缩提纯及净化技术,已成为解决当代能源、资源和环境污染问题的重要高新技术及可持续发展技术的基础。膜分离技术的发展趋势可由以下两个方面说明。一、技术上的发展趋势 从技术上看,虽然膜分离已经获得了巨大的进展,但多数膜分离过程还处在探索和发展阶段,具体可概括为下列四点。 (1)新的膜材料和膜工艺的研究开发 为了进一步提高膜分离技术的经济效益,增加竞争能力,扩大应用范围,要求降低膜成本,提高膜性能,具有更好的耐热、耐压、耐酸、耐碱、耐有机溶剂、抗污染、易清洗等特点,这些要求推动了膜材料和膜工艺的研究开发。 ①高聚物膜在今后相当长的一段时间内,高聚物仍将是分离膜的主要材料。其发展趋向是开发新型高性能的高聚物膜材料,加强研究使膜皮层"超薄"和"活化"的技术,具体包括四个方面。 a.适合各种膜分离过程的需要,合成各种分子结构的新型高聚物膜并定量地研究膜材料的分子结构与膜的分离性能之间的关系。 开发新型高聚物膜的另一种途径是制造出高聚物"合金"膜材料,将两种或两种以上已有的高聚物混合起来作为膜材料。这样,此分离

膜就会具有两种或两种以上高聚物的功能特性。这种制膜方法比合成法更经济、更迅速。 c. 对制成的高聚物膜进行表面改性,针对不同的分离过程引入不同的活化基团,使膜表面达到"活化"。 d. 高性能的膜材料确定后,同样重要的是要找到一个能使其形成合适形态结构的制膜工艺。进一步开发出制造超薄、高度均匀、无缺陷的非对称膜皮层的工艺。 ②无机膜由于存在不可塑、受冲击易破碎、成型差以及价格较贵等缺点,一直发展较慢。无机膜今后的发展方向是研究新材料和新的制膜工艺。 ③生物膜与高聚物膜在分子结构上存在巨大差异。高聚物膜以长链状大分子为基础;生物膜的基本组成为脂质、蛋白质和少量碳氢化合物。生物膜具有最好的天然传递性能,具有高选择性、高渗透性的特点。但近几年来研究的合成生物膜都不稳定,寿命很短,今后的发展趋势是制造出真正能在工业上实际应用的生物膜。 (2)开发集成膜过程和杂化过程 所谓"集成"是指几种膜分离过程组合来用。"杂化"是指将膜分离过程与其他分离技术组合起来使用。原因是∶单一的膜分离技术有它的局限性,不是什么条件下都适用的。在处理一些复杂的分离过程时,为了获得最佳的效益,应考虑采用集成膜过程或杂化过程。近年来膜技术与其他技术的联合应用已得到了一定的发展,如∶反渗透与超滤

相关文档
最新文档