判别式法证明不等式(精选多篇)

判别式法证明不等式(精选多篇)
判别式法证明不等式(精选多篇)

判别式法证明不等式(精选多篇)

判别式法证明不等式x +y +z >=2xycosc+2zxcosb+2yzcosa 等价于+ >=0

对于分式函数y=f=/:

由于对任意一个实数y,它在函数f 的值域内的充要条件是关于x的方程y=/有实数解,因此“求f的值域。”这一问题可转化为“已知关于x的方程y=/有实数解,求y的取值范围。”

把x作为未知量,y看作常量,将原式化成关于x的一元二次方程形式,令这个方程有实数解,然后对二次项系数是否为零加以讨论:

当二次项系数为0时,将对应的y 值代入方程中进行检验以判断y的这个

取值是否符合x有实数解的要求,……

当二次项系数不为0时,∵x∈r,∴δ≥0,……

此时直接用判别式法是否有可能产生增根,关键在于对这个方程去分母这一步是不是同解变形。

原问题“求f的值域。”进一步的等价转换是“已知关于x的方程y=ax +bx+c 至少有一个实数解使得dx +ex+f≠0,求y的取值范围。”

1、当函数的定义域为实数集r时

例1求函数y=/的值域.

解:由于x +x+1= +34>0,所以函数的定义域是r.

去分母:y=x -2x+1,移项整理得x +x+=0.

当y≠1时,由△≥0得0≤y≤4;

当y=1时,将其代入方程中得x=0.

综上所述知原函数的值域为〔0,4〕.

2、当函数的定义域不是实数集r时

例2求函数y=/的值域.

解:由分母不为零知,函数的定义

域a={x|x≠-2且x≠1}.

去分母:y=x -2x+1,移项整理得x +x-=0.

当y≠1时,由△≥0得y ≥0?y∈r.

检验:由△=0得y=0,将y=0代入原方程求得x=1,这与原函数定义域a 相矛盾,

所以y≠0.

当y=1时,将其代入方程中得x=1,这与原函数定义域a相矛盾,

?

所以y≠1.

综上所述知原函数的值域为{y|y≠0且y≠1}

对于分式函数y=f=/:

由于对任意一个实数y,它在函数f 的值域内的充要条件是关于x的方程y=/有实数解,

把“求f的值域”这问题可转化为“已知x的方程y=/有实数解,求y的取值范围”把x当成未知量,y当成常量,化成一元二次方程,让这个方程有根.先看二

次项系数是否为零,再看不为零时只需看判别式大于等于零了.

此时直接用判别式法是否有可能出问题,关键在于对这个方程取分母这一步是不是同解变形。

这个问题进一步的等价转换是“已知x的方程y=ax +bx+c)到少有一个实数解使x +mx+n≠0,求y的取值范围”

这种方法不好有很多局限情况,如:定义域是一个区间的.定义域是r的或定义域是r且不等于某个数的还可以用.过程用上面的就可以了.。

题型9 判别式法a1x2?b1x?c1形如y?,把函数解析式转化为关于x的方程,通过方程有2a2x?b2x?c2

实根,判别式??0,从而建立关于y的不等式,解不等式即得y的取值范围. 注:⑴关于x的方程的二次项前的系数是参数时,要分二次项系数为0和不为0两种情况讨论,检验二次项系数为0时y的值是否符合题意.

⑵若分子、分母有公因式,先约去公

因式后,再用y?

验舍去公因式对值域的影响.

例10 求下列函数的值域. cx?d?a?0?的形式的方法解决,再检ax?b

x2?x?3x2?x?2⑴y?2⑵y?2 x?x?1x?4x?3

天河数学牛老师:qq234124222

er数学解题思想方法专题培训

判别式法

定理:实系数一元二次方程ax2?bx?c?0有两个不等实根、有两个相等实根、没有实根的充要条件是:b2?4ac>0、b2?4ac=0、b2?4ac上述定理利用配方法容易证明。既然实系数一元二次方程与其对应的函数、不等式有共同的判别

式,说明??b2?4ac是联系三者的桥梁。它有极其丰富的内涵和外延,涉及内容广泛且重要;因此,要充分利用和开发它在解题中的价值,往往会为我们解题拓展思路,指明方向,铺平道路。

判别式的使用范围:定理中明确规

定:“实系数”指a,b,c?r;“二次”指a?0;方程是在

内求解。这三者缺一不可,否则上述定理不成立。

一般地,当题中含有或可构造二次型的多项式、方程、函数、不等式时均可考虑用判别式寻找思路,发现解题突破口;或围绕判别式展开一系列的联想、创新思维活动。在使用判别式时要充分挖掘隐含条件灵活变通,有时要变更主元,调整条件结构才能使用。一般有如下几种策略:

⑴讨论用法:对判别式的正负性分类讨论,由此可分类求出方程的解,不等式解集,参数取值范围等。

构造用法:根据条件构造判别式或构造方程、函数,由此可求函数值域,证明等式,证明不等式,求恒成立问题等。

一在代数恒等变形中的应用

例1下列二次三项是,在实数范围内不能因式分解的是

2a,6x?x?15b,3x?10x?7c,2x?5x?4dy?22y?2 222

例2k为何值时,二次三项式4x?kx?3是一个完全平方式

天河数学牛老师:qq234124222 2

例3已知a,b,c均为实数,且a?b?8,ab?c2?16?0,求证a?b?c?0

例4m为何值时,6x2?xy?2y2?my?6能分解成两个一次式,并进行因式分解二在方程中的应用

例5已知a,b是关于x的方程x?2px?p?

?x?y?2例6求方程组?的实数解2xy?z?1?222p?1?0的两个根,求ab?p的值

天河数学牛老师:qq234124222

例7若一元二次方程2x?x2?6?0没有实数根,则k的最小值是

a2,b1,c-1,d不存在

例8若关于x的一元二次方程x2?mx?n?0有两个相等的实数根,则符

合条件的一组m,n的实数值是:m=, n=, 例9当b为何值时,关于x的方程x?3x??0的根在a取任意有理数时均为有理数。

三在函数中的应用

例10对于任意实数x,二次三项式2kx?4x?k?1的值皆为正,求实数k的取值范围。

天河数学牛老师:qq234124222 222

例11已知二次函数y?x2?2ax?2,其中a,b,c是?abc的三边,求证这个函数的图像与x轴没有公共交点.

例12已知二次函数的图像过a和b,且与y轴交点的纵坐标为m,

若m为定值,求此二次函数的解析式。

若二次函数的图像和x轴还有异于a点的另一个交点,求m的取值范围。

若二次函数的图像截直线y??x?1所得的线段长为22,确定m的值。

例13已知x,y为实数,且??6,求

四在几何,三角中的应用

例14设⊙o的半径为2,点p到圆心的距离op=m,使关于x的方程2x?22x?m?1?0有实数根,试确定点p的位置

天河数学牛老师:qq234124222 222yx的最大值

例15

2已知a,b,c2是?abc的三边长,当m?0时,关于x的一元二次方程c?b?2max?0,有两个相等的实数根,求证?abc是直角三角形。

例16在?abc中,?c?90?,?a使关于x的方程x2?2sina?x?cos2a?sina?0有两个相等的实数根,斜边c使关于y的方程cy2?8y?c?6?0有两个相等的实数根,解这个直角三角形

例17如右图,?abc中,?b?60?,且?b 所对的边b=1,求其余两边和的最大值。

天河数学牛老师:qq234124222 abdc

例18如右图,ab是⊙o的直径,p 是ba延长线上的一点,pc切⊙o于

c,ad?pc于d, be?pc于e,ad?be?30,dc,ce是关于x的方程x2?3mx?18m?0的两个根,求pa与pc的长。

天河数学牛老师:qq234124222

关于判别式法与韦达定理论述

weiqingsong

摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

关键词:判别式法韦达定理

在中学解题中判别式法与韦达定理的应用极其普遍,因此系统的研究一下利用判别式法与韦达定理解题是有必要的。别式法与韦达定理说明了一元二次方程中根和系数之间的关系。它们都有着广泛的应用在整个中学阶段。

一、韦达定理的由来

法国数学家韦达最早发现代数方程

的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。判别式法与韦达定理在方程论中有着广泛的应用。

二、对判别式法的介绍及概括

一般的关于一元二次方程ax +bx+c=0根的判别,△=b -4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程,解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

关于x的一元二次方程x +mx+n=0有两个相等的实数根,求符合条件的一组的实数值。这是应注意以下问题:如果说方程有实数根,即应当包括方程只有一个实根和有两个不等实根或有两个相等实根三种情况;如果方程不是一般形式,要化为一般形式,再确定a、b、c 的值;使用判别式的前提是方程为一元

二次方程,即二次项系数a≠0;当二次项系数含字母时,解题时要加以考虑。

判别式的主要应用有:不解方程就可以直接判定方程的根的情况;已知方程根的情况,确定方程中未知系数的取值范围;判别或证明一元二次方程的根的性质;判别二次三项式ax +bx+c能否在实数范围内分解因式当△≥0 时,二次三项式在实数范围内能分解因式;当△≤0 时,二次三项式在实数范围内不能分解因式。

三、某些利用别式法解题的例题

“判别式法”是我们解题时常用的方法,对初高中同学来说,在解题中常常用到,掌握它很有必要,下面举例说明它的作用。

1. 求最值

例:已知a?2b?ab?30,且a?0,b?0,试求实数a、b为何值时,ab 1

取得最大值。

解:构造关于a的二次方程,应用“判别式法”。设ab?y

由已知得a?2b?y?30

2ab由消去,对a整理得?a?2y?0

22对于,由???4?2y?0,y?68y?900?0,解得y?50或

y?18。由y?ab?30,舍去y?50,得y?18。

2把y?18代入,得a?12a?36?0,即a?6,从而

b?3。

故当a?6,b?3时,ab取得最大值为18。

2. 求参数的取值范围

例:对于函数f,若存在x0?r,使f?x0成立,则称x0为f的

2f?ax?x?b?1,不动点。已知函数对于任意实数b,函数f

恒有两个相异的不动点,求a的取值范围。

解:对任意实数b,f恒有两个相异的不动点?对任意实数b,ax2?x?b?1?x恒有两个不等实根?对任意实数b,ax2?bx?b?1?0

2恒有两个不等实根?对任意实数b,??b?4a?0恒成立。

22??b?4a?b?4ab?4a看作关于b的二次函数,可以将则对任意实

22b,??b?4ab?4a?0?’??4?4a?0?a?0 ?数恒成立

?0?a?1

故a的取值范围是

四、对韦达定理的介绍及概括

韦达定理说明了一元n次方程中根和系数之间的关系。这里讲一元二次方程两根之间的关系。一元二次方程ax +bx+c=0﹙a≠0﹚中,两根x1,x2有如下关系:x1+ x2=-b/a,x1·x2=c/a. 韦达定理虽然是初中数学的内容,但它的应用却贯穿于整个中学数学教学的始终,用它来解决一些数学问题非常简捷巧妙,简捷得使人惊叹,巧妙的令人叫绝,能激发学生的学习兴 2

趣。有利于创造思维能力的培养。

五、某些利用韦达定理解题的例题

1.利用根与系数的关系求值

11?2例:若方程x?3x?1?0的两根为x1,x2,则x1x2的值为_____.

x1?x2??b?3c?1???3,x1?x2????1a1a1解:根据韦达定理得:

?11x1?x23?????3x1x2x1x2?1

2.利用根与系数的关系构造新方程

理论:以两个数为根的一元二次方程是。例:解方程组

解:显然,x,y是方程z2-5z+6=0 ①的两根

由方程①解得z1=2,z2=3

∴原方程组的解为x1=2,y1=3

x2=3,y2=2

六、判别式法与韦达定理相结合的综合应用

例1.如图所示,抛物线y2=4x的顶点为o,点a的坐标为,倾斜角为?

4的直线l与线段oa相交且交抛物线于m、n两点,求△amn面积最大时直线l的方程,并求△amn的最大面积解:由题意,可设l的方程为y=x+m,其中-5<m<0由方?y?x?m?2程组?y?4x,消去y,

得x2+x+m2=0①∵直线l线有两个不同交点m、n,∴方程①的判别式δ=2-4m2=16>0,解得m<1,又-5<m<0,∴m的范围为

设m,n则x1+x2=4-2m,x1·x2=m2,∴|mn|=42点

a到直线l的距离为∴s△=2?m,从而s△2=42=2·≤ 3

2?2m?5?m?5?m

323=128

∴s△≤82,当且仅当2-2m=5+m,即m=-1时取等号故直线l的方程为y=x -1,△amn的最大面积为

解法二由题意,可设l与x轴相交于b, l的方程为x = y +m,其中0<m<5?x?y?m?2y?4x由方程组?,消去x,得y 2-4 y -4m=0①∵直线l与抛物线有两个不同交点m、n,

∴方程①的判别式δ=2+16m=16>0必成立,设m,n则y 1+ y 2=4,y 1·y 2=-4m,

11|y1?y2|?=422

??∴s△≤851?22即m=1时取等号2,当且仅当

故直线l的方程为y=x-1,△amn 的最大面积为

82y例2.已知抛物线?4x的焦点为f,过f作两条互相垂直的弦ab、cd,

设ab、cd的中点分别为m、n。求证:直线mn必过定点,并求出定点的坐标。

解:设直线ab的方程为y?k,则4??y?kx?x?2??b?k2x2?x?k2?0??ak2?2?y? 4x??xa?xb?1,

4?2?ya?yb???xc?xd?2?4k?yc?yd??4kk22? ??m?1?2,????ya?yb??2x?x?1kk???yc?yd? ?2,??cd从而有,。同理,有?,

n。因此,直线mn的斜率2kmn?k

1?k2,从而直线mn的方程为

y?2k?kk2y?21?k21?k,即。显然,直线mn必过定点;参考文献:①《浅谈“判别式法”的作用》作者:徐国锋、袁玉凤

②《2014年安徽省安庆一中高考模拟试卷》

③《2014年乌鲁木齐地区高三年级第二次诊断性测验试卷》

龙源期刊网http://.cn

不等式的导数法证明作者:王锁平

来源:《新高考·高二数学》2014年第02期

第四讲:数学归纳法证明不等式 数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。 本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比及猜想、抽象及概括、从特殊到一般等数学思想方法。 在用数学归纳法证明不等式的具体过程中,要注意以下几点: (1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是 左端)项数的变化,也就是要认清不等式的结构特征; (2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置; (4)有的试题需要先作等价变换。 例题精讲 例1、用数学归纳法证明 n n n n n 212111211214131211+++++=--++-+- 分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明: 1 当n=1时,左边=1-21=21,右边=111+=21 ,所以等式成立。

2假设当n=k 时,等式成立, 即 k k k k k 212111211214131211+++++=--++-+- 。 那么,当n=k+1时, 221121211214131211+-++--++-+- k k k k 221121212111+-+++++++=k k k k k )2 2111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21 121213121+++++++++= k k k k k 这就是说,当n=k+1时等式也成立。 综上所述,等式对任何自然数n 都成立。 点评: 数学归纳法是用于证明某些及自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确. 要证明的等式左边共2n 项,而右边共n 项。f(k)及f(k+1)相比较,左边增加两项,右边增加一项,并且二者右边的首项也不一样,因此 在证明中采取了将11+k 及221 +k 合并的变形方式,这是在分析了f(k) 及f(k+1)的差异和联系之后找到的方法。 练习: 1.用数学归纳法证明3k ≥n 3(n≥3,n∈N)第一步应验证( )

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

2 3、先放缩,后裂项(或先裂项再放 缩) n a =n ,求证:k=1 例3、已知 a k n 证明:苕 1 V (k — 1)k(k + 1) _________ 二[+£莖壬匹 ^/(k — 1)(k + 1) ( >/k + 1 +寸 k — 1 ) k z2 (二 学习必备 欢迎下载 用放缩法”证明不等式的基本方法 近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生 逻辑思维能力以及分析问题和解决问题的能力。特别值得一提 的是,高考中可以用 放缩法”证明不等式的频率很高, ,对它的运用往往能体现出创造性。 放缩法”它可以和很 而且要恰到好处,目标往往要从证明的结论考察, 例谈 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的 需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩 k 时就舍去了 2 -2,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例 2、函数 f (x )= 一,求证:f (1) +f (2) + …+f (n ) 1 +4x f(n)=二=1--^A 1-丄 1 +4n 1+4 2 *2 1 1 1 +f (2) + …+f (n ) >1—+1屮"+1— 2 21 2 22 2 2n +1 +1 +…=n + 丄一1 (n 迂 N *). 2 4 2n 2n '1 2 此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数, 再对分母进行放缩,从而对左边可以进行 求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。女口 它是思考不等关系的朴素思想和基本出发点 ,有极大的迁移性 多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标, 放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题, 1、添加或舍弃一些正项(或负项) 放缩”的基本策略,期望对读者能有所帮助。 例1、已知 a n =2“ -1(n 亡 N ).求证: n 1 2—3 a 2 a 3 + a n 证明:,— a k + 2k -1 =2^ 1 2 "2(22-1) _ 1 "2"3.2k +2k -2 >1-1.l^,k=1,2,..., n, 2 3 2k 玉+更+ +旦 a 2 a 3 「-1(1 +-+...+丄)」-丄(1二)「-1 , 2 3 2 22 2n 2 3 2n 2 3 2 3 a 2 a 3 + <-(n 迂 N *). a n + 2 证明:由 需放大,则只要把分子放大或分母缩小即可; 如需缩小,则只要把分子缩小或分母放大即可。

用数学归纳法证明不等式 在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫) (2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx. 师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑. 师:现将命题转化成如何证明不等式 (1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x. 提问:证明不等式的基本方法有哪些? (学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结) 师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k +1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立. (通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)例2证明:2n+2>n2,n∈N+. 证:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立. (2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2. 现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立. 师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立. 师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证? 师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书) (2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k +2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0) ≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立. 师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证

分析法证明不等式 山东 林 博 分析法是不等式证明的基本方法,但它不失为不等式证明的重要方法.下面以几道不等式证明题作为分析法的范例加以阐释. 例1 已知:a b c +∈R ,,, 求证:3223a b a b c ab abc +++????-3- ? ????? ≤. 分析:这道题从考查思维的角度来看,方法基本,只要从分析法入手———步步变形,问题极易解决. 证明:为了证明3223a b a b c ab abc +++????-3- ? ????? ≤, 只需证明323ab c abc --≤, 即证明332abc c ab c ab ab +=++≤. 而3333c ab ab c ab ab abc ++=≥成立,且以上各步均可逆, ∴32323a b a b c ab abc +++????-- ? ????? ≤. 点评:分析法是思考问题的一种基本方法,容易找到解决问题的突破口. 例2 已知关于x 的实系数方程2 0x ax b ++=有两个实根αβ,,证明: (1)如果||2α<,||2β<,那么2||4a b <+,且||4b <; (2)如果2||4a b <+,且||4b <,那么||2α<,||2β<. 分析:本题涉及参数较多,应注意它们之间的等量关系. 证明:∵αβ,是方程20x ax b ++=的两个实根, ∴a αβ+=-,b αβ=. (1)欲证2||4a b <+,且||4b <. 只要证2||4αβαβ+<+,且||4αβ<, 而||2α<,||2β<,从而有||4αβ+<,40αβ+>. 故只要证224()(4)αβαβ+<+,只要证22(4)(4)0αβ-->.

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

归纳法证明不等式 数学归纳法证明不等式的本质 数学归纳法证明不等式的典型类型是与数列或数列求和有关的问题,凡是与数列或数列求和有关的问题都可统一表述成f(n)?g(n)(n?n?)的形式或近似于上述形式。 这种形式的关键步骤是由n?k时,命题成立推导n?k?1时,命题也成立。为了表示的方便,我们记?左n?f(k?1)?f(k),?右n?g(k?1)?g(k)分别叫做左增量,右增量。那么,上述证明的步骤可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 例1.已知an?2n?1,求证: 本题要证后半节的关键是证 an1a1a2n????n?(n?n?) 23a2a3an?12 2k?1?11?中k??右k即证k?2? 2?12 而此式显然成立,所以可以用数学归纳法证明。 而要证前半节的关键是证 12k?1?1?左k??中k即证?k?2 22?1 而此式显然不成立,所以不能用数学归纳法证明。如果不进行判断就用数学归纳法证前半节,忙乎半天,只会徒劳。 有时,f(n)?g(n)(n?n?)中f(n),g(n)是以乘积形式出现,且f(n)?0,g(n)?0是显然成立的。此时,可记 ?左k?f(k?1)g(k?1),?右k? f(k)g(k) 分别叫做左增倍,右增倍。那么,用数学归结法证明由n?k时,成立推导 n?k?1成立,可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 和前面所讲相似,上述四步中,两个“=”和“<”都显然成立,而“≤”是否成立,就需要判断和证明了,既“?左k??右k”若成立,既可用数学归纳法证明;若不成立,则不能用数学归纳法证明。因此,可以这样说,此时,数学归纳法证明不等式的本质是证“左增倍≤右增倍”,而判断能否用数学归纳法证明不等式的标准就是看“左增倍≤右增倍”是否成立。 第二篇:归纳法证明不等式

2.3不等式的证明(2)——分析法与综合法习题 知能目标锁定 1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式; 2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法; 重点难点透视 1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点. 方法指导 1. 分析法 ⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”. ⑵分析法证明的逻辑关系是:结论A B B B B n ????? 21 (A 已确认). ⑶用分析法证题一定要注意书写格式,并保证步步可逆. ⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法. 2. 综合法 ⑴综合法的特点是:由因导果.其逻辑关系是:已知条件 B B B B A n ????? 21(结论),后一步是前一步的必要条件. ⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式. 一.夯实双基 1.若a>2,b>2,则ab 与a+b 的大小关系是ab( )a+b A.= B. < C.> D.不能确定 2.0>>a b 设,则下列不等式中正确的是( ) A.0 lg >b a B.a b a b ->- C. a a a a ++< +211 D. 1 1++< a b a b

3.若a,b,c + ∈R ,且a+b+c=1,那么 c b a 111+ + 有最小值( ) A.6 B.9 C.4 D.3 4.设2 6,37,2-=-== c b a ,那么a,b,c 的大小关系是( ) c b a A >>. b c a B >>. c a b C >>. a c b D >>. 5.若x>y>1,则下列4个选项中最小的是( ) A. 2 y x + B. y x xy +2 C.xy D. )11(21y x + 二.循序厚积 6.已知两个变量x,y 满足x+y=4,则使不等式m y x ≥+ 41恒成立的实数m 的取值范 围是________; 7.已知 a,b 为正数,且a+b=1则22+++b a 的最大值为_________; 8.若a,b,c + ∈R ,且a+b+c=1,则c b a ++的最大值是__________; 9.若xy+yz+zx=1,则222z y x ++与1的关系是__________; 10. b a n b a m b a -= - = >>,,0若,则m 与n 的大小关系是______. 三、提升能力 11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd 12.设x>0,y>0,求证: 2 2 y x y x +≤ + 13.已知a,b + ∈R ,且a+b=1,求证:2 25)1()1(2 2 ≥ + ++ b b a a .

不等式的证明方法及其推广 摘要:在初等代数和高等代数中,不等式的证明都占有举足轻重的位置。初等代数中介绍了许多具体的而且相当有灵活性和技巧性的证明方法,例如换元法、放缩法等研究方法;而高等代数中,可以利用的方法更加灵活技巧。我们可以利用典型的柯西不等式的结论来证明类似的不等式;除此还可以利用导数,微分中值定理,泰勒公式,积分中值定理等有关的知识来证明不等式;在正定的情况下,也可以用判别式法;掌握了定积分化为重积分的内容之后,对于某类不等式,也可以将定积分化为重积分,再证明所求的不等式。由此我们可以看到,不等式的求解证明方法并不唯一,但是初等数学里的不等式,都可以用高等数学的知识来解决,解答更为简洁。所以,高等数学对初等数学的教学和学习具有重要的指导意义。本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握证明不等式的思想方法;注重对一些着名不等式的推广及应用的介绍。 关键词:不等式;证明方法 1引言 1.1研究的背景 首先,我们要从整个数学,特别是现代数学在21世纪变得更加重要来认识不等式的重要性。美国《数学评论》2000年新的分类中,一级分类已达到63个,主题分类已超过5600 多个,说明现代数学已形成庞大的科学体系,并且仍在不断向纵深化发展。它在自然科学、 工程技术、国防、国民经济(如金融、管理等)和人文社会科学(如语言学、心理学、历史、 文学艺术等)以至我们的日常生活中的应用都在不断深化和发展。它为我们提供了理解信 息世界的一种强有力的工具,它也是新世纪公民的文化和科学素质的重要组成部分。而不 等式在数学中又处于独特的地位。美国《数学评论》在为匡继昌的《常用不等式》第2版 写的长篇评论中指出:“不等式的重要性,无论怎么强调都不会过分。”这说明不等式仍 然是十分活跃又富有吸引力的研究领域。 再者不等式的求解和证明一直是高考的热点和难点。近年来高考虽然淡化了单纯的不等式证明的证明题。但是以能力立意的、与证明有关的综合题却频繁出现。常常与函数、 数列、三角等综合,考查逻辑推理能力。是高考考查的一项重要内容。而要解决这一点的 关键在于掌握常用方法,理解不等式证明中的数学思想,熟练地运用性质和基本不等式。 因此,本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握不等式的思想方法;注 重对一些着名不等式的推广及应用的介绍,以便更好地理解和运用。 1.2文献综述 数学问题(猜想)的重要性先哲们已有过精辟的阐述。的确,形式优美、新颖、内涵丰富的不等式问题,不仅丰富了我们的研究素材,而且孕育了新思想、新方法的胚芽。当

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法 主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333 n n n S a +=-?+,1,2,3, n =。设2n n n T S =,1,2,3, n =,证明: 1 3 2 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 1 1 131131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S , 2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12n +≥ 。 证明:(I )111 111 1()23 2212 2n n T T n n n n n n +-= +++ -++++++++ 111 21221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II ) 112211222222,n n n n n n S S S S S S S S ---≥∴=-+-+ +-+1221122n n T T T T S --=++ +++ 由(I )可知n T 递增,从而12222n n T T T --≥≥ ≥,又11217 ,1,212T S T ===, 12211222n n n S T T T T S --∴=+++++21171711 (1)(1)112212 n n T T S n +≥-++=-++= 即当2n ≥时,2n S 711 12 n +≥。

自招竞赛秋季数学讲义 调整法证明不等式 学生姓名 授课日期 教师姓名 授课时长 量的项放在不等号的左侧,常数项放在右侧,通过严格求出左侧的最值来证明不等号的成立性。一般可以通俗地分为两种类型:往中间调整和往两侧调整。本章将深入介绍两种调整办法的适用场合和使用方法以及其他的调整法。 知识梳理与例题精讲 一、 对于 ()i f x ∑类的不等式的调整 如果()f x 在区间D 中二阶可导,12,,,n x x x D ∈,则我们有如下的方法求 ()i f x ∑的最大值、最小值: (1)()0f D ''≥,则有 121 ()( )n n i i x x x f x nf n =++ +≥∑ (琴生不等式) 设1122x x x x x x D -?≤≤≤+? ∈,0x ?≥,有 1212()()()()f x f x f x x f x x +≤-?++? (2)()0f D ''≤,则有 121 ()( )n n i i x x x f x nf n =++ +≤∑ (琴生不等式) 设1122x x x x x x D -?≤≤≤+? ∈,0x ?≥,有 1212()()()()f x f x f x x f x x +≥-?++? 通俗地讲,就是下凸函数往中间调函数值变小,往两侧调函数值变大;上凸函数往中间调函数值变大,往两侧调函数值变小。 对于往中间调的函数值变化由琴生不等式保证,而往两侧调的函数值变化我们以(1)为例给出证明:

证明:1 111()()()x x x f x f x x f x dx -?'--?= ? 21 2 12212()()()()x x x x x x f x x f x f x dx f x x x x dx +?-?''+?-= =-++?? ? 因为()0f D ''≥,所以12()()f x f x x x x ''≤-++?, 故 1 1 1112()()x x x x x x f x dx f x x x x dx -?-?''≤-++?? ? , 故1212()()()()f x f x f x x f x x +≤-?++?,得证。 事实上,在处理实际问题中,不一定能找到这样一个区间D 有这样的性质且包含所有的i x ,那就需要我们灵活运用其他如分类讨论等方法辅助处理。有时D 在不具有二阶导数恒不变号的性质,但仍然有上述调整法成立,所以我们在实际做题的过程中往往可以直接用具体的()f x 来证明这样调整的合理性而不依赖于其凹凸性。 在不等式中没有具体的()f x 存在但每个变量地位对称的时候,这种考虑往中间调整、往两侧调整的方法也是极为重要的,这就需要直接拿两项来看,究竟是往中间调整总体变大呢,还是往两侧调整总体变大呢,然后给出严格的证明,接着就能用两项的调整法逐步将n 项向两侧或中间调整,求得最值。 【例1】 【题目来源】 【题目】设,,a b c R + ∈,3a b c ++=9≤ 【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】1 【例2】 【题目来源】 【题目】设,,0a b c ≥,3a b c ++=7≥ 【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】2

相关文档
最新文档